当前位置:文档之家› 浅谈贝叶斯方法

浅谈贝叶斯方法

浅谈贝叶斯方法
浅谈贝叶斯方法

浅谈贝叶斯方法

随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。

一、第一部分中给出了7个定义。

定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。

定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

定义3若某事件未发生,而其对立事件发生,则称该事件失败。

定义4若某事件发生或失败,则称该事件确定。

定义5 任何事件的概率等于其发生的期望价值与其发生所得到的价值之比。

定义6 机会与概率是同义词。

定义7给定事件组,若当其中任何一个事件发生时,其余事件的概率不变,则称该事件组互相独立。

贝叶斯所给出的互不相容、相互独立、对立事件的定义与现在的定义差别无几,他首次明确了机会与概率的等价性。同时贝叶斯也给出了一系列命题。

二、贝叶斯统计的基本思想

1. 三种信息

拉普拉斯(Laplace,Pierre-Simon(1749~1827))发现了贝叶斯统计的核心——贝叶斯公式(又称为逆概公式),进行了更清晰的阐述,并用它来解决天体力学、医学统计以及法学问题。在介绍贝叶斯公式前,先简单介绍一下三种信息:总体信息、样本信息和先验信息。

1.1 总体信息:是人们对总体的了解,所带来的有关信息,总体信息包括总体分布或者总体分布族的有关信息。例如:“总体属于正态分布”、“它的密度函数是钟型曲线”等等。

1.2 样本信息:是通过样本而给我们提供的有关信息。这类“信息”是最具价值和与实际联系最紧密的信息。人们总是希望这类信息越多越好。样本信息越多一般对总体推断越准确。

基于以上两种信息所作出的统计推断被称为经典统计。其特征主要是:把样本数据看成是来自具有一定概率分布的总体,所研究的对象是总体,而不是立足与数据本身。

1.3 先验信息,即在抽样之前有关统计问题的一些信息,一般说来,先验信息主要来源于经验和历史资料。先验信息在日常生活中和工作中也经常可见,不少人在自觉或不自觉的使用它,但经典统计忽视了,对于统计推断是一个损失。

基于上述三种信息进行的推断被称为贝叶斯统计学。它与经典统计学的主要区别在于是否利用先验信息。在使用样本信息上也是有差异的。

2.贝叶斯统计的基本思想

国际数理统计主要有两大学派:贝叶斯学派和经典学派。他们之间既有共同点,又有不同点。贝叶斯统计与经典统计学的最主要差别在于是否利用先验信息,经典统计学是基于总体信息(即总体分布或总体所属分布族的信息)和样本信息(即从总体抽取的样本的信息)进行的统计推断,而贝叶斯统计是基于总体信息、样本信息和先验信息(即在抽样之前有关统计问题的一些信息,主要来源于经验或历史资料)进行的统计推断。贝叶斯统计是贝叶斯理论和方法的应用之一,其基本思想是:假定对所研究的对象在抽样前己有一定的认识,常用先验(Prior)分布来描述这种认识,然后基于抽取的样本再对先验认识作修正,得到后验分布,而各种统计推断都基于后验分布进行。经典统计

学的出发点是根据样本,在一定的统计模型下做出统计推断。在取得样本观测值X 之前,往往对参数统计模型中的参数θ有某些先验知识,关于θ的先验知识的数学描述就是先验分布。贝叶斯统计的主要特点是使用先验分布,而在得到样本观测值

12(,,

,)T n X x x x =后,由X 与先验分布提供的信息,经过计算和处理,组成较完整的后

验信息。这一后验分布是贝叶斯统计推断的基础。贝叶斯定理既适用于离散型随机变量,也适用于连续型随机变量,它形成了贝叶斯统计的基本原理和统计思想。

三、贝叶斯公式

1.事件形式的贝叶斯公式 若12,,

B B 为一列互不相容的事件,且

11

()0,

1,2,

i i B P B i +∞

==Ω

>=

则称任一事件A ,只要()0P A >,就有

()1-11

()()()

()=

,1,2,()

()()

i i i i j i j P B P A B P AB P B A i P A P B P A B ===∑

其中+1

()=()(),j i j P A P B P A B ∞

=∑即全概率公式。

特别有: 设事件,A B 为试验E 的两事件,由于B 和B 是一个完备事件组,若()>0()>0()>0P A P B P B ,,,

贝叶斯公式的一种常用简单形式为

()12()()

()=

()()+()()

P B P A B P B A P B P A B P B P A B -

在使用贝叶斯公式时,先验信息以12()()P B P B ,,这一概率分布的形式给出,即先验分布。这种概率叫做先验概率,他们的值是根据先前的知识和经验确定出的,既可以利用频率和概率的关系来确定,也可以是基于“主观概率[2]”来确定。

观察到事件A 发生后i B 的概率,称式(2-1)是离散型变量的贝叶斯公式。它实际上可以看作是从先验概率到后验概率的转换公式,即是一个“由果求因”公式。这与全概率公式不同,全概率公式是“由因求果”公式。由于贝叶斯统计集先验信息、样本信息和总体信息于一身,更贴近实际问题,并且由于在处理小样本问题时有其独特的优点。

事件形式的条件贝叶斯公式:在已有的贝叶斯公式的定义下,事件C 条件下,

()113()()()()()

i i i j i j P B C P A BC P B AC P B C P A B C +∞

=-=∑

2. 密度函数形式的贝叶斯公式

依赖于参数θ的密度函数在经典统计中记为();p x θ,它表示在参数空间{}θΘ=中对应不同的分布。可在贝叶斯统计中记为()|p x θ,它表示在随机变量θ给定某个值时,总体指标X 的分布.根据参数θ的先验信息确定先验分布()πθ。这样一来,样本x 和参数θ的联合分布为()()(),|h x p x θθπθ=这个联合分布把样本信息、总体信息和先验信息都综合进去了。

我们的任务是要对未知数θ作出统计推断。在没有样本信息时,人们只能据先验分布对θ作出推断。在有样本观察值()12,...,n x x x x =,之后,我们应该依据(),h x θ对θ作出推断。为此我们需把(),h x θ作如下分解:()()(),|h x x m x θπθ= 其中()m x 是x 的边缘密度函数。它与θ无关,或者说,()m x 中不含θ的任何信息。因此能用来对θ作出推断的仅有条件分布()|x πθ。它的计算公式是

()()()()()()()()21|,||p x h x x m x p x d θπθθπθθπθθ

=

=?

这就是贝叶斯公式的密度函数形式。这个在样本x 给定下,

θ的条件分布被称为θ的后验分布。它是集中了总体、样本和先验等三种信息中有关θ的一切信息,而又是排出一切与θ无关的信息之后所得到的结果。故基于后验分布()|x πθ对θ进行统计推断是更为有效,也是最合理的。

前面提到根据参数θ的先验信息确定先验分布()πθ。那么到底如何确定先验分布呢?这是贝叶斯统计中最困难的,也是使用贝叶斯方法必须解决但又最易引起争议的问题。这个问题现代有很多研究成果,但还没有圆满的理论与普遍有效的方法。根据先验信息确定先验分布,先验分布分为无信息先验分布和有信息先验分布两大类。在没有先验信息的情况下确定的先验分布就叫做无信息先验分布。这是贝叶斯分析诞生之初就面临的问题,是贝叶斯学派近30多年来获得的重要成果之一。主要有贝叶斯假设位置参数的无信息先验分布,尺度参数的无信息先验分布和Jeffreys 先验分布。共轭先验分布就是一种有信息先验分布,一般都含有超参数,而无信息先验分布一般不含超参数。从实用角度出发,应充分利用专家的经验或者对历史上积累的数据进行分析和拟合,以确

定先验分布。在确定先验分布时,许多人利用协调性假说。

协调性假说的定义:若总体指标X 的分布密度(或概率函数)是();p x θ,则θ的先验分布与由它和X 的样本确定的后验分布应属于同一类型。这时先验分布叫做是

();p x θ共轭先验分布。

共轭先验分布是对某一分布中的参数而言的,离开了指定的参数及其所在的分布去谈共扼先验分布是没有意义的。定义中未对“同一类型”四个字给出精确的定义,也很难给出恰当的定义。通常的理解是,将概率性质相识的所有分布算作同一类型。例如,所有正态分布构成一类;所有Γ分布构成一类;所有β分布构成一类。这个假说指示我们,先验分布应该取何种类型,然后再利用历史数据来确定先验分布中的未知部分。许多实践表明,这个假说是符合实际的。

共轭先验分布在许多场合被采用,它主要有两个优点: (1)因为先验分布和后验分布属于同一个分布族,计算方便。 (2)后验分布使得一些参数可以得到很好的解释。 常用的共轭先验分布

浅谈贝叶斯方法

浅谈贝叶斯方法 随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。 一、第一部分中给出了7个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

基于贝叶斯网络的数据挖掘技术_陈秀琼

第21卷第2期V ol 121N o 12 三明高等专科学校学报JOURNA L OF S ANMI NG C O LLEGE 2004年6月 Jun 12004 收稿日期:2004204226 作者简介:陈秀琼(1969-),女,福建尤溪人,三明高等专科学校计算机科学系讲师。 基于贝叶斯网络的数据挖掘技术 陈秀琼 (三明高等专科学校计算机科学系,福建三明 365004) 摘 要:从海量数据中挖掘有用的信息为高层的决策支持和分析预测服务,已成为网络时代人们对信息系统提出的新的需求,但我们发现数据处理和数据的提炼技术是匮乏的。起源于贝叶斯统计学的贝叶斯网络以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习方法等特性表示了客体的概率分布和因果联系,成为当前数据挖掘众多方法中最为引人注目的焦点之一。本文首先对贝叶斯网络、贝叶斯网络推理和贝叶斯网络学习进行综合性的阐述,然后讨论其在数据挖掘中的应用和优势。 关键词:贝叶斯网络;贝叶斯推理;贝叶斯学习;数据挖掘 中图分类号:O211 文献标识码:A 文章编号:1671-1343(2004)02-0047-06 随着计算机网络和存储技术的迅猛发展,数据传播和积累的速度不断提高,我们迫切需要强有力的数据挖掘工具从海量数据中挖掘有用的信息,为高层的决策支持和分析预测服务。起源于贝叶斯统计学的贝叶斯网络以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习方法等特性表示了客体的概率分布和因果联系,利用其模型进行数据挖掘能从数据库中挖掘出多层、多点的因果概念联系,推理出客观世界客体间存在的普遍联系,因此成为当前数据挖掘众多方法中最引人注目的焦点之一[1]。 1 贝叶斯网络 图1 贝叶斯网络结构示例 贝叶斯网络(Bayesian netw ork ),又叫概率因果网络、信任网络、知识图等,是一种有向无环图[2]。一个贝叶斯网络由两个部分构成: (1)具有k 个节点的有向无环图G (如图1)。图中的节点代表随机变量,节点间的有向边代表了节点间的相互关联关系。节点变量可以是任何问题的抽象,如测试值、观测现象、意见征询等。通常认为有向边表达了一种因果关系,故贝叶斯网络有时叫做因果网络(causal netw ork )。重要的是,有向图蕴涵了条件独立性假设,贝叶斯网络规 定图中的每个节点V i 条件独立于由V i 的父节点给定的非V i 后代节点构成的任何节点子 集,即如果用A (V i )表示非V i 后代节点构成的任何节点子集,用∏(V i )表示V i 的直接双

浅谈风险决策中的贝叶斯方法.

科技信息2008年第33期 SCIENCE &TECHNOLOGY INFORMATION 所谓决策, 就是决策者为了解决当前或未来可能遇到的各种问题,在若干可供选择的行动方案中,选择一个在某种意义下的最佳方案的过程。决策的正确与否会给企业带来收益或损失。因此,决策者应学会合理的决策分析,避免产生重大损失。由于决策环境中存在大量不确定因素和统计信息的不充分,决策必然带有某种程度的风险。可利用的信息是减少风险的有力手段。一般而言,信息越充分,决策环境的不确定性越小,风险也越小。 贝叶斯统计方法的基本思想就是要充分利用模型信息(假设的数学模型)、数据信息(抽样信息)和先验信息(经验资料),将先验分布和抽样分布整合成后验分布,以后验分布为决策的出发点。如果有新的信息(数据),则更新后验分布,实现递归决策方案。本研究通过实例,详细讨论了风险决策中如何利用贝叶斯公式有效整合相关信息,选择最优策略,并就最优决策进行解释。 1. 贝叶斯决策模型 每个风险决策问题都包括三个要素:自然状态(各种自然状态形成状态集)、决策者采取的行动(构成行动集)、决策者采取某个行动的后果(用收益或损失函数描述)。从这三个要素出发,可以得到不同的风险情景空间。 在通常决策问题中,决策者对自然界(或社会)会积累很多的经验和资料,这些先验信息虽不足以确定自然界(或社会)会出现什么状态,但在很多场合可以在状态集上给出一个先验分布。从中得知各种状态出现的概率估计。这种先验信息在做决策时可以使用,即依据先验概率分布及期望值准则进行最优方案的选择。由于先验概率有较强的主观色彩,不能完全反映客观规律,为了更好地进行决策,就必须进一步补充新信息,取得新数据,从而修正先验概率,得到后验概率。后验概率是根据概率论中贝叶斯公式进行计算,所以称这种决策为贝叶斯决策模型。 2. 实例

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

贝叶斯公式浅析

说起贝叶斯公式,学过概率论的人肯定学过(如果没学过,那就去了解下"条件概率”),一个条件概率的转换公式,如下: P(A|E)=[ P(E|A)P(A)] / P(E),稍微变形下就是最简单的等式了P(A|E)P(E)= [P(E|A)P(A) 这么一个简单的公式为什么能引起科学上的革命? 这是一个统计学上的公式,但是却被证明是人类唯一能够运用自如的东西。伯克利大学心理学家早在2004年就证明,Bayesian统计法是儿童运用的唯一思考方法,其他方法他们似乎完全不会。 废话不多说,举个例子来说明就很明白了:假设在住所门口看到自己“女朋友or男朋友”(没有的自己找去,这里不负责介绍,还假设她or他在外地)你会产生三种假设(很多人都会这么想): A1=男朋友or女朋友没告诉你就跑来你的城市 A2=自己看模糊了 A3=那个人跟自己男朋友or女朋友确实长得很像 那么这三种假想哪个更有可能? 更准确地说就是,在“事实”(看到了男朋友or女朋友的情况)那种假设更有可能呢?解释成数学语言就是 P(A1|E), P(A2|E), P(A3|E)。哪个更大些? 于是脑子就开始启动贝叶斯程序, 计算比较这三个的概率到底哪个更大: 因为P(E)对于三个式子来说都是一样的,所以贝叶斯公式可以看成P(A|E)正相关于P(E|A)P(A),先看看P(A)是什么? P(h)在这个公式里描述的是你对某个假想h的可信程度。(不用考虑当前的事实是什么) P( A1)=男朋友or女朋友没告诉你就跑来你的城市,可能性比较低 P( A2)=自己看模糊了,可能性比较高 P( A3)=那个人跟自己男朋友or女朋友确实长得很像,可能性比较高 P(E|A)表示的就是假想产生对应的这个事实的可能性多大 P(E| A1)=男朋友or女朋友想给你惊喜,来找你的,当然很高的概率出现在你住所门

全概率公式贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥ (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 ,B2....两两互斥,即 B i∩ B j= ,i≠j , i,j=1,2,....,且P(B i)>0,i=1,2,....; ∪B2∪....=Ω ,则称事件组 B1,B2,...是样本空间Ω的一个划分 设B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件

基于贝叶斯推理的数据融合

基于贝叶斯推理的数据融合 1 贝叶斯推理的基本原理 (1) 2 数据融合中的贝叶斯推理 (2) 3 贝叶斯推理方法的优缺点 (3) 1 贝叶斯推理的基本原理 贝叶斯推理是英国学者Thomas Bayes 于1763年提出的,两个世纪以来,它越发展现出广阔的应用前景。贝叶斯推理的基本原理是随着测量的到来,将给定假设的先验密度更新为后验密度。贝叶斯推理与经典推理的不同之处,除对似然函数进行变换外,还可以用于多假设情况。 贝叶斯推理的基本原理是:给定一个前面的似然估计后,若又增加一个证据(测量),则可以对前面的(关于目标属性的)似然估计加以更新。也就是说,随着测量值的到来,可以将给定假设的先验密度更新为后验密度。贝叶斯推理的另一个特点是它适合于多假设情况。 假设12,,...,n A A A 表示n 个互不相容的穷举假设(即存在具有属性i 的一个目标)为一个事件(或事实,观测等),贝叶斯公式的形式为: 1()() ()()()i i i n j j j P B A P A P A B P B A P A ==∑ (1) 且 ()1n i i P A =∑ 11()()(,)()n n i i i i i P B A P A P B A P B ====∑∑ ()i P A 表示事件12,,...,n A A A 出现的可能性大小,为假设1A 为真的先验概率,这是实验前就已知道的事实。()i P A B 为给定证据B (目标i 存在)条件下,假设1A 为真的后布密度。

2 数据融合中的贝叶斯推理 贝叶斯推理方法可以对多传感器测量数据进行融合,以计算出给定假设为真的后验概率。设有n 个传感器,它们可能是不同类的,他们共同对一个目标进行探测。再设目标有m 个属性需要进行识别,即有m 个假设或命题1,2,...,i A m =。贝叶斯融合算法在实现上分多级进行。在传感器一级,将测量数据依其获取的信息特征与要识别的目标属性联系进行分类,最终给出关于目标属性的一个说明12,,...,n B B B ,它依赖于测量数据和传感器分类法。第二步是计算每个传感器的说明(证据)在各假设为真条件下的似然函数。第三步是依据贝叶斯公司计算多测量证据下各个假设为真的后验概率。最后一步是判定逻辑,以产生属性判定结论,过程如图1所示 传感器1传感器2传感器n P(B1/Aj ) P(B2/Aj)P(Bn/Aj ) 组合贝叶斯公式贝叶斯统计接侧判断逻辑极大后验给定门限的 极大后验等 B1B2B3融合结果 图1 基于贝叶斯推理的数据融合 在第三步中,计算目标身份的融合概率应分两步。首先,计算出假设i A 条件下,n 个证据联合似然函数,当各传感器独立探测时,12,,...,n B B B 相互独立,该联合似然函数为 1212(,,...,)()()...()n j j j n j P B B B A P B A P B A P B A = (2) 然后,应用Bayes 公式得到n 个证据条件下,假设的后验概率k A 121212(,,...,)() (,,...,)(,,...,)n j j j n n P B B B A P A P A B B B P B B B = (3) 第四步一般是采用极大后验判定逻辑,直接选取或判定门限选取具有最大后验联合概率的目

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

刘涛--全概率公式与贝叶斯公式--教学设计

概率论与数理统计教学设计

情感态度与价 值观通过介绍概率论与数理统计在实际生活中的运用,激发学生自主学习的兴趣,也培养了学生的创新意识和探索精神。 教学分析教学内容 1.“划分”定义 2.全概率公式 3.贝叶斯公式 教学重点全概率公式、贝叶斯公式的适用范围、基本步骤。教学难点全概率公式、贝叶斯公式的理解与应用。 教学方法 与策略 板书设计 教学时间设计1.引导课题…………3分钟 2.学生活动…………5分钟 3. 探索分析,引出“划分”定义和全概率公式 …………22分钟 4.贝叶斯公式及其应用…………18分钟 5.课堂小结…………2分钟 教学手段 多媒体播放教学视频、PPT演示与板书演练书写相结合。教学进程 教学意图教学内容教学理念

引出课题(3分钟)在日常生活当中,我们知道,在购买体育彩票的时候, 不论先买还是后买,中奖的机会都是均等的,但大家有 没有考虑过,这里的原因在哪里 激发学生的 兴趣,让学生 体会数学来 源于生活。 学生活动(5分钟)问题细化,让学生们具体考虑:在n张体育彩票中有一 张奖卷,第二个人摸到奖卷和第一个人摸到奖卷的概率 分别是多少 学生会讨论第二个人摸到奖卷的前提条件,教师给予引 导,为给出“划分”的定义做准备。 从日常生活 的经验和常 识入手,调动 学生的积极 性。 “划分”定义和全概率公 式 (22分钟)1.“划分”定义(完备事件组) 设S为试验E的样本空间,1,2,n B B B L为E 的一组事件,若 (i),,,1,2, i j B B i j i j n φ=≠=L (ii) 1 n i i B S = ?= 则称1,2,n B B B L为样本空间S的一个划分。 若1,2,n B B B L是样本空间的一个划分,那 么,对每次试验,事件1,2,n B B B L中必有一个且仅有 一个发生。 在新的结论下,划分(完备事件组)可以不这 样要求,只要满足如下即可: (1) 1 n i i B A = =U (2)B发生当且仅当B与1,2,...n A A A之一同时 发生,此处并不要求 1 n i i A S = = U 事实上,只要 1 n i i B A = ?U即可。 教师给予引 导,回归到刚 提出的问题 上,对日常生 活中买体育 彩票这个事 件的样本空 间进行划分。 为给出全概 率公式做准 备。

贝叶斯统计方法研究

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用中存储的数据,计算构造模型所需的互信息和条件互信息。3.使用种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 .根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。.选取其中后验概率最大的类,即预测结果。 一、第一部分中给出了个定义。 定义给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义若定某事件未发生,而其对立事件发生,则称该事件失败

基于贝叶斯网络的各种抽样方法比较

摘要: 本文主要介绍了贝叶斯网的基本概念以及重要性抽样方法的基本理论和概率推理, 重点介绍了两种重要的抽样方法, 即逻辑抽样方法和似然加权法, 并且比较了它们的优缺点 关键词: 贝叶斯网 抽样法 无偏估计 1.引言 英国学者T.贝叶斯1763年在《论有关机遇问题的求解》中提出一种归纳推理的理论, 后被一些统计学者发展为一种系统的统计推断方法, 称为贝叶斯方法.采用这种方法作统计推断所得的全部结果, 构成贝叶斯统计的内容.认为贝叶斯方法是唯一合理的统计推断方法的统计学者, 组成数理统计学中的贝叶斯学派, 其形成可追溯到 20世纪 30 年代.到50~60年代, 已发展为一个有影响的学派.Zhang 和Poole 首先提出了变量消元法, 其原理自关于不定序动态规划的研究(Bertele and Brioschi,1972).相近的工作包括D`Ambrosio (1991)、Shachter (1994)、Shenoy (1992)等人的研究.近期关于变量消元法的研究可参见有关文献【1】由于变量消元法不考虑步骤共享, 故引进了团树传播法, 如Hugin 方法.在实际应用中, 网络节点往往是众多的, 精确推理算法是不适用的, 因而近似推理有了进一步的发展. 重要性抽样法(Rubinstein, 1981)是蒙特尔洛积分中降低方差的一种手段, Henrion (1988)提出了逻辑抽样, 它是最简单也是最先被用于贝叶斯网近似推理的重要性抽样算法. Fung 和Chang (1989)、Shachter 和Peot (1989)同时提出了似然加权算法. Shachter 和Peot (1989)还提出了自重要性抽样和启发式重要性抽样算法. Fung 和Favero (1994)提出了逆序抽样(backward sam-pling ), 它也是重要性抽样的一个特例. Cheng 和Druzdzel (2000)提出了自适应重要性抽样算法, 同时也给出了重要性抽样算法的通用框架, 这就是各种抽样方法的发展状况. 本文就近似推理阐述了两种重要的抽样方法即逻辑抽样方法和似然加权法, 并比较了它们的优缺点. 2. 基本概念 2.1 贝叶斯网络的基本概念 贝叶斯网络是一种概率网络, 用来表示变量之间的依赖关系, 是带有概率分布标注的有向无环图, 能够图形化地表示一组变量间的联合概率分布函数. 贝叶斯网络模型结构由随机变量(可以是离散或连续)集组成的网络节点, 具有因果关系的网络节点对的有向边集合和用条件概率分布表示节点之间的影响等组成.其中节点表示了随机变量, 是对过程、事件、状态等实体的某些特征的描述; 边则表示变量间的概率依赖关系.起因的假设和结果的数据均用节点表示, 各变量之间的因果关系由节点之间的有向边表示, 一个变量影响到另一个变量的程度用数字编码形式描述.因此贝叶斯网络可以将现实世界的各种状态或变量画成各种比例, 进行建模. 2.2重要性抽样法基本理论 设()f X 是一组变量X 在其定义域n X R Ω?上的可积函数.考虑积分 ()()X I f X d X Ω= ? (2.2.1)

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

对贝叶斯估计的理解

对贝叶斯定理及其在信号处理中的应用的理解 信号估计中的贝叶斯方法是对贝叶斯定理的应用,要理解贝叶斯估计首先要理解贝叶斯定理。 一、 贝叶斯定理: 1. 贝叶斯定理的简单推导过程 贝叶斯定理就是条件概率公式(贝叶斯公式),所谓条件概率就是在事件A 发生的条件下事件B 发生的概率,常用(/)P B A 表示。一般情况下(/)P B A 与 (/)P A B 是不相等的。容易得到: (/)P B A = ()()P A B P A ,(/)P A B =() () P A B P B 所以 (/)P B A ()P A =(/)P A B ()P B , 对上式变形得贝叶斯公式: (/) P A B =(/)() () P B A P A P B (1) 若',A A 为样本空间的一个划分,可得全概率公式: ()P B =''(/)()(/)()P B A P A P B A P A + 所以(1)式可以改写为: '' (/)() (/)(/)()(/)() P B A P A P A B P B A P A P B A P A = + (2) 如果12n A A A ,,...,为样本空间的一个划分,由(2)式可得条件概率(/)j P A B 1 (/)() (/)(/)() j j j n i i i P B A P A P A B P B A P A == ∑ (3) (3)式就是当样本空间的划分为n 时的贝叶斯公式即贝叶斯定理。我们把其中的()(1,...)i P A i n =称为先验概率,即在B 事件发生之前我们对i A 事件概率的一个判断。(/)j P A B 称为后验概率,即在B 事件发生之后我们对i A 事件概率的重新评估。 2. 贝叶斯公式的事件形式

最新全概率公式和贝叶斯公式练习题

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

案例1 贝叶斯方法

案例1 贝叶斯方法

(一)贝叶斯方法介绍 由贝果叶斯朔因公式,可以解决的推理问题. (|)j P B A 这个概率就是,可由贝叶斯公式给出. 12,,...,n j n B B B A A A B A 假设共有种两两互斥的原因会导致发生.当结果发生时,我们就会追朔发生的原因,需要计算由于原因导致发生的概率是多大?

12(|)(|),(|)...,(|).. j j n B P B A P B A P B A P B A 通常,我们会找那个最有可能发生的原因,也就是找,使得是中最大的一个这个推断方贝叶称之为斯方法法12,,,n B B B S ???: 称为的定义一个划分,若 12(),n i B B B S ??????= 不漏(),.i j ii B B i j =?≠ 不重1 B 2B 3B 4 B S n B

12,,,()0.()0 n i B B B S P B P A ???>>B s aye 设为的一个划分且对有公式:1()(|)(|)()(|)i i i n j j j P B P A B P B A P B P A B ==∑(),(|),1,2,...,. j j j j P B p P A B q j n ===设1q 1B ???S A 1 p 2 p n p 2q n q 2 B n B ()(|)i i P B P B A 先验概率后验概率 1 i i n j j j p q p q =∑=

(1702-1762) · 贝叶斯公式由英国数学家托马斯贝叶斯 提出.不过贝叶斯在世时并没有公开发表这一重大发现.而是他去世后两年才由他的朋友理查德普莱斯整理遗稿时发现并帮助发表的.

基于贝叶斯的文本分类

南京理工大学经济管理学院 课程作业 课程名称:本文信息处理 作业题目:基于朴素贝叶斯实现文本分类姓名:赵华 学号: 114107000778 成绩:

基于朴素贝叶斯实现文本分类 摘要贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。 关键词社区发现标签传播算法社会网络分析社区结构 1引言 数据挖掘在上个世纪末在数据的智能分析技术上得到了广泛的应用。分类作为数据挖掘中一项非常重要的任务,目前在商业上应用很多。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该分类器可以将数据集合中的数据项映射到给定类别中的某一个,从而可以用于后续数据的预测和状态决策。目前,分类方法的研究成果较多,判别方法的好坏可以从三个方面进行:1)预测准确度,对非样本数据的判别准确度;2)计算复杂度,方法实现时对时间和空间的复杂度;3)模式的简洁度,在同样效果情况下,希望决策树小或规则少。 分类是数据分析和机器学习领域的基本问题。没有一个分类方法在对所有数据集上进行分类学习均是最优的。从数据中学习高精度的分类器近年来一直是研究的热点。各种不同的方法都可以用来学习分类器。例如,人工神经元网络[1]、决策树[2]、非参数学习算法[3]等等。与其他精心设计的分类器相比,朴素贝叶斯分类器[4]是学习效率和分类效果较好的分类器之一。 朴素贝叶斯方法,是目前公认的一种简单有效的分类方法,它是一种基于概率的分类方法,被广泛地应用于模式识别、自然语言处理、机器人导航、规划、机器学习以及利用贝叶斯网络技术构建和分析软件系统。 2贝叶斯分类 2.1分类问题综述 对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。 从数学角度来说,分类问题可做如下定义: 已知集合:和,确定映射规则,使得任意有且仅有一个使得成立。(不考虑模 糊数学里的模糊集情况) 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

贝叶斯预测方法

贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测。贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中f t = m t? 1,Q t = R t + V。 由于Rt=Ct-1+Wt=Ct-1/δ,故有W?t = C t? 1(δ? 1? 1) W 其计算步骤为: (1)R t = C?t / δ; (2)Q t = R t + V; (3)A t = R t / Q t; (4)f t? 1 = m t? 1; (5)e t?y t?f t? 1; (6)C t = A t V; (7)m t?m t? 1 + A t e t 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0。Ol,δ=0。8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。 通过The SAS System for Windows 9.0软件回归分析得到抛物线预测方程: 表示年份见表3给出了1980-2006年的预测信息。 计算结果分析 对预测结果的准确度采用平均绝对百分误差(MAPE)分析。公式如下: 根据表l和表2对1980-2005年出口额的预测结果可知,常均值折扣模型所得结果的平均绝对百分误差MAPE=8。1745%,而由抛物线回归模型所得结果的平均绝对百分误差为9。5077%。由此可见这组数据中,使用贝叶斯模型预测的结果更为精确。

相关主题
文本预览
相关文档 最新文档