当前位置:文档之家› 第十章 电磁感应 专题讲座八 电磁感应的综合应用(一) Word版含解析

第十章 电磁感应 专题讲座八 电磁感应的综合应用(一) Word版含解析

第十章 电磁感应 专题讲座八 电磁感应的综合应用(一) Word版含解析
第十章 电磁感应 专题讲座八 电磁感应的综合应用(一) Word版含解析

专题讲座八电磁感应的综合应用(一)

1.(2018·广东湛江四校联考)如图所示,在一磁感应强度B=0.5 T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为L=0.1 m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N,Q之间连接一阻值R=0.3 Ω的电阻.导轨上放置着金属棒ab,其电阻r=0.2 Ω.当金属棒在水平拉力作用下以速度v=4.0 m/s向左做匀速运动时( A )

A.ab棒所受安培力大小为0.02 N

B.N,Q间电压为0.2 V

C.a端电势比b端电势低

D.回路中感应电流大小为1 A

解析:ab棒产生的感应电动势E=BLv=0.5×0.1×4 V=0.2 V,感应电流

为I== A=0.4 A,ab棒所受安培力大小F安=BIL=0.5×0.4×0.1 N=0.02 N,故A正确,D错误;N,Q间电压为U=IR=0.4×0.3 V=0.12 V,故B错误;由右手定则知,ab棒中感应电流方向由b到a,a端电势较高,故C错误.

2.(2018·长春模拟)如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B.电容器的电容为C,除电阻R外,导

轨和导线的电阻均不计.现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时( C )

A.电容器两端的电压为零

B.电阻两端的电压为BLv

C.电容器所带电荷量为CBLv

D.为保持MN匀速运动,需对其施加的拉力大小为

解析:当导线MN匀速向右运动时,导线MN产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端没有电压,电容器两极板间的电压为U=E=BLv,所带电荷量Q=CU=CBLv,故A,B 错,C对;MN匀速运动时,因无电流而不受安培力, 故拉力为零,D错.

3.(2018·郑州模拟)半径为a、右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示.则( A )

A.θ=0时,杆产生的电动势为2Bav

B.θ,

C.θ=0时,

D.θ,

解析:θ=0时,导体直杆切割磁感线的有效长度为2a,则产生的感应电动势为E1=2Bav;电路中电阻R=(πa+2a)R0,感应电流为

I1所以杆所受安培力为F1=BI1·正确,C错

误;同理,θ=时,E2=Bav,F2均错误.

4.(2017·广州一模)如图所示,线圈abcd固定于匀强磁场中,磁场方向垂直纸面向外,磁感应强度随时间的变化情况如图(乙)所示.下列关于ab边所受安培力随时间变化的F t图像(规定安培力方向向右为正)正确的是( C )

解析:由楞次定律知,感应电流的方向为adcba,根据电磁感应定律有

则电流为定值,根据左手定则,ab边所受安培力的方向向右,由F=BIL知,安培力均匀增加,由于B≠0,因此F≠0.所以C正确,A,B,D错误.

5.如图(甲)所示,矩形线圈abcd固定于方向相反的两个磁场中,两磁场的分界线OO′恰好把线圈分成对称的左右两部分,两磁场的磁感应

强度随时间的变化规律如图(乙)所示,规定磁场垂直纸面向内为正,线圈中感应电流逆时针方向为正.则线圈感应电流随时间的变化图像为( A )

解析:当垂直纸面向里的磁通量增大时,垂直纸面向外的磁通量在减小,则总的磁通量变化是垂直纸面向里增大,由楞次定律判断可知,感

应电流为正,选项B,D错误;由可知,电路中感应电流大小恒定不变,故选项A正确.

6.(2017·洛阳一模)如图(甲)所示,光滑导轨水平放置在与水平方向成60度角斜向下的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图(乙)所示(规定斜向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t时间内,能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图像是( D )

解析:由60°可知,电动势保持不变,则电路中电流不变,故A,B错误;由安培力F=BIL可知,电路中安培力随B的变化而变化,当B为负值时,安培力的方向为正,外力F为负;B为正值时,安培力为负值,外力F为正值,故C错误,D正确.

7.(2018·西安模拟)(多选)如图所示,两根足够长、电阻不计且相距L=0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U=4 V的小灯泡,两导轨间有一磁感应强度大小B=5 T、方向垂直斜面向上的匀强磁场.今将一根长为2L、质量m=0.2 kg、接入电路的电阻r=1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放、金属棒与导轨接触良好,金属棒与导轨间的动摩擦因数μ= 0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8,则( BD )

A.金属棒刚开始运动时的加速度大小为3 m/s2

B.金属棒刚开始运动时的加速度大小为4 m/s2

C.金属棒稳定下滑时的速度大小为9.6 m/s

D.金属棒稳定下滑时的速度大小为4.8 m/s

工程电磁场

如何描述线1周围的用来决定对线2作用力的力场?

Note that in the third case (perpendicular currents), I2 is in the same direction as H, so that their cross product (and the resulting force) is zero. The actual force computation involves a different field quantity, B, which is related to H through B = μ0H in free space. This will be taken up in a later lecture. Our immediate concern is how to find H from any given current distribution. 第三种情况,磁场与电流平行,叉乘=0

特别注意与距离的平方成反比, 而且叉矢量指向纸内(右手螺旋法则决定)Note the similarity to Coulomb’s Law a point charge of magnitude dQ1at Point 1 would generate electric field at Point 2 given by: The units of H are [A/m]

To determine the total field arising from the closed circuit path, we sum the contributions from the current elements that make up the entire loop, or The contribution to the field at P from any portion of the current will be just the above integral evalated over just that portion.

电磁感应现象 楞次定律练习题

电磁感应现象楞次定律练习题 1.发现电流磁效应现象的科学家是___________,发现通电导线在磁场中受力规律的科学家是__________,发现电磁感应现象的科学家是___________,发现电荷间相互作用力规律的的科学家是___________。 2.位于载流长直导线近旁的两根平行铁轨A和B,与长直导线平行且在同一水平面上,在铁轨A、B上套有两段可以自由滑动的导体CD和EF,如图所示, 若用力使导体EF向右运动,则导体CD将() A.保持不动 B.向右运动 C.向左运动 D.先向右运动,后向左运动 3.如图所示,要使Q线圈产生图示方向的电流,可采用的方法有 ( ) A.闭合电键K B.闭合电键K后,把R的滑片右移 C.闭合电键K后,把P中的铁心从左边抽出 D.闭合电键K后,把Q靠近P 4.如图所示是家庭用的“漏电保护器”的关键部分的原理图,其中P是一个变压器铁芯,入户的两根电线(火线和零线)采用双线绕法,绕在铁芯的一侧作为原线圈,然后再接入户内的用电器.Q是一个脱扣开关的控制部分(脱扣开关本身没有画出,它是串联在本图左边的火线和零线上,开关断开时,用户的供电被切断),Q接在铁芯 另一侧副线圈的两端a、b之间,当a、b间没有电压时,Q使得脱 扣开关闭合,当a、b间有电压时,脱扣开关即断开,使用户断电. (1)用户正常用电时,a、b之间有没有电压? (2)如果某人站在地面上,手误触火线而触电,脱扣开关是否会断开?为什么? 5.如图所示为闭合电路中的一部分导体ab在磁场中做切割磁感线运动的情景,其中能产生由a到b的感应电流的是( ) 6.如图所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与 螺线管截面平行。当电键S接通瞬间,两铜环的运动情况是( ) A.同时向两侧推开 B.同时向螺线管靠拢 C.一个被推开,一个被吸引,但因电源正负极未知,无法具体 判断

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

电磁感应在生活中的应用

电磁感应在生活中的应用 摘要:电磁感应现象是放在变化磁通量中的导体,会产生电动势,一般表现为两种形式,即动生电动势与感生电动势。对这两种电动势从产生机制、能量转换等角度分别进行描述,来理解它们的统一和区别。电磁感应现象在生活中有很多的应用,对常见的几种例子分别进行阐述,对该现象有更具体的理解。 关键词:电磁感应定律电动势应用 一、电磁感应定律 不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就产生感应电动势,电路已经具备了随时输出电能的能力。如果电路闭合,将会在回路中产生感应电流。这一现象是迈克尔·法拉第于1831年发现的,因此被称之为法拉第电磁感应定律。这是自奥斯特发现了电流产生磁场之后,在电磁学中的另一伟大发现,它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了基础。 通过实验表明,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电动势和感应电流。若电路不闭合,则电路没有电流,只存在感应电动势,感应电动势与穿过这一电路相对任一参照形成闭合环路的磁通量变化率成正比,方向用楞次定律判断。即无论回路是否闭合,都会产生感应电动势: ε = -dφ/dt 感应电动势的存在不以导体存在为前提,根据复合函数求导及磁通量与磁感应强度关系,当上式中线圈匝数 n = 1 时,又可写为 ε = -d( ∫BdS) / dt = -∫( B / t) dS -∫B ( dS) / t 二、电动势 上式中,第一项表示线圈不动时磁感应强度 B随时间变化所产生的感应电动势,又称感生电动势,变压器及无线信号的接收天线是其典型应用; 第二项表示空间磁场不变,线圈面积变化产生的感应电动势,又称动生电动势,其典型应用于发电机。 1.动生电动势 回路或其一部分在磁场中的相对运动所产生的感应电动势,即变,称之为动生电动势。

高考物理专题:电磁感应定律与楞次定律

2020高考物理 电磁感应定律 楞次定律(含答案) 1.如图所示,一水平放置的N 匝矩形线框面积为S ,匀强磁场的磁感应强度为B ,方向斜向上,与水平面成30°角,现若使矩形框以左边的一条边为轴转到竖直的虚线位置,则此过程中磁通量的改变量的大小是( ) A.3-1 2BS B.3+1 2NBS C. 3+1 2 BS D. 3-1 2 NBS 答案 C 2.(多选)涡流检测是工业上无损检测的方法之一,如图所示,线圈中通以一定频率的正弦交流电,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化。下列说法中正确的是( ) A .涡流的磁场总是要阻碍穿过工件磁通量的变化 B .涡流的频率等于通入线圈的交流电频率 C .通电线圈和待测工件间存在周期性变化的作用力 D .待测工件可以是塑料或橡胶制品 答案 ABC 3.如图所示,ab 为一金属杆,它处在垂直于纸面向里的匀强磁场中,可绕a 点在纸面内转动;S 为以a 为圆心位于纸面内的金属环;在杆转动过程中,杆的b 端与金属环保持良好接触;A 为电流表,其一端与金属环相连,一端与a 点良好接触。当杆沿顺时针方向转动时,某时刻ab 杆的位置如图所示,则此时刻( )

A.有电流通过电流表,方向由c向d,作用于ab的安培力向右 B.有电流通过电流表,方向由c向d,作用于ab的安培力向左 C.有电流通过电流表,方向由d向c,作用于ab的安培力向右 D.无电流通过电流表,作用于ab的安培力为零 答案A 4.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去。现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝。闭合开关S的瞬间() A.从左侧看环中感应电流沿顺时针方向 B.铜环受到的安培力大于铝环受到的安培力 C.若将环放置在线圈右方,环将向左运动 D.电池正负极调换后,金属环不能向左弹射 答案AB 5.如图所示,矩形金属线框abcd放在水平桌面上,ab边和条形磁铁的竖直轴线在同一竖直平面内,现让条形磁铁沿ab边的竖直中垂线向下运动,线框始终静止。则下列说法正确的是()

电磁感应++习题解答

第八章电磁感应电磁场 8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则() (A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向 (C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向无法确定 分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B). 8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则() (A)铜环中有感应电流,木环中无感应电流 (B)铜环中有感应电流,木环中有感应电流 (C)铜环中感应电动势大,木环中感应电动势小 (D)铜环中感应电动势小,木环中感应电动势大 分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A). 8 -3有两个线圈,线圈1 对线圈2 的互感系数为M21,而线圈2 对线圈1的互感系数为

M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ). 8 -5 下列概念正确的是( ) (A ) 感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).

电磁感应及其应用

一、选择题 (11·河池)9.科学家的发明与创造推动了人类文明的进程。在下列科学家中,首先发现电磁感应现象的是A.法拉第 B.焦耳 C.奥斯特 D.安培 答案:A (11·苏州)10.如图所示,导体AB水平置于蹄形磁铁的磁场中,闭合开关后,导体AB在下列运动情况中,能使图中小量程电流表指针发生偏转的是 A.静止不动 B.水平向右运动 C.竖直向上运动 D.竖直向下运动 答案:B (11·宿迁)11.如图所示装置可探究感应电流产生的条件,下面操作中能产生感应电流的是 A.保持磁铁静止,将导体棒ab上下移动 B.保持导体棒ab静止,将磁铁左右移动 C.保持导体棒ab静止,将磁铁上下移动 D.保持导体棒ab静止,将磁铁沿导体棒ab方向前后移动答案:B

(11·连云港)5.关于发电机的工作原理,下列说法正确的是 A.电流的热效应 B.电流周围存在磁场 C.电磁感应现象 D.磁场对通电导体的作用 答案:C (11·南京)7.如图所示的四幅图中能说明发电机工作原理的是 答案:A (11·肇庆)9.如右图所示,以下四种措施不能 ..使电流表指针偏转的是 A.将条形磁铁向下插入线圈 B.将条形磁铁从线圈中抽出 C.让条形磁铁静止在线圈中 D.条形磁铁静止而将线圈向上移动 答案:C (11·无锡)11.如图所示为“探究感应电流产生条件”

的实验装置.回顾探究过程,以下说法正确的是 A.让导线ab在磁场中静止,蹄形磁体的磁性越强,灵敏电流计指针偏转角度越大 B.用匝数较多的线圈代替单根导线ab,且使线圈在磁场中静止,这时炙敏电流计指针偏转角度增大 C.蹄形磁体固定不动.当导线ab沿水平方向左右运动时,灵敏电流计指针会发生偏转 D.蹄形磁体固定不动,当导线ab沿竖直方向运动时,灵敏电流计指针会发生偏转 答案:C (11·兰州)13.关于电磁感应现象,下列说法正确的是 A.电磁感应现象中机械能转化为电能 B.感应电流的方向只跟导体运动方向有关 C.感应电流的方向只跟磁场方向有关 D.导体在磁场中运动,能够产生感应电流 答案:A (11·泉州)4.在如图所示的实验装置图中能够说明电磁感应现象的是

电磁感应现象 楞次定律

第九章电磁感应 课时作业27电磁感应现象楞次定律 时间:45分钟满分:100分 一、选择题(8×8′=64′) 图1 1.如图1所示,一个矩形线圈与通有相同大小的电流的平行直导线处于同一平面,而且处在两导线的中央,则() A.两电流同向时,穿过线圈的磁通量为零 B.两电流反向时,穿过线圈的磁通量为零 C.两电流同向或反向,穿过线圈的磁通量都相等 D.因两电流产生的磁场是不均匀的,因此不能判定穿过线圈的磁通量是否为零 解析:两电流同向时,在线圈范围内,产生的磁场方向相反,大小对称,穿过线圈的磁通量为零,A正确,BCD不正确. 答案:A 图2 2.位于载流长直导线近旁的两根平行铁轨A和B,与长直导线平行且在同一水平面上,在铁轨A、B上套有两段可以自由滑动的导体CD和EF,如图2所示,若用力使导体EF向右运动,则导体CD将() A.保持不动 B.向右运动 C.向左运动 D.先向右运动,后向左运动 解析:当EF向右运动时,由右手定则,有沿FECD逆时针方向的电流,再由左手定则,

得CD受力向右,选B.本题也可以直接由楞次定律判断,由于EF向右,线框CDFE面积变大,感应电流产生的效果是阻碍面积变大,即CD向右运动. 答案:B 图3 3.如图3所示,要使Q线圈产生图示方向的电流,可采用的方法有() A.闭合电键K B.闭合电键K后,把R的滑片右移 C.闭合电键K后,把P中的铁心从左边抽出 D.闭合电键K后,把Q靠近P 解析:当闭合电键K时,Q中的磁场由无变有,方向向右,由楞次定律,Q产生的感应电流方向如题图,A正确.闭合电键K后,把Q靠近P时,Q中的磁场变强,方向向右,由楞次定律,Q产生的感应电流方向如题图,D正确,B、C不正确. 答案:AD 图4 4.如图4所示,在光滑水平桌面上有两个金属圆环,在它们圆心连线中点正上方有一个条形磁铁,当条形磁铁自由下落时,将会出现的情况是() A.两金属环将相互靠拢 B.两金属环将相互分开 C.磁铁的加速度会大于g D.磁铁的加速度会小于g 解析:当条形磁铁自由下落时,金属圆环中的感应电流产生的效果总是阻碍磁通量增大,阻碍磁铁发生相对运动,磁铁加速度小于g,同时,金属圆环向远处运动,有使磁通量变小的趋势,B、D正确. 答案:BD

高中物理-电磁感应综合应用练习

高中物理-电磁感应综合应用练习 1.如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( ) A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 解析:选C.小磁块下落过程中,在塑料管Q中只受到重力,而在铜管P中还受到向上的磁场力,即只在Q中做自由落体运动,故选项A、B错误;小磁块在P 中加速度较小,故在P中下落时间较长,落至底部时在P中的速度较小,选项C正确,D错误. 2.(多选)如图所示,竖直平面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则( ) A.上升过程克服磁场力做的功大于下降过程克服磁场力做的功 B.上升过程克服磁场力做的功等于下降过程克服磁场力做的功 C.上升过程克服重力做功的平均功率大于下降过程中重力的平均功率 D.上升过程克服重力做功的平均功率等于下降过程中重力的平均功率 解析:选AC.线圈上升过程中,加速度增大且在减速,下降过程中,运动情况比较复杂,有加速、减速或匀速等,把上升过程看成反向的加速,可以比较当运动到同一位置时,线圈速度都比下降过程中相应的速度要大,可以得到结论:上升过程中克服安培力做功多;上升过程时间短,所以上升过程克服重力做功的平均功率大于下降过程中重力的平均功率,故正确选项为A、C.

3.如图所示,有两个相邻的有界匀强磁场区域,磁感应强度的大小均为B,磁场方向相反,且与纸面垂直,磁场区域在x轴方向宽度均为a,在y轴方向足够宽.现有一高为a的正三角形导线框从图示位置开始向右沿x轴方向匀速穿过磁场区域.若以逆时针方向为电流的正方向,在以下选项中,线框中感应电流i与线框移动的位移x的关系图象正确的是( ) 解析:选 C.线框从开始进入到全部进入第一个磁场过程,磁通量向里增大,则由楞次定律可知,电流方向为逆时针方向,故B一定错误;因切割的有效长度均匀增大,故由E=BLv可知,电动势也均匀增加,而在全部进入第一个磁场时,磁通量达最大,该瞬间变化率为零,故电动势也为零,故A错误;当线框开始进入第二个磁场时,线框中磁通量向里减小,则可知电流方向为顺时针方向,故D错误;而进入第二个磁场后,分处两磁场的线框两部分产生的电流相同,且有效长度是均匀变大的,当将要全部进入第二个磁场时,线框中电流达最大2I0.故C正确.4.(多选)如图所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+kv(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为F A,电阻R 两端的电压为U R,感应电流的功率为P,它们随时间t变化图象可能正确的有( )

动量定理在电磁感应中的应用

动量定理在电磁感应中的应用 例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a

滑动,先固定a释放b,当b速度达到10m/s时,再释放a,经过1s 时间 a的速度达到12m/s,则() A.当va=12m/s时,vb=18m/s B. 当va=12m/s时,vb=22m/s C.若导轨很长,它们最终的速度必相同 D.它们最终速度不相同,但速度差恒定 (2003年全国理综卷)如图5所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?

电磁感应综合应用

电磁感应综合应用 1.闭合矩形导线框abcd 固定在匀强磁场中,磁场的方向与导线框所在平面垂直,磁感应强度B 随时间t 变化的规律如图所示。规定垂直纸面向里为磁场的正方向,abcda 的方向为线框中感应电流的正方向,水平向右为安培力的正方向。关于线框中的电流i 与ad 边所受的安培力F 随时间t 变化的图象,下列正确的是( ) 2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为B 的圆形匀 强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是(A) 3.电阻R 、电容C 与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示,现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流 方向和电容器极板的带电情况是( ) A .从a 到b ,上极板带正电 B .从a 到b ,下极板带正电 C .从b 到a ,上极板带正电 D .从b 到a ,下极板带正电 4.用相同导线绕制的边长为L 或2L 的四个闭合导体线框,以相同的速 度匀速进入右侧匀强磁场,如图所示。在每个线框进入磁场的过程中, M 、z 两点间的电压分别为U a 、U b 、U c 和U d 。下列判断正确的是 A .U a <U b <U c <U d B .U a <U b <U d <U c C .U a =U b <U c =U d D .U b <U a <U d <U c 5.如右图所示,在匀强磁场B 中放一电阻不计的平行金属导轨,导轨跟固定的 大导体矩形环M 相连接,导轨上放一根金属导体棒ab 并与导轨紧密接触,磁感 应线垂直于导轨所在平面。若导体棒匀速地向右做切割磁感线的运动,则在此 过程中M 所包围的固定闭合小矩形导体环N 中电流表内 ( ) A.有自下而上的恒定电流 B .产生自上而下的恒定电流 C .电流方向周期性变化 D .没有感应电流 6.如图所示电路中,L 是一电阻可忽略不计的电感线圈,a 、b 为L 上的左右两端点, A 、 B 、 C 为完全相同的三个灯泡,原来电键K 是闭合的,三个灯泡均在发光。某时 刻将电键K 打开,则下列说法正确的是( ) A .a 点电势高于b 点,A 灯闪亮后缓慢熄灭 B .b 点电势高于a 点,B 、 C 灯闪亮后缓慢熄灭 C .a 点电势高于b 点,B 、C 灯闪亮后缓慢熄灭 D .b 点电势高于a 点,B 、C 灯不会闪亮只是缓慢熄灭 7.如图甲所示, MN 左侧有一垂直纸面向里的匀强磁场。现将一边长为l 、质量为m 、电阻为R 的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc 边与磁场边界MN 重合。当t=0时,对线框施加一水平拉力F ,使线框由静止开始向右做匀加速直线运动;当t=t 0时,线框的ad 边与磁场边界MN 重合。图乙为拉力F 随时间变化的图线。由以上条件可知,磁场的磁感应强度B 的大小为 A .B = .B =C .B = . B = a d 0F 03F 0甲乙××××××B ××××

[整理]电磁感应中应用型创新型试题九例

电磁感应中应用型创新型试题九例 电磁感应中应用型创新型试题是指以电磁感应的知识在实际生活、生产中的应用,以科技新成果为背景材料编制而成的起点高、落点低、立意新的试题。电磁感应中有很多很好这样的试题,现略举十例如下。 1、以地磁场为背景材料 题1:为了控制海洋中水的运动,海洋工作者有时依靠水流通过地磁场所产生的感应电动势测水的流速。某课外活动兴趣小组有四个成员甲、乙、丙、丁组成,前去海边某处测量水流速度,假设该处地磁场的竖直分量已测出为B,该处的水流是南北流向。问下列测定方法可行的是 ( ) A.甲将两个电极在水平面沿水流方向插入水流中,测出两极间距离L及相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL. B.乙将两个电极在水平面上沿垂直水流向插入水流中,测出两极间距离L及两极相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL. C.丙将两个电极沿垂直海平面方向插入水流中,测出两极间距离L及两极相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL. D.丁将两个电极在水平面上沿任意方向插入水流中,测出两极间距离L及两极相连测量电势差的灵敏仪器的读数U,则水流速度v=U/BL. 解析:该课外活动兴趣小组是利用两电极间的水流动切割地磁场运动产生的感应电动势来测水的流速的。要求两电极的连线、水的流动方向、地磁场的竖直分量三者相互垂直,故B选项正确。 2、以血液流速测量仪为背景材料 题2:一种测量血管中血流速度的仪器原理如图1所示,在动脉血管两侧分别安装电极并加 有磁场,设血管直径是20mm,磁场的磁感应强度为0.08T,电压表测出的电压为0.10mV,则血流速 度为 m/s .

工程电磁场复习基本知识点

第一章 矢量分析与场论 1 源点是指 。 2 场点是指 。 3 距离矢量是 ,表示其方向的单位矢量用 表示。 4 标量场的等值面方程表示为 ,矢量线方程可表示成坐标形 式 ,也可表示成矢量形式 。 5 梯度是研究标量场的工具,梯度的模表示 ,梯度的方向表 示 。 6 方向导数与梯度的关系为 。 7 梯度在直角坐标系中的表示为u ?= 。 8 矢量A 在曲面S 上的通量表示为Φ= 。 9 散度的物理含义是 。 10 散度在直角坐标系中的表示为??=A 。 11 高斯散度定理 。 12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间的关系 为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e

20 0(0)11''4() (0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ??? 处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体部电场强度等于 。 8处于静电平衡状态的导体,其部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E = 。 12 无限大导电平面,电荷面密度为σ,则空间电场E = 。 13 静电场中电场强度线与等位面 。 14 两等量异号电荷q ,相距一小距离d ,形成一电偶极子,电偶极子的电偶极矩 p = 。 15 极化强度矢量P 的物理含义是 。 16 电位移矢量D ,电场强度矢量E ,极化强度矢量P 三者之间的关系 为 。 17 介质中极化电荷的体密度P ρ= 。 18介质表面极化电荷的面密度P σ= 。

电磁感应楞次定律

电磁感应楞次定律 一、电磁感应现象 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 二、楞次定律 感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 2.对“阻碍”意义的理解: (1)阻碍原磁场的变化。“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转. (2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流. (3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动. (4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现. 5.楞次定律的应用步骤 楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。 6.解法指导: (1)楞次定律中的因果关联 楞次定律所揭示的电磁感应过程中有两个最基本的因果联系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系.抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键. (2)运用楞次定律处理问题的思路 (a)判断感应电流方向类问题的思路 ①明确原磁场:弄清原磁场的方向及磁通量的变化情况.

大物B课后题08-第八章 电磁感应 电磁场

习题 8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 0000ln ln sin 222b m a i il I l b b ldx t x a a μμμφωπππ===? 由法拉第电磁感应定律有 00ln cos 2m d I l b t dt a φμωεωπ=- =- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 2 0m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-9 如图所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率 15.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

《楞次定律和法拉第电磁感应定律

2016楞次定律和法拉第电磁感应定律(一) 班级姓名 【知识反馈】 1.产生感应电流的条件: 2.楞次定律的内容: 从不同角度理解楞次定律: (1)从磁通量变化的角度: (2)从相对运动的角度: (3)从面积变化的角度: 3.法拉第电磁感应定律的内容: 表达式:,适用 表达式:,适用 【巩固提升】 1、如图所示,蹄形磁铁的两极间,放置一个线圈abcd,磁铁和线圈 都可以绕OO′轴转动,磁铁如图示方向转动时,线圈的运动情况是 ( ) A.俯视,线圈顺时针转动,转速与磁铁相同 B.俯视,线圈逆时针转动,转速与磁铁相同 C.线圈与磁铁转动方向相同,但转速小于磁铁转速 D.线圈静止不动 2、如图所示,两轻质闭合金属圆环,穿挂在一根光滑水平绝缘直杆上,原来处于静止状态。当条形磁铁的N极自右向左插入圆环时,两环的运动情况是( ) A.同时向左运动,两环间距变大; B.同时向左运动,两环间距变小; C.同时向右运动,两环间距变大; D.同时向右运动,两环间距变小。 3.如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q 平行放置于导轨上,形成一个闭合回路,一条形磁铁从高处下 落接近回路时( ) A.P、Q将相互靠拢 B.P、Q将相互远离 C.磁铁的加速度仍为g D.磁铁的加速度小于g 4.如图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流,各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是( )

5.如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,a、c两点间的电势差为( ) A.BLv B.BLv sinθ C.BLv cosθ D.BLv(l+sinθ) 6.如图所示,两块水平放置的金属板距离为d,用导线与一 个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中,两板间有一个质量为m、电量为+q的油滴处于静止状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A、正在增加, B、正在减弱, C、正在增加, D、正在减弱, 7.在竖直方向的匀强磁场中,水平放置一圆形导体环。规定导体环中电流的正方向如图11(甲)所示,磁场方向竖直向上为正。当磁感应强度B 随时间t按图(乙)变化时,下列能正确表示导体环中感应电流随时间变化情况的是( ) 8.如图所示,平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3.0 Ω的定值电阻,导体棒ab长L=0.5 m,其电阻不计,且与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4 T,现使ab以v=10 m/s的速度向右做匀速运动,则以下判断正确的是( ) A.导体棒ab中的感应电动势E=2.0 V B.电路中的电流I=0.5 A C.导体棒ab所受安培力方向向右 D.导体棒ab所受合力做功为零 9. 在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大 线圈M相接,如图所示,导轨上放一根导线ab,磁感线垂 直导轨所在的平面,欲使M所包围的小闭合线圈N产生顺 时针方向的感应电流,则导线的运动可能是()

大学物理期末复习第八章电磁感应及电磁场

第八章 电磁感应与电磁场 §8-1电磁感应定律 一、电磁感应现象 电磁感应现象可通过两类实验来说明: 1.实验 1)磁场不变而线圈运动 2)磁场随时变化线圈不动 2.感应电动势 由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。 3.电动势的数学定义式 定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即 () ??=l K l d K :非静电力 ε (8-1) 说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为 表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正 极时,非静电力所做的功。 (2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:() ??=l K l d K :非静电力 ε (3)电动势是标量,和电势一样,将它规定一个方向,把从负极经 电源内部到正极的方向规定为电动势的方向。 二、电磁感应定律 1、定律表述

在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。数学表达式: 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有 dt d i Φ- =ε (8-2) 上式中“-”号说明方向。 2、i ε方向的确定 为确定i ε,首先在回路上取一个绕行方向。规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ -=ε计算i ε。 三、楞次定律 此外,感应电动势的方向也可用楞次定律来判断。 楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。 说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表 述。 (2)楞次定律是能量守恒定律的反映。 例8-1:设有矩形回路放在匀强磁场中,如图所示,AB 边也可以左右滑动,设 以匀速度向右运动,求回路中感应电动势。 解:取回路顺时针绕行,l AB =,x AD =, 则通过线圈磁通量为 由法拉第电磁感应定律有: “-”说明:i ε与l 绕行方向相反,即逆时针方向。由楞次定律也能得知,i ε沿逆时针方向。 讨论:(1)如果回路为N 匝,则?=ΦN (?为单匝线圈磁通量) (2)设回路电阻为R (视为常数),感应电流 dt d R R I i i Φ-==1ε 在1t —2t 内通过回路任一横截面的电量为 可知q 与(12ΦΦ-)成正比,与时间间隔无关。 例8-1中,只有一个边切割磁力线,回路中电动势即为上述产生的电动势。

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

相关主题
文本预览
相关文档 最新文档