当前位置:文档之家› 第十一章 电磁感应

第十一章 电磁感应

第十一章 电磁感应
第十一章 电磁感应

(对应学生用书第165~171页)

电磁感应现象楞次定律

1.(2012年山东理综,14,5分)以下叙述正确的是( )

A.法拉第发现了电磁感应现象

B.惯性是物体的固有属性,速度大的物体惯性一定大

C.牛顿最早通过理想斜面实验得出力不是维持物体运动的原因

D.感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果

解析:法拉第最早发现了电磁感应现象,A正确;惯性是物体的固有属性,质量是物体惯性大小的唯一量度,B错误;伽利略通过理想斜面实验得出力不是维持物体运动的原因,C错误;自然界任何过程都遵循能量守恒定律,D正确.

答案:AD.

本题难度不大,物理学史是近几年山东高考的必考内容,也就要求今后在备考中要加强物理学史的学习,通过物理学史的学习使学生热爱科学,学习严谨的科学态度.

2.(2012年全国新课标卷,20,6分)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培

力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是( )

解析:因通电导线周围的磁场离导线越近磁场越强,而线框中左右两边电流的大小相同,而方向相反,所以受到的安培力方向相反,而导线框的左边受到的力大于导线框的右边受到的力,所以合力沿导线框左边受到的力的方向,因为线框受到的安培力的合力先水平向左,后水平向右,根据左手定则,导线处的磁场方向先垂直纸面向里,后垂直纸面向外,根据右手定则,则导线的电流先为正,后为负,所以A正确;B、C、D错误.

答案:A.

3.(2011年海南卷,7,4分)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是( )

A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系

B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系

C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系

D.焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系

解析:①奥斯特发现了电流的磁效应,揭示了电与磁之间的联系,A正确;②欧姆发现了欧姆定律,说明了纯电阻电路电流和电压之间存在联系,B错误;③法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系,C正确;④焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系,D正确.

答案:ACD.

4.(2011年江苏卷,2,3分)如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框

由静止释放,在下落过程中( )

A.穿过线框的磁通量保持不变

B.线框中感应电流方向保持不变

C.线框所受安培力的合力为零

D.线框的机械能不断增大

解析:①离导线越远,磁感应强度越小.线框下落,磁通量减小,故A错误;②由楞次定律可知,线框中感应电流方向保持不变,B正确;③线框上、下两边所在处的磁感应强度不同,安培力的合力不为零,C错误;④克服安培力做功,机械能减小,D错误.

答案:B.

5.(2011年上海卷,13,3分)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产

生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a( )

A.顺时针加速旋转

B.顺时针减速旋转

C.逆时针加速旋转

D.逆时针减速旋转

解析:①b中为顺时针电流,由安培定则知,感应电流的磁场方向垂直纸面向里;②b环有收缩趋势,说明原磁场磁通量减少,方向垂直纸面向里,a环中的电流减小;③a环带正电,由楞次定律知,a环顺时针减速运动.

答案:B.

本题综合考查了楞次定律和安培定则的应用,正确分析感应电流磁场方向及b环收缩的原因是解题的关键.

6.(2010年浙江理综,19,6分)半径为r带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图(甲)所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图(乙)所示.在t=0时刻平板之间中心有一重力不计,电荷量为q的静止微粒.则以下说法正确的是( )

A.第2秒内上极板为正极

B.第3秒内上极板为负极

C.第2秒末微粒回到了原来位置

D.第2秒末两极板之间的电场强度大小为0.2πr 2/d

解析:①由题图(乙)知第2秒内,磁场向内并均匀减小,由楞次定律知,环中电流方向为顺时针,因而上极板带正电,A 项正确;②第3秒内磁场向外且均匀增大.由楞次定律知,环中电流方向为顺时针,上极板仍带正电,B 项错误;③同理,第1秒内上极板带负电,此微粒2秒内先做匀加速直线运动,再做匀减速直线运动,加速度大小不变,运动方向不变,C 项错误;④由法拉第电磁感应定律知,电路中感应

电动势为E 感=ΔΦΔt =πr 2ΔB

Δt =0.1πr 2,场强为E=E 感d

=0.1πr 2/d,D 项错误. 答案:A.

法拉第电磁感应定律 自感

1.(2012年全国新课标卷,19,6分)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,

磁感应强度随时间的变化率

ΔB

Δt

的大小应为( )

A.4ωB 0π

B.2ωB 0π

C.ωB 0

π

D.

ωB 0

解析:当线框绕过圆心O 以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流,即

I 1=E R =ΔΦRΔt =B 0ΔS RΔt =B 0πr 2

Δθ

2πRΔt =B 0r 2ω2R ,当线圈不动,磁场强度变化时,I 2=ΔΦRΔt =ΔBS RΔt =ΔBπr 22RΔt ,因I 1=I 2,可得ΔB Δt =ωB 0π

,C 正确. 答案:C.

本题考查法拉第电磁感应定律的应用,涉及两种类型公式的选用.解题时关键是要求学生能利用公式得到电流的表达式,注意本题的动生电动势是直径切割磁感线,而不是半径.

2.(2011年广东理综,15,4分)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )

A.感应电动势的大小与线圈的匝数无关

B.穿过线圈的磁通量越大,感应电动势越大

C.穿过线圈的磁通量变化越快,感应电动势越大

D.感应电流产生的磁场方向与原磁场方向始终相同

解析:①根据法拉第电磁感应定律,感应电动势的大小与线圈的匝数成正比,与磁通量的变化率成正比,与磁通量大小无关,故A、B 错误,C正确;②根据楞次定律,感应电流产生的磁场方向可能与原磁场方向相同,也可能相反,D错误.

答案:C.

3.(2011年北京理综,19,6分)某同学为了验证断电自感现象,自己找来带铁心的线圈L,小灯泡A,开关S和电池组E,用导线将它们连接成如图所示的电路.检测电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是( )

A.电源的内阻较大

B.小灯泡电阻偏大

C.线圈电阻偏大

D.线圈的自感系数较大

解析:线圈L要阻碍通过它的电流变化.断电时,要阻碍其中的电流减小,L中电流要比断电前的电流小,并且通过灯泡形成一个回路,若L中电流断电前比灯泡中电流大,此时L中电流虽减小,但仍比灯泡断电前电流大,灯泡就会闪亮一下.要实现L中电流比小灯泡电流大,根据欧姆定律可知,L的电阻比小灯泡电阻要小.从而判定出C正确.

答案:C.

4.(2010年山东理综,21,4分)如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO'为其对称轴.一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v0向右运动,当运动到关于OO'对称的位置时

( )

A.穿过回路的磁通量为零

B.回路中感应电动势大小为2Blv0

C.回路中感应电流的方向为顺时针方向

D.回路中ab边与cd边所受安培力方向相同

解析:①穿过闭合回路的磁感线方向相反,且条数相同,故磁通量为零,A项正确;②闭合回路的ab边和cd边切割磁感线产生的感应电流方向都为逆时针方向,所以产生的感应电动势相加,即E=2Blv0,故B项正确;③由右手定则判定感应电流的方向为逆时针方向,故C项错误;④由感应电流方向和左手定则可判定ab边和cd边所受安培力的方向相同,故D项正确.

答案:ABD.

5.(2010年课标全国卷,21,6分)如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为E1,下落距离为0.8R时电动势大小为E2.忽略涡流损耗和边缘效应.关于E1、E2的大小和铜棒离开磁场前两端的极性,下列判断正确的是( )

A.E1>E2,a端为正

B.E1>E2,b端为正

C.E1

D.E1

解析:将立体图转化为平面图,如图所示根据右手定则判断b端电势高,b端为正;铜棒下落距离为0.2R时,

l1=2R2-(0.2R)2=2R0.96,

v1=2g·0.2R=0.4gR,

所以E1=Bl1v1=2BR0.96×

=2BR,

铜棒下落距离为0.8R时,

l2=2R2-(0.8R)2=2R·0.36,

v2=2g·0.8R= 1.6gR,

所以E2=Bl2v2=2BR0.36×

=2BR,故E2>E1.

答案:D.

此题考查了右手螺旋定则、右手定则和法拉第电磁感应定律,既有定性判定,又有定量计算,难度较大.解此题应注意决定电动势大小的多个因素的变化,既要考虑有效长度的变化,又要考虑瞬时速率的变化.

电磁感应中的图象问题

1.(2012年重庆理综,21,6分)如图所示,正方形区域MNPQ内有垂直纸面向里的匀强磁场.在外力作用下,一正方形闭合刚性导线框沿QN方向匀速运动,t=0时刻,其四个顶点M'、N'、P'、Q'恰好在磁场边界中点,下列图象中能反映线框所受安培力f的大小随

时间t变化规律的是( )

解析:导线框运动时M'N'切割磁感线的有效长度越来越小,Q'P'先有效长度不变,故回路中总的切割有效长度先变大后不变再变小,

由安培力公式f=BIL=B 2L 2v

R

,L 随时间均匀变化,知B 选项正确. 答案:B.

本题考查电磁感应中的图象问题,但也涉及有关感应电动势和安培力的计算是属于综合性较强的题型,难度大.

2.(2012年福建理综,18,6分)如图(甲),一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O 为坐标原点,建立竖直向下为正方向的x 轴,则图(乙)中最能正确反映环中感应电流i 随环心位置坐标x 变化的关系图象是( )

解析:①由条形磁铁的磁感线分布图知,从圆环下落处至O 点,磁场的水平分量先增加后减小至0,磁场的增加与减小都不是线性的,且磁场方向向外,从O 点以下,磁场的水平分量向里,先增加后减小,磁场的增加与减小也不是线性的,铜环加速下滑,由i=

Blv

R

判定电流变化不是线性的,A 错误;②关于O 点的对称点,下面的速度大于上面的速度,磁感应强度的水平分量B 大小相同,则下边的电流大于上边电流,B 正确.③由于关于O 点的对称点速度大小不同,则电流不同,C 错误;④在O 点的上方与下方,磁感应强度的水平分量方向相反,根据右手定则,电流方向也应该相反,D 错误. 答案:B.

(1)掌握常见磁体的磁感线分布是解此题的关键点.(2)挖掘题目中的隐含条件,例如,磁感应强度的水平分量B关于O 点对称,大小相等,方向相反;由于重力大于安培力,铜环加速下落.

3.(2011年山东理综,22,4分)如图(甲)所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用a c表示c的加速度,E kd表示d的动能,x c、x d分别表示c、d相对释放点的位移.

图(乙)中正确的是( )

解析:①0~h,c棒自由落体a c=g,h~3h,c棒匀速下落.当c棒达x c=3h处时,d棒恰进入磁场,且速度相等,从此以后c、d棒中电流为零,F安=0,c、d棒只受重力,以共同的速度自由下落.a c=a d=g.故A错误,B正确;②0~2h段只受重力做功,2h~4h段受安培力和重力,且F安>mg做加速度减小的减速运动,4h以后只受重力,故C错误,D正确.

答案:BD.

4.(2010年广东理综,16,4分)如图所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN处匀速运动到M'N'的过程中,棒上感应电动势E随时间t变化的图示,可能正确的是( )

解析:①若磁场区域宽为l,则金属棒匀速切割磁感线时产生的感应电动势E=Blv,因金属棒匀速运动,故E是恒量,故B、C错.②金属棒运动的初始阶段和最后阶段不切割磁感线,E=0,故A对,D错.

答案:A.

本题考查导体棒切割磁感线时产生感应电动势的计算.解题关键是两点:①公式E=Blv的应用.②感应电动势产生的时间段在图象中的体现.

5.(2010年北京理综,19,6分)在如图(甲)所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t'时刻再闭合S,则在t'前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是图(乙)中的( )

(甲)

(乙)

解析:S闭合前,i1=0,i2=0,S闭合后,流过L1的电流从零缓慢增大到稳定值I.流过L2的电流立即增大到稳定值I.故B正确.

答案:B.

电磁感应中的力、电综合问题

1.(2012年北京理综,19,6分)物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L、开关S和电源用导线连

,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.

接起来后,将一金属套环置于线圈L上

A.线圈接在了直流电源上

B.电源电压过高

C.所选线圈的匝数过多

D.所用套环的材料与老师的不同

解析:套环跳起的原因是闭合开关的瞬间,套环中产生感应电流从而受到磁场力的作用,且磁场力大于套环的重力.该同学实验未成功的原因,可能是选用了不同材料的套环.D项正确.

答案:D.

2.(2012年四川理综,20,6分)半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点

与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示.则( )

A.θ=0时,杆产生的电动势为2Bav

B.θ=π

3

时,杆产生的电动势为 3Bav

C.θ=0时,杆受的安培力大小为2B 2av

(π+2)R 0

D.θ=π时,杆受的安培力大小为

3B 2av

解析:θ=0时,导体杆切割有效长度2a,故E=2Bav,A 选项正确;θ=π

3

时,切割有效长度l=2a ·cos π3

=a,故E=Blv=Bav,B 选项错误;θ=0

时,回路的总电阻R 总=2a ·R 0+πa ·R 0,故安培力F=BIl=B 2l 2v R 总

=4avB 2(π+2)R 0,故C 选项错误;θ=π3时,R 总'=aR 0+5

6

2πa ·R 0,∴安培力

F'=BIl=B 2l 2v R 1'=3B 2av

(5π+3)R 0

,故D 选项正确. 答案:AD.

3.(2012年山东理综,20,5分)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和

导体棒的电阻,重力加速度为g.下列选项正确的是( )

A.P=2mgvsin θ

B.P=3mgvsin θ

C.当导体棒速度达到v

2

时加速度大小为g 2

sin θ

D.在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功

解析:当金属棒以速度v 匀速下滑时,满足:B 2l 2v R

=mgsin θ 当金属棒以速度2v 匀速下滑时,满足:

B 2l 22v

R

=mgsin θ+F

两式联立解得:F=mgsin θ,则拉力F 的功率P=F ·2v=2mgvsin θ,A 正确,B 错误;当金属棒以速度v

2

匀速下滑时,由牛顿第二定

律:mgsin θ-B 2l 2v 2R =ma,解得:a=g

2

sin θ,C 正确;当金属棒以速度2v 匀速下滑时,由功能关系可知,F 做的功和重力做的功全部转化成电阻R 上产生的焦耳热,D 错误. 答案:AC.

本题是一道综合性比较强的考题,这类问题是每年高考的必考内容,考生在备考中要充分重视.

4.(2011年福建理综,17,6分)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v,则金属棒ab 在这一过程中( )

A.运动的平均速度大小为12

v

B.下滑的位移大小为

qR C.产生的焦耳热为qBLv

D.受到的最大安培力大小为

B 2L 2v

R

sin θ 解析:由法拉第电磁感应定律及闭合电路欧姆定律知:E=

ΔΦΔt ,I=E R =ΔΦΔtR ,q=I ·Δt=ΔΦR =BL ·x R ,所以位移x=qR

BL

,故B 正确.因为棒不是做匀变速运动,故A 错误.由E=BLv 和F 安=BIL 知安培力大小应为B 2L 2v R ,故D 错误.产生的焦耳热Q=mg qR BL ·sin θ-1

2

mv 2,故C 错误. 答案:B.

5.(2010年安徽理综,20,6分)如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最

后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,

在磁场中运动时产生的热量分别为Q 1、Q 2.不计空气阻力,则( )

A.v 1

B.v 1=v 2,Q 1=Q 2

C.v 1Q 2

D.v 1=v 2,Q 1

解析:①线圈进入磁场前机械能守恒,进入磁场时速度均为v= 2g?,设线圈材料的密度为ρ1,电阻率为ρ2,线圈边长为l,导线横截面

积为S,则线圈的质量m=ρ14lS,电阻R=ρ24l S ,由牛顿第二定律得mg-B 2l 2v R =ma 解得a=g-B 2v

16ρ1ρ2

,可见两线圈在磁场中运动的加速

度相同,两线圈落地时速度相同,即v 1=v 2,故A 、C 选项错误;②线圈在磁场中运动时产生的热量等于克服安培力做的功,Q=W 安,而

F 安=B 2l 2v

R

,因两线圈电阻不同,由题意知线圈Ⅰ电阻大,其安培力小,故其做功少,产生热量也少,故Q 1

该题综合性较强,主要考查了机械能守恒、牛顿第二定律以及电磁感应定律的有关知识,难度较大,突破本题的关键是

分析出线圈在磁场中运动时,加速度不变;安培力与导线横截面积有关,以及产生热量与克服安培力做功相等.

6.(2010年四川理综,20,6分)如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a 、b 垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面.现用一平行于导轨的恒力F 作用在a 的中点,使其向上运动.若b 始终保持静

止,则它所受摩擦力可能( )

A.变为0

B.先减小后不变

C.等于F

D.先增大再减小

解析:①若两导轨间距离为l,金属棒a 向上运动时,电路中产生的感应电动势为E=Blv,电路中的感应电流为:I=E R =

Blv

R

,金属棒所受安培力为:F 安=BIl=B 2l 2v

R

,由楞次定律可判断出a 所受安培力方向沿斜面向下,b 所受安培力沿斜面向上,此时对于金属棒a 受力分析

如图(甲),由牛顿第二定律得:

F-F f1-mgsin θ-F 安

=F-μmgcos θ-mgsin θ-B 2l 2v

R

=ma.

随着速度v 的增加,金属棒a 的加速度逐渐减小,当加速度减小为零后金属棒a 做匀速运动,因而安培力将先增大后保持不变.对于金属棒b 受力如图(乙),由平衡条件:F 安+F f =mgsin θ,因而随着安培力的变化摩擦力F f 将先减小后保持不变,B 项正确,D 项错误;②当金属棒a 匀速运动时,b 所受摩擦力可能变为零,但一定小于拉力F,A 项正确,C 项错误. 答案:AB.

本题是典型的力、电综合题,主要涉及电磁感应、安培力、力和运动的关系和物体的平衡等知识,题目的综合性强,考

查的知识点全,多方面考查了考生的能力,难度大,区分度好.

7.(2012年天津理综,11,18分)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻.一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T.棒在水平向右的外力作用下,由静止开始以a=2 m/s 2的加速度做匀加速运动,当棒的位移x=9 m 时撤去外力,棒继续运动

一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:

(1)棒在匀加速运动过程中,通过电阻R 的电荷量q; (2)撤去外力后回路中产生的焦耳热Q 2; (3)外力做的功W F .

解析:(1)设棒做匀加速运动的时间为Δt,回路中磁通量的变化量为ΔФ,回路中的平均感应电动势为,根据法拉第电磁感应定律得

E =ΔФ

Δt ①

其中ΔФ=Blx ②

设回路中的平均电流为,由闭合电路欧姆定律得=E

R +r

③ 则通过电阻R 的电荷量为q=Δt ④ 联立①②③④得q=4.5 C.⑤

(2)设撤去外力时棒的速度为v,对棒的匀加速运动过程,由运动学公式得v 2=2ax ⑥ 设棒撤去外力后的运动过程中安培力做功为W.由动能定理得 W=0-12

mv 2⑦

撤去外力后产生的热量为Q 2=-W ⑧ 联立⑥⑦⑧式,代入数据得Q 2=1.8 J.⑨

(3)由题意知,撤去外力前后回路中产生的热量之比Q 1∶Q 2=2∶1,得Q 1=2Q 2=3.6 J ⑩ 在棒运动的整个过程中,由功能关系得W F =Q 1+Q 2

联立⑨⑩得W F =5.4 J. 答案:(1)4.5 C (2)1.8 J (3)5.4 J

明确拉力和安培力做功的特点,特别是要注意安培力做的功,明确安培力做功的实质是其他形式的能和电能之间的转

化.

8.(2012年福建理综,22,20分)如图(甲),在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心O 在区域中心.一质量为m 、带电量为q(q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B 随时间t 的变化关系如图(乙)所示,其中T 0=2πm

qB 0

.设小球在运动过程中电量保持不变,对原磁场的影响可忽略.

(1)在t=0到t=T 0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0;

(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t=T 0到t=1.5T 0这段时间内: ①细管内涡旋电场的场强大小E; ②电场力对小球做的功W 0.

解析:(1)小球运动时不受细管侧壁作用力,因而小球所受洛伦兹力提供向心力qv 0B 0=mv 02

r

① 由①式解得v 0=

qB 0r

m

.② (2)①在T 0到1.5T 0这段时间内,细玻璃管内一周的感应电动势E 感=πr 2ΔB

Δt

③ 由图(乙)可知

ΔB Δt =2B 0

T 0

④ 由于同一条电场线上各点的场强大小相等,所以E=

E

2πr

由③④⑤式及T 0=2πm qB 0得E=qB 02r

2πm

⑥ ②在T 0到1.5T 0时间内,小球沿切线方向的加速度大小恒为 a=

qE

m

⑦ 小球运动的末速度大小v=v 0+a Δt ⑧

由图(乙)Δt=0.5T 0, 并由②⑥⑦⑧式得v=32

v 0=

3qB 0r

2m

⑨ 由动能定理,电场力做功为W=1

2mv 2-1

2m v 02⑩ 由②⑨⑩式解得W=5

8

m v 02=

5q 2B 02r 2

8m

. 答案:(1)qB 0r m (2)①qB 02r 2πm ②5q 2B 02r 2

8m

9.(2012年广东理综,35,18分)如图所示,质量为M 的导体棒ab,垂直放在相距为l 的平行光滑金属导轨上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、间距为d 的平行金属板.R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.

(1)调节R x =R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v.

(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x .

解析:(1)棒匀速下滑,以导体棒为研究对象: BIl=mgsin θ①

通过棒的电流I=

mg sin θ

Bl

根据闭合电路欧姆定律:I=Blv R x +R =Blv

2R

② 由①②联立得v=

2mgR sin θB 2l 2

.

(2)微粒匀速通过金属板,有:qE=mg ③ E=

U x

d

④ 由③④联立得U x =

mgd

q

.

根据欧姆定律,若通过R x 的电流为I',则I'=

U x R x =mgd qR x

⑤ 以匀速运动的金属棒为研究对象,则BI'l=mgsin θ⑥ 由⑤⑥联立解得此时的R x =Bld

q sin θ

. 答案:(1)

mg sin θ 2mgR sin θB 2l 2

(2)Bld

10.(2012年浙江理综,25,22分)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置.如图所示,自行车后轮由半径r 1=5.0×10-2 m 的金属内圈、半径r 2=0.40 m 的金属外圈和绝缘辐条构成.后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡.在支架上装有磁铁,形成了磁感应强度B=0.10 T 、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r 1外半径为r 2、张角θ=π

6

.后轮以角速度ω=2π rad/s 相对于转轴转动.若不计其它电阻,忽略磁场的边缘效应.

(1)当金属条ab 进入“扇形”磁场时,求感应电动势E,并指出ab 上的电流方向; (2)当金属条ab 进入“扇形”磁场时,画出“闪烁”装置的电路图;

(3)从金属条ab 进入“扇形”磁场时开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差U ab 随时间t 变化的U ab t 图象; (4)若选择的是“1.5 V 0.3 A ”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B 、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价.

解析:(1)金属条ab 在磁场中切割磁感线时,所构成的回路的磁通量变化.设经过时间Δt,磁通量变化量为ΔΦ,由法拉第电磁感应定律E=

ΔΦ① ΔΦ=B ΔS=B(1

2

r 22Δθ-12

r 12Δθ)② 由①、②式并代入数值得: E=

ΔΦΔt =1

2

B ω(r 22-r 12)=4.9×10-2 V ③

根据右手定则(或楞次定律),可得感应电流方向为b →a.④ (2)通过分析,可得电路图为

(3)设电路中的总电阻为R 总,根据电路图可知, R 总=R+1

3R=43

R ⑤ ab 两端电势差U ab =E-IR=E-E R 总

R=1

4

E=1.2×10-2 V ⑥ 设ab 离开磁场区域的时刻为t 1,下一根金属条进入磁场区域的时刻为t 2,t 1=θω=112

s ⑦ t 2=π2ω=1

4

s ⑧

设轮子转一圈的时间为T,T=

ω

=1 s ⑨ 在T=1 s 内,金属条有四次进出,后三次与第一次相同.⑩ 由⑥、⑦、⑧、⑨、⑩可画出如下U ab t 图像.

(4)“闪烁”装置不能正常工作.(金属条的感应电动势只有4.9×10-2 V,远小于小灯泡的额定电压,因此无法工作.) B 增大,E 增大,但有限度;r 2增大,E 增大,但有限度; ω增大,E 增大,但有限度;θ增大,E 不变. 答案:见解析

11.(2011年四川理综,24,19分)如图所示,间距l=0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R=0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量

第12章 电磁感应

第12章 电磁感应 1 、如图所示,等边三角形的金属框,边长为l ,放在 均匀磁场中,ab 边平行于磁感强度B ,当金属框绕ab 边以角速度ω 转动时,bc 边上 沿bc 的电动势为 _________________, ca 边上沿ca 的电动势为_________________,金属框内的总 电动势为_______________.(规定电动势沿abca 绕向为正值) 2 、 半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <

第十章 电磁感应.

第十章 电磁感应 思 考 题 10-1 一个导体圆线圈在均匀磁场中运动,在下列几种情况下,那些会产生感应电流?为什么?(1)线圈沿磁场方向平移;(2)线圈沿垂直方向平移;(3)线圈以自身的直径为轴转动,轴与磁场方向平行;(4)线圈以自身的直径为轴转动,轴与磁场方向垂直。 答:(1)当线圈沿磁场方向平移和沿垂直方向平移时,磁感应强度和面积矢量方向相同,且大小不变,所以,磁通量也保持不变。由法拉第电磁感应定律d /d Φt e =-可知,线圈中感应电动势为零,因而线圈中也就没有感应电流。(2) 在线圈以自身的直径为轴(轴与磁场方向平行)转动过程中,磁感应强度和面积矢量方向保持垂直,磁通量为零,因此,线圈中也没有感应电流。(3) 在线圈以自身的直径为轴(轴与磁场方向垂直)转动过程时,由于磁通量为cos BS q ,其中q 是磁感应强度和面积法向矢量方向的夹角,它随时间的变化而变化。所以,磁通量发生变化,线圈中会产生感应电动势,也就有感应电流产生。 10-2 灵敏电流计的线圈处于永磁体的磁场中,通入电流线圈就会发生偏转,切断电流后线圈在回到原来位置前总要来回摆动几次。这时,如果用导线把线圈的两个头短路,摆动就会马上停止,这是为什么? 答:处于永磁体磁场中的灵敏电流计的通电线圈要受到四个力矩的作用,它们是:(1)磁场对线圈的电磁力矩BSNI g ,其中,B 为磁场的磁感应强度,S 为线圈的截面积,N 为线圈的总匝数,I g 为线圈中通过的电流;(2)线圈转动时张丝扭转而产生的反抗(恢复)力矩-Dθ,其中,D 为张丝的扭转系数,θ为线圈的偏转角;(3)电磁阻尼力矩;(4)空气阻尼力矩。 电磁阻尼力矩产生的原因是因为线圈在磁场中运动时的电磁感应现象。根据电磁感应定律,线圈在磁场中运动时会产生感应电动势。灵敏电流计的内阻R g 和外电路的电阻R 构成一个回路,因而有感应电流i 流过线圈,这个电流又与磁场相互作用,产生了一个阻止线圈运动的电磁阻尼力矩M 。可以证明,M 与回路的总电阻R g +R 成反比,有 t BNSi M d d θ ρ-=-= 其中,R R S N B g +=2 22ρ,称为阻尼系数。 当用导线把线圈的两个头短路时,外电路的电阻R 减小,阻尼系数增大,电磁阻尼力矩M 增大。设计时使短路后的外阻等于临界阻尼,摆动就会马上停止。 10-3 变压器的铁芯为什么总做成片状的,而且涂上绝缘漆相互隔开?铁片放置的方向应和线圈中磁场的方向有什么关系? 答:变压器中的铁芯由于处在交变电流的磁场中,因而在铁芯内部要出现涡流,由于金属导体电阻很小,涡流会很大,从而产生大量的焦耳热,使铁芯发热,浪费电能,甚至引起事故。为了较少涡流,将铁芯做成片状,而且涂上绝缘漆相互隔开,可以减小电流的截面,增大电阻,减小涡流,使涡流损耗也随之减小。

电磁感应测验

大学物理第10章测试 (满分120分) 一、 选择题(每小题3分,共18分) 1. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁 极大小约相等,线圈平面和磁场方向垂直。今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一种方法[ ] (A) 把线圈在自身平面内绕圆心旋转一个小角度。 (B) 把线圈绕通过其直径的OO 轴转一个小角度。 (C) 把线圈向上平移。 (D) 把线圈向下平移。 2. 半径为a 的圆线圈置于磁感应强度为B 的均匀磁场中,线圈平面与磁场方向垂直, 线圈电阻为R ;当把线圈转动使其法向与B 的夹角 = 60 时,线圈中已通过的电量与线圈面积及转动的时间的关系是 [ ] (A) 与线圈面积成正比,与时间无关。 (B) 与线圈面积成正比,与时间成正比。 (C) 与线圈面积成反比,与时间成正比。 (D) 与线圈面积成反比,与时间无关。 3. 棒AD 长为L ,在匀强磁场B 中绕OO 转动。角速度为ω,AC = L /3。则A 、D 两点间电势差为:[ ] (A) 26 1 L B U U A D 。 (B) 2ω6 1L B U U D A 。 (C) 2 ω92L B U U A D 。 (D) 2ω9 2 L B U U D A 。 4. 将形状完全相同的铜环和木环静止放置,并使通过两平面的磁通量随时间的变化率相等,则 [ ] (A) 铜环中有感应电动势,木环中无感应电动势。 (B) 铜环中感应电动势大,木环中感应电动势小。 (C) 铜环中感应电动势小,木环中感应电动势大。 (D) 两环中感应电动势相等。 5. 对于单匝线圈取自感系数的定义式为L = /I 。当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L [ ] (A) 变大,与电流成反比关系。 (B) 变小。 (C) 不变。 (D) 变大,但与电流不成反比关系。 6. 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 r 1 和r 2,管内充满均 N S O O i A B O ω D C O'

磁场电磁感应测试题

磁场、电磁感应测试题 考试时间:90分钟满分:110分 一、选择题(本题共12小题,每题5分,共60分) 1.如图所示,若粒子(不计重力)能在图中所示的磁场区域内做匀速圆周运动,则可以判断() A.粒子在运动过程中机械能不变 B.如粒子带正电,则粒子做顺时针运动 C.在其他量不变的情况下,粒子速度越大,运动周期越大 D.在其他量不变的情况下,粒子速度越大,圆周运动半径越大 2.如图所示,xOy坐标平面在竖直面内,y轴正方向竖直向上,空间有垂直于xOy平面的匀强磁场(图中未画出)。一带电小球从O点由静止释放,运动轨迹如图中曲线所示。下列说法中正确的是() A.轨迹OAB可能为圆弧 B.小球在整个运动过程中机械能增加 C.小球在A点时受到的洛伦兹力与重力大小相等 D.小球运动至最低点A时速度最大,且沿水平方向 3.一块横截面为矩形的金属导体的宽度为b,厚度为d,将导体置于一磁感应强度为B的匀强磁场中,磁感应强度的方向垂直于侧面,如图所示.当在导体中通以图示方向的电流I时,在导体的上下表面间用电压表测得的电压为U H,已知自由电子的电量为e,则下列判断正确的是() A.导体内自由电子只受洛伦兹力作用 B.用电压表测U H时,电压表的“+”接线柱接下表面 C.金属导体的厚度d越大,U H越小 D.该导体单位体积内的自由电子数为 4.如图所示,在xOy平面内存在着磁感应强度大小为B的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P(﹣L,0)、Q(0,﹣L)为坐标轴上的两个点.现有一电子从P点 沿PQ方向射出,不计电子的重力,则() A.若电子从P点出发恰好经原点O第一次射出磁场分界线, 则电子运动的路程一定为 B.若电子从P点出发经原点O到达Q点,则电子运动的路程一定为πL C.若电子从P点出发经原点O到达Q点,则电子运动的路程可能为2πL D.若电子从P点出发经原点O到达Q点,则nπL(n为任意正整数)都有可能是电子运的路程 5.电磁泵在目前的生产科技中得到了广泛应用。如图5所示是电磁泵的原理图,泵体是一个长方体,ab边长为L,两侧端面是边长为a的正方形;流经泵体内的液体密度为ρ,在进口处接入电导率为σ(电阻率的倒数)的导电液,泵体所在处有方向垂直向外的磁场B,泵体的上下两表面接在电压恒为U的电源上,则()

第十二章 电磁感应电磁场(一)作业答案

第十二章 电磁感应 电磁场(一) 一.选择题 [ A ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60?时,线圈中已通过的电量与线圈面积及转动时间的关系是: (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】 [ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】 dt dI L L -=ε,在每一段都是常量。dt dI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B ? 平 行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应 电动势和a 、c 两点间的电势差U a – U c 为 (A) =0,U a – U c =221l B ω (B) =0,U a – U c =22 1l B ω- (C) =2l B ω,U a – U c =2 2 1l B ω (D) =2l B ω,U a – U c =22 1 l B ω- 【解析】金属框架绕ab 转动时,回路中 0d d =Φ t ,所以0=ε。 2012c L a c b c bc b U U U U v B d l lBdl Bl εωω→→→ ??-=-=-=-??=-=- ??? ?? [ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经 为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。当直导线的电流被切断后,沿着导线环流过的电量约为: (A))1 1(220r a a R Ir +-πμ (B) a r a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:t d d Φ = ε B ? a b c l ω a I r o R q 2 1 φφ-=

高考物理选修3-2 第十章 电磁感应核心素养提升

科学思维(高考常考的“切割模型”) 【真题模型再现】 来源图例模型命题点 2016·高考全国Ⅱ卷第20题“导体棒转动切 割”模型 右手定则、E=BL v - 的应用、闭合电路欧 姆定律 2016·高考全国Ⅰ卷第24题“导体棒平动切 割”模型 受力分析、平衡条 件、公式E=BL v的 应用 2016·高考全国Ⅱ卷第24题“单棒+导轨” 模型 牛顿第二定律、法拉 第电磁感应定律、欧 姆定律 2017·高考全国Ⅱ卷第20题“线框切割”模 型 法拉第电磁感应定 律、右手定则、安培 力 2017·高考全国Ⅲ卷第15题“单棒+导轨” 模型 楞次定律、磁通量的 概念 2018·高考全国Ⅰ卷第17题“导体棒转动切 割”模型 法拉第电磁感应定 律、闭合电路欧姆定 律、电荷量的计算 2018·高考全国Ⅱ卷第18题“线框切割”模 型 i-t图象、楞次定 律、法拉第电磁感应 定律 2019·高考全国Ⅱ卷第21题“双棒+导轨” 模型 I-t图象、法拉第电 磁感应定律,闭合电 路欧姆定律

2019·高考全国Ⅲ 卷第19题 “双棒+导轨” 模型 v-t图象、I-t图 象、动量守恒、法拉 第电磁感应定律 模型一 【典例1】(多选)如图1所示为一圆环发电装置,用电阻R=4 Ω的导体棒弯成半径L=0.2 m的闭合圆环,圆心为O,COD是一条直径,在O、D间接有负载电阻R1=1 Ω。整个圆环中均有B=0.5 T的匀强磁场垂直环面穿过。电阻r=1 Ω的导体棒OA贴着圆环做匀速圆周运动,角速度ω=300 rad/s,则() 图1 A.当OA到达OC处时,圆环的电功率为1 W B.当OA到达OC处时,圆环的电功率为2 W C.全电路最大功率为3 W D.全电路最大功率为4.5 W 解析当OA到达OC处时,圆环的电阻为1 Ω,与R1串联接入电路,外电阻为2 Ω,棒转动过程中产生的感应电动势E= 1 2BL 2ω=3 V,圆环上分压为1 V,所以圆环上的电功率为1 W,选项A正确,B错误;当OA到达OD处时,圆环中的电流为零,此时电路中总电阻最小,而电动势不变,所以全电路的电功率最大 为P=E2 R1+r =4.5 W,选项C错误,D正确。 答案AD 模型二“单棒+导轨”模型 【典例2】(多选)(2020·山东淄博市模拟)如图2甲所示,左侧接有定值电阻R =3 Ω的水平平行且足够长的粗糙导轨处于垂直纸面向外的匀强磁场中,磁感应强度B=2 T,导轨间距L=1 m。一质量m=2 kg、接入电路的阻值r=1 Ω的金属棒在拉力F的作用下由静止开始从CD处沿导轨向右加速运动,金属棒的v-

磁场电磁感应练习

磁场电磁感应练习 一、选择题 1、对于安培环路定理的理解,正确的是:(所讨论的空间处在稳恒磁场中)[ ] A 若0=??L l d H ρ ρ,则在回路L 上必定是H 处处为零 B 若0=??L l d H ρ ρ,则回路L 上必定不包围电流 C 若0=??L l d H ρ ρ,则回路L 内所包围传导电流的代数和为零 D 在回路L 上各点的H 仅与回路L 所包围的电流有关 2、下列说法中正确的是[ ] A 按照线圈自感系数的定义式L=Φ/I ,I 越小,L 越大 B 位移电流只在平行板电容器中存在 C 自感是对线圈而言的,对一个无线圈的导体回路是不存在自感的 D 位移电流的本质也是电荷的定向运动,当然也能激发磁场 E 以上说法均不正确 3、在感应电场中电磁感应定律可写成??????-=?S L K S d t B l d E ρ ρ ρρ,式中K E ρ为感应电场的电场强度,此式表明:[ ] A 闭合曲线L 上感应电场处处相等 B 感应电场是保守力场 C 感应电场的电场线不是闭合曲线 D 在感应电场中不能向像对静电场那样引入电势的概念 4、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为[ ] A I a B π= 02μ. B I a B 2π= 2μ. C B = 0. D I a B π=0μ. 5、一固定载流大平板A ,在其附近,有一载流小线框能自由转动或平动,线框平面与大平面垂直,大平面的电流与线框中电流方向如图示,则通电线框的运动情况从大平面向外看是[ ] A 靠近大平面 B 顺时针转 C 逆时针转 D 离开大平面向外运动 6、两个相距不太远的平面圆线圈,怎样放置可使其互感系数近似为零(设其中一线圈的轴线恰通过另一线圈的圆心)[ ] I a

第十二章电磁感应 电磁场

第十二章 电磁感应 电磁场和电磁波 12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且 t i t i d d d d 2 1<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 1 2121=;t i M εd d 21212=.因 而正确答案为(D ). 12-5 下列概念正确的是( ) (A ) 感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ). 12-7 载流长直导线中的电流以 t I d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律t Φ d d - =ξ ,来求解.由于回路处在非均匀磁场中,磁通量就需用??= S S B Φd 来计算. 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量

第十一章电磁感应习题.

第十一章电磁感应习题 1选择题 11.1.在一线圈回路中,规定满足如图所示的旋转方向时,电动势ε , 磁通量Φ为正值。若 磁铁沿箭头方向进入线圈,则有() (A) dΦ /dt < 0, ε < 0 . (B) dΦ /dt > 0, ε < 0 . (C) dΦ /dt > 0, ε > 0 . (D) dΦ /dt < 0, ε > 0 . 解 B 习题11.18 图 111.2一金属圆环旁边有一带负电荷的棒,棒与环在同一平面内,开始时相对静止;后来棒 忽然向下运动,如图所示,设这时环内的感应电动势为ε ,感应电流为 I,则() (A)ε=0, I=0 (B)ε≠0,I=0 (C)ε≠0,I≠0 , I为顺时针方向 (D)ε≠0,I≠0 ,I 为逆时针方向 解(C)习题11.2图 11.3一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO' 轴,以匀角速度ω 旋转(如 图所示).设t=0 时,线框平面处于纸面内,则任一时刻感应电动势的大小为() (A)2abBcosωt

B (B)ωabB (C)ωabBcosωt 2 习题11.3图 (D)ωabBcosωt 解(D) 11.4在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中() (A)感应电动势相同,感应电流相同 (B)感应电动势不同,感应电流不同 (C)感应电动势相同,感应电流不同 (D)感应电动势不同,感应电流相同 解 C 11.5 半径R的圆线圈处于极大的均匀磁场B中,B垂直纸面向里,线圈平面与磁场垂直,如果磁感应强度为 B=3t+2t+1,那么线圈中感应电场为() 2 (A)2π(3t+1)R2,顺时针方向(B)2π(3t+1)R2,逆时针方向 (C)(3t+1)R ,顺时针方向(D)(3t+1)R ,逆时针方向 解(D) 11.6面积为S和2S的两圆线圈1、2如图放置,线圈1中通有电流通有I,线圈2中通有电流2I。线圈1的电流所产生的通过线圈2的磁通量用Φ21表示,线 圈2的电流所产生的通过线圈1的磁通量用Φ12表示,则Φ21和Φ12的大小关系 为() (A) Φ21=2Φ12 (B) Φ21=1Φ12 22 S(C) Φ21=Φ12 (D) Φ21>Φ12

第12章 电磁感应 电磁场

第十二章 电磁感应 电磁场 问题 12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转. 解 导线在右边区域激发的磁场方向垂直于纸面向 里,并且由2I B r μ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定. (1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向. (2)线圈绕AD 轴旋转,当从0到90时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90到180时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180到270时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270到360时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零. 12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗? 解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生. 12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)]. C I

大学物理授课教案 第十章 电磁感应

第十章电磁感应 §10-1法拉第电磁感应定律 一、电磁感应现象,感应电动势 电磁感应现象可通过两类实验来说明: 1.实验 1)磁场不变而线圈运动 2)磁场随时变化线圈不动 2.感应电动势 由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。 3.电动势的数学定义式 (10-1)说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为 ??=正极 负极l d K ε 表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。

(2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普 遍式表示:() ??=l K l d K :非静电力 ε (3)电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内 部到正极的方向规定为电动势的方向。 二法拉第电磁感应定律 1、定律表述 在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。数学表达式: dt d k i Φ-=ε 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有 (10-2) 上式中“-”号说明方向。 2、i ε方向的确定 为确定i ε,首先在回路上取一个绕行方向。规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。在此基础上求出通过回路上所围面积的磁通量,根据 dt d i Φ-=ε计算i ε。 , 0>Φ00Φi dt d ε ,0>Φ00>?<Φ i dt d ε 沿回路绕行反方向 沿回路绕行方向 :0:0<>i ε 此外,感应电动势的方向也可用楞次定律来判断。楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。 说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表述。

高中物理第二章 电磁感应与电磁场单元测试题及解析

第二章电磁感应与电磁场章末综合检测 (时间:90分钟;满分100分) 一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项正确) 1.下列过程中一定能产生感应电流的是( ) A.导体和磁场做相对运动 B.导体一部分在磁场中做切割磁感线运动 C.闭合导体静止不动,磁场相对导体运动 D.闭合导体内磁通量发生变化 2.关于磁通量的概念,下列说法中正确的是( ) A.磁感应强度越大,穿过闭合回路的磁通量也越大 B.磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大 C.穿过线圈的磁通量为零时,磁感应强度不一定为零 D.磁通量发生变化时,磁感应强度一定发生变化 3.如图2-3,半径为R的圆形线圈和矩形线圈abcd在同一平面内,且在矩形线圈内有变化的磁场,则( ) 图2-3 A.圆形线圈有感应电流,矩形线圈无感应电流 B.圆形线圈无感应电流,矩形线圈有感应电流 C.圆形线圈和矩形线圈都有感应电流 D.圆形线圈和矩形线圈都无感应电流 4.以下叙述不正确的是( ) A.任何电磁波在真空中的传播速度都等于光速 B.电磁波是横波 C.电磁波可以脱离“波源”而独自存在 D.任何变化的磁场都可以产生电磁波 5.德国《世界报》曾报道过个别西方发达国家正在研制电磁脉冲波武器——电磁炸弹.若一枚原始脉冲波功率10 kW、频率5千兆赫的电磁炸弹在不到100 m的高空爆炸,它将使方圆400 m2~500 m2地面范围内电场达到每米数千伏,使得电网设备、通信设施和计算机中的硬盘与软盘均遭到破坏.电磁炸弹有如此破坏力的主要原因是( ) A.电磁脉冲引起的电磁感应现象 B.电磁脉冲产生的动能 C.电磁脉冲产生的高温 D.电磁脉冲产生的强光 6.在图2-4中,理想变压器的原副线圈的匝数比为n1∶n2=2∶1,A、B为完全相同的灯泡,电源电压为U,则B灯两端的电压有( ) 图2-4 A.U/2 B.2U

物理高三复习总测试:第10章 电磁感应

第十章电磁感应 第一节楞次定律 1.如图10-1所示,A是一个具有弹性的位置固定的线圈,当磁铁迅速接近线圈时,线圈A将( ) 图10-1 A.当N极接近时扩大,S极接近时缩小 B.当S极接近时扩大,N极接近时缩小 C.N极和S极接近时都扩大 D.N极和S极接近时都缩小 2.如图10-2是某种磁悬浮的原理图,图中A是圆柱形磁铁,B是用高温超导体材料制成的电阻率为零的超导圆环。将超导圆环B放在磁铁A上,它就能在磁力的作用下悬浮在磁铁的上方空中,以下判断正确的是( ) 图10-2 A.在B放入磁场的过程中,B中将产生感应电流,当稳定后,感应电流消失 B.在B放入磁场的过程中,B中将产生感应电流,当稳定后,感应电流仍存在 C.若A的N极朝上,则B中感应电流的方向为顺时针(从上往下看) D.若A的N极朝上,则B中感应电流的方向为逆时针(从上往下看) 3.竖直放置的螺线管通以图10-3甲所示的电流。螺线管正下方的水平桌面上有一个导体圆环,当螺线管中所通的电流发生如图10-3(乙)所示的哪种变化时,导体圆环会受到向上的安培力( ) 图10-3 4.如图10-4所示,水平放置的两根金属导轨位于垂直于导轨平面并指向纸面内的磁场中。导轨上有两根轻金属杆a b和cd与导轨垂直,金属杆与导轨以及它们之间的接触电阻均可忽略不计,且导轨足够长。开始时ab和cd都是静止的,若突然让cd杆以初速度v向右开始运动,则( ) 图10-4

A.cd始终做减速运动,ab始终做加速运动并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同的速度做匀速运动 D.cd先做减速运动后做加速运动,ab先做加速运动后做减速运动 5.图10-5为地磁场磁感线的示意图。在北半球地磁场的竖直分量向下。飞机在我国上空匀速巡航,机翼保持水平,飞行高度不变。由于地磁场的作用,金属机翼上有电势差。设飞行员左方机翼末端处的电势为U1,右方机翼末端处的电势为U2,则( ) 图10-5 A.若飞机从西往东飞,U1比U2高 C.若飞机从南往北飞,U1比U2高 D.若飞机从北往南飞,U2比U1高 6.电阻R、电容C与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N极朝下,如图10-6所示。现使磁铁开始自由下落,在N极接近线圈上端的过程,流过R的电流方向和电容器极板的带电情况是( ) 图10-6 A.从a到b,上极板带正电 B.从a到b,下极板带正电 C.从b到a,上极板带正电 D.从b到a,下极板带正电 7.一个闭合铁心上有初级和次级两个线圈,每组线圈上各连接两根平行的金属导轨,在两组导轨上各放置一根可沿导轨滑动的金属棒L1和L2,垂直导轨平面存在着磁感强度分别为B1、B2的匀强磁场,磁场的方向和线圈的绕向如图10-7所示。金属棒与导轨均接触良好。那么下面说法中正确的是( ) 图10-7 A.当L2匀速向右滑动时,L1会向左运动 B.当L2加速向右滑动时,L1会向右运动 C.当L1加速向右滑动时,L2会向右运动

07第十章电磁感应

第十章电磁感应 一、电磁感应现象 1. 产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表 述是充分条件,但不是必要的。在导体做切割磁感线运动时用它判定比较方便。 2. 感应电动势产生的条件 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一 个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3 ?关于磁通量和磁通量变化 如果在磁感应强度为B 的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B 与S 的乘积为穿过这个面的磁通量,用①表示。①是标量,但是有方向(只分进、出该面两个方 向)。单位为韦伯,符号为 W b 。1W b =1T m 2=1V s=1kgm 2/(A S 2)。 可以认为磁通量就是穿过某个面的磁感线条数。 在匀强磁场磁感线垂直于平面的情况下,B=①/S,所以磁感应强度又叫磁通密度。 在匀强磁场中,当B 与S 的夹角为a 时,有①=BSsi n a (a 是B 与S 的夹角)。 磁通量的变化△①二①2-①1有多种形式,主要有: ① S 、 ② B 、 ③ B 、 若B 、 磁通量变化也是有方向的。当初、末状态的磁通量方向相反时,计算磁通量变化时应将初、 末状态磁通量的大小相加。 例1?如图所示,矩形线圈沿a -b -c 在条形磁铁附近移动, 试判断穿过线圈的磁通量如何变化?如果线圈M 沿条形磁铁从N 极附近向右移动到S 极附近,穿过该线圈的磁通量如何变化? 解:⑴在磁铁右端轴线附近由上到下移动时,穿过线圈的磁通量由方向向下减小到零,再变 为方向向上增大。⑵线圈M 沿条形磁铁轴线向右移动,穿过线圈的磁通量先增大再减小。 例2.如图所示,环形导线a 中有顺时针方向的电流,a 环外有两个同心导线 圈b 、C,与环形导线a 在同一平面内。穿过线圈b c 的磁通量各是什么方向? 穿过哪个线圈的磁通量更大? 解:b C 线圈所围面积内的磁通量有向里的也有向外的,但向里的更多,所 以总磁通量都是向里的。由于穿过b 、C 线圈向里的磁通量相同而穿过b 线圈向外的磁通量比穿过 C 线圈的少,所以穿过b 线圈的总磁通量更大。 a 不变,B 改变,这时△①=△BSsi n a a 不变,S 改变,这时△①= ^SBsin a S 不变,a 改变,这时△①=BS(sin a 2-sin a 1) S a 中有两个或三个同时变化时,就只能分别计算①1、①2,再求①2-①1 了。

磁场和电磁感应的选择题练习(较难有答案)

磁场、电磁感应测试 1. 关于磁场和磁感线的描述,正确的是: A. 磁感线可以形象地描述磁场的强弱和方向,它的每一点切线方向就是该点的磁场方向 B. 磁极间的相互作用是通过磁场发生的 C. 磁感线是从磁体的N极指向S级 D. 磁感线就是磁场中碎铁屑排列成的曲线 2. 有两根平行长直导线,通以大小相等、方向相反的电流,则两导线所在平面内与两导线距离相等的各点的磁感应强度: A. 等于零 B. 不等于零,方向是从一根导线垂直指向另一根导线 C. 不等于零,方向平行于导线 D. 不等于零,方向垂直于两导线所在的平面 3. 如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿 过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb的大小关系为: A. Φa>Φb B. Φa<Φb C. Φa=Φb D. 无法比较 4. 在三维直角坐标系中,电子沿y轴正方向运动,由于电子定向运动产生的磁场在点(0, 0, a)处(a>0)的方向是: A. +x方向 B. -x方向 C. +z方向 D. -z方向 5. 一磁感应强度为B的磁场方向水平相右,以面积为S的 矩形线圈abcd如图所示放置,平面abcd与竖直方向成θ角,将 abcd绕ad轴转180度,则穿过线圈的磁通量的变化量为: A. 0 B. 2BS C. 2BScosθ D. 2BSsinθ 6. 下列单位与磁感应强度的单位T相当的是: A. Wb/m2 B. kg/A.s2 C. N.s/C.m D. V.s/m2 7. 如图所示,该框架用铝板制成,将一质量为m的带电小球用绝缘细绳悬挂在框的上板,让整体在垂直于水平方向的匀强磁场中向左以速度v运动,悬线拉力为T,则:

修改第十二章 电磁感应电磁场(一) 作业及参考答案 2014

一。选择题 [ ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60?时,线圈中已通过的电量与线圈面积及转动时间的关系是: (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【分析】 [ ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【分析】 [ ]3. (基础训练5)在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B 的大 小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等. (D) AB 导线中的电动势小于导线中的电动势 【分析】 [ ]4.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. 【分析】

2020版高考物理一轮复习模拟演练 第10章 电磁感应 10-1电磁感应现象 楞次定律(含答案)

时间:45分钟满分:100分 一、选择题(本题共10小题,每小题7分,共70分。其中1~7为单选,8~10为多选) 1.关于感应电流,下列说法中正确的是( ) A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生 B.穿过螺线管的磁通量发生变化时,螺线管的线圈中就一定有感应电流产生 C.线圈不闭合时,即使穿过线圈的磁通量发生变化,线圈中也没有感应电流 D.只要电路的一部分作切割磁感线运动,电路中就一定有感应电流 答案 C 解析当闭合电路中的磁通量发生变化时,电路中才有感应电流,有磁通量,但如果不变化,则也不可能有感应电流,故选项A错误;如果不是闭合电路,则只能有感应电动势而不能形成感应电流,故选项B错误;线圈不闭合时,即使穿过线圈的磁通量发生变化,线圈中也没有感应电流,故选项C正确;如果电路不是闭合的,则电路中也不会产生感应电流,故选项D错误。 2.如图所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路。若将滑动变阻器的滑片P向下滑动,下列表述正确的是( ) A.线圈a中将产生俯视顺时针方向的感应电流 B.穿过线圈a的磁通量变小 C.线圈a有扩张的趋势 D.线圈a对水平桌面的压力F N将增大 答案 D

解析 通过螺线管b 的电流如图所示,根据右手螺旋定则判断出螺线管b 所产生的磁场方向竖直向下,滑片P 向下滑动,滑动变阻器接入电路的电阻减小,电路电流增大,所产生的磁场的磁感应强度增强,根据楞次定律可知,线圈a 中所产生的感应电流的磁场方向竖直向上,再由右手螺旋定则可得线圈a 中的电流方向为俯视逆时针方向,A 错误;由于螺线管b 中的电流增大,所产生的磁感应强度增强,线圈a 中的磁通量应变大,B 错误;根据楞次定律可知,线圈a 将阻碍磁通量的增大,因此,线圈a 有缩小和远离b 的趋势,线圈a 对水平桌面的压力将增大,C 错误,D 正确。 3.在一空间有方向相反、磁感应强度大小均为B 的匀强磁场,如图所示,垂直纸面向外的磁场分布在一半径为a 的圆形区域内,垂直纸面向里的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b (b >2a )的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a 的圆形区域是同心圆。从某时刻起磁感应强度大小开始减小到B 2 ,则此过程中该线圈磁通量的变化量的大小为( ) A.12 πB (b 2-a 2) B .πB (b 2-2a 2 ) C .πB (b 2-a 2) D.12πB (b 2-2a 2) 答案 D 解析 计算磁通量Φ时,磁感线既有垂直纸面向外的,又有垂直纸面向里的,所以可

电磁感应测试题(题)

电磁感应测试题 一、选择题 1.用如图所示的实验装置研究电磁感应现象.当有电流从电流表的正极流入时,指针 向右偏转.下列说法哪些是正确的: ( ) A .当把磁铁N 极向下插入线圈时,电流表指针向右偏转 B .当把磁铁N 极从线圈中拔出时,电流表指针向左偏转 C .保持磁铁在线圈中静止,电流表指针不发生偏转 D .磁铁插入线圈后,将磁铁和线圈一起以同一速度向上运动,电流表指针向左偏 2.现将电池组、滑动变阻器、带铁芯的线圈A 、线圈B 、电流计及电键如图所示连接.下列说法中正确的是( ). A .电键闭合后,线圈A 插入或拔出都会引起电流计指针偏转 B .线圈A 插入线圈B 中后,电键闭合和断开的瞬间电流计指针均不会偏转 C .电键闭合后,滑动变阻器的滑片P 匀速滑动,会使电流计指针静止在中央零刻度 D .电键闭合后,只有滑动变阻器的滑片P 加速滑动,电流计指针才能偏转 3.如图所示的电路电路中,A1和A2是完全相同的灯泡,线圈L 的电阻可以忽略,下列说法中正确的是:( ) A 、合上开关S 接通电路时,A 2先亮A 1后亮,最后一样亮。 B 、合上开关S 接通电路时,A 1和A 2始终一样亮。 C 、断开开关S 切断电路时,A 2立刻熄灭,A 1过一会熄灭。 D 、断开开关S 切断电路时,A 2突然闪亮一下,然后A 1和A 2一起缓缓熄灭。 4.矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场垂直纸面向里的方向为正方向,磁感应强度B 随时间变化的规律如图所示.若规定顺时针方向为感应电流i 的正方向,下列各图中正确的是 I 0 -I 0 i /A t /s 1 2 3 4 A B I 0 -I 0 i /A t /s 1 2 3 4 C I 0 -I 0 i /A t /s 1 2 3 4 D I 0 -I 0 i /A t /s 1 2 3 4 N S - +

第十二章电磁感应电磁场

第十二章电磁感应电磁场 题12.1:如图所示,在磁感强度T 106.74-?=B 的均匀磁场中,放置一个线圈。此线圈由两 个半径均为3.7 cm 且相互垂直的半圆构成,磁感强度的方向与两半圆平面的夹角分别为ο62和 ο28。若在s 105.43-?的时间内磁场突然减至零,试问在此线圈内的感应电动势为多少? 题12.1分析:由各种原因在回路中所引起的感应电动势,均可由法拉第电磁感应定律求解, 即??-=- = S d d d d d S B t t Φε但在求解时应注意下列几个问题: 1.回路必须是闭合的,所求得的电动势为回路的总电动势。 2.Φ应该是回路在任意时刻或任意位置处的磁通量。它由??=S d S B Φ计算。对于均匀磁 场则有θcos d S BS Φ=?=?S B ,其中⊥=S S θcos 为闭会回路在垂直于磁场的平面内的投影面 积。对于本题,2211cos cos θθBS BS Φ+=中1θ和2θ为两半圆形平面法线n e 与B 之间的夹角。 3.感应电动势的方向可由t Φ d d - 来判定,教材中已给出判定方法。为方便起见,所取回路的正向(顺时针或逆时针)应与穿过回路的B 的方向满足右螺旋关系,此时Φ恒为正值,这对符号确定较为有利。 题12.1解:迎着B 的方向,取逆时针为线圈回路的正向。由法拉第电磁感应定律 V 1091.4)cos cos (cos cos d d cos cos d d d d 4221122112211-?=+??-=+-=+-=- =θθθθθθεS S t B S S t B BS BS t t Φ)()(

0>ε,说明感应电动势方向与回路正向一致 题12.2:一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为 t Φ)s 100sin()Wb 100.8(15--?=π,求在s 100.12-?=t 时,线圈中的感应电动势。 题12.2解:线圈中总的感应电动势 t t Φ N )s 100cos()V 51.2(d d 1-=-=πε 当 s 100.12-?=t 时, ε= 2.51 V 。 题12.3:如图所示,用一根硬导线弯成半径为r 的一个半圆。使这根半圆形导线在磁感强度 为 B 的匀强磁场中以频率f 旋转,整个电路的电阻为R ,求感应电流的表达式和最大值。 题12.3解:由于磁场是均匀的,故任意时刻穿过回路的磁通量为 θcos )(0BS Φt Φ+= 其中Φ0等于常量,S 为半圆面积, )2(00ft t Φπ?ωθ+=+= )2cos(2 1 )(020?ππ++=ft B r Φt Φ 根据法拉第电磁感应定律,有)2sin(d d 022?ππε+=-=ft fB r t Φ 因此回路中的感应电流为 )2sin()(022?ππε += =ft R fB r R t I 则感应电流的最大值为 R fB r I 22m π= 题12.4:有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流 均以 t I d d 的变化率增长。若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示。

相关主题
文本预览
相关文档 最新文档