当前位置:文档之家› volatility,correlation,and tails for systemic risk measurement

volatility,correlation,and tails for systemic risk measurement

volatility,correlation,and tails for systemic risk measurement
volatility,correlation,and tails for systemic risk measurement

七步洗手法操作考核评分标准

七步洗手法操作考核评分标准 项目 总分 评分细则分值评分标准得分 准备质量标准10分备齐用物(洗手液、一次性纸巾 或清洁毛巾) 5 漏一项扣1分。 衣帽整洁 5 衣帽不整齐扣1分,服装不 洁扣2分。 操作流程质量标准 70分1、洗手前修剪指甲,锉平甲缘, 清除指甲下的污垢。 5 双手指甲长度<1毫米(观察) 超过不得分。 2、打开水龙头,使双手充分淋湿。 5 使用方法不对全扣,污染一 处扣1分。 3、取适量洗手液,均匀涂抹至整 个手掌、手背、手指和指缝。 5 1、按七步洗手法的步骤。 2、认真揉搓双手15秒钟以 上,不足15秒扣10分。 3、要求每步均做,按顺序要 求。 4、少洗步骤,则扣除相应的 分值。 4、第一步:掌心相对,手指并拢, 相互搓擦。 5 第二步:手心对手背沿指缝相互搓 擦,交换进行。 5 第三步:掌心相对,双手交叉沿指 缝相互搓擦。 5 第四步:双手指相扣,互搓。 5 第五步:一手握另一手大拇指旋转 搓擦,交换进行。 5 第六步:将五个手指尖并拢放在另 一手掌心旋转搓擦,交换进行。 5 第七步:螺旋式擦洗手腕,交换进 行。 5 5、双手在流动水下彻底清洗。 5 6、关闭水龙头(用避免手部再污 染的方式)。 10 7、用一次性纸巾/小毛巾彻底擦 干。 5 终末质量 标准10分1、认真清洗指甲、指尖、指缝和 指关节等易污染部位,手部不佩带 饰物。 4 做不到不得分。 2、操作有序,每步方法正确,动 作连贯。 6 不熟练、不规范扣2分。 口述10分洗手指征10 知识点掌握50%以下不得分。洗手指征 a)直接接触每个患者前后,从同一患者身体的污染部位移动到清洁部位时。

(完整版)七步洗手法操作考核评分标准

七步洗手法操作考核评分标准 姓名:科室:考核者:成绩: 项目总分评分细则分值评分标准得分备齐用物(洗手液、一次性纸巾、 3漏一项扣1分。 垃圾桶) 操作前质1、衣服整洁 量标准2、洗手前取下手表、首饰(手未污衣服装不洁扣0.5分,未5分染时)2取首饰扣0.5分,指甲长3、手无戴首饰度超过1毫米扣0.5分。 4、双手指甲长度<1毫米 2、1、暴露腕部 2、打开水龙头,使双手充分淋湿, 取适量洗手液,均匀涂抹掌面。 3、第一步:掌心相对,手指并拢, 相互搓擦。 4、第二步:手心对手背沿指缝相互 搓擦,交换进行。 5、第三步:掌心相对,双手交叉沿 操作中指缝相互搓擦。 质量标准6、第四步:双手指相扣,互搓。 70分7、第五步:一手握另一手大拇指旋 转搓擦,交换进行。

8、第六步:将五个手指尖并拢放在 另一手掌心旋转搓擦,交换进行。 9、第七步:螺旋式擦洗手腕,交换 进行。 10、双手在流动水下彻底清洗。 11、关闭水龙头(用手掌心接水冲洗 水龙头避免再污染手的方式)。 12、用一次性纸巾/小毛巾彻底擦干。 操作后质 量标准操作有序,每步方法正确,动作连贯。5分 口述20分洗手指征 合计2 2 8 8 8 8 8 8 8

3 2 5 5 20不熟练、不规范扣2分。 知识点掌握50%以下不得分。 1、按七步洗手法的步骤。 2、认真揉搓双手15秒钟以上,不足15秒扣10分。 3、要求每步均做,按顺序要求。 少洗步骤,则扣除相应的分值。 无暴露腕部扣2分使用方法不对每项扣0.5分。洗手与卫生手消毒应遵循原则 1、当手部有血液或其他体液等肉眼可见的污染时,应用肥皂液和流动水洗手; 2、手部没有肉眼可见污染时,宜使用速干手消毒剂消毒双手代替洗手。 洗手指征(六大指征) 两前:接触每个患者前、无菌操作前。 四后:接触每个患者后(检查患者身体污染部位移到清洁部位之间)、接触患者的血液、体液、分泌物、排泄物、伤口敷料等之后、穿脱隔离衣后或摘手套后、接触患者周围环境及物品后。 医务人员在下列情况时应先洗手,然后进行手卫生消毒1、接触患者的血液、体液和分泌物以及被传染性致病微生物污染的物品后; 2、直接为传染病患者进行检查、治疗、护理或处理传染患者污物之后。

correlation_dimension

第2章 关联维 第2章关联维 (1) 2.1 引言 (2) 2.2 G-P关联维算法的计算和缺陷 (2) 2.3高斯核关联维的计算和应用 (4) 2.4非主观关联维的计算 (5) 2.5海杂波的关联维及其应用 (6) 2.6本章小结 (6) 2.7后记 (6)

2.1 引言 时间序列经过相空间重构后,就可以进行混沌不变量的计算来判断是否具有混沌特性。常用的混沌不变量有关联维[1] 、Kolmogorov 熵[2] 和Lyapunov 指数[3] 等,本章重点介绍关联维和Kolmogorov 熵的计算和应用。本章中各节主要内容如下:2.2节介绍经典的G-P 关联维算法的实现和缺陷,2.3节介绍高斯核关联维算法的计算及其应用,2.4节介绍非主观参数选择的G-P 关联维算法,2.5节介绍海杂波关联维的计算及其在目标检测中的应用,2.6节为本章小结。 2.2 G-P 关联维算法的计算和缺陷 混沌是非周期与非随机的动力学过程,表面上看和研究不平滑、不可微分几何结构的分形学没有联系,但大量研究表明混沌时间序列构造的吸引子就是分形集,分形维数是刻划动力系统是否具有混沌特征的定量指标之一。 对于分形维数,比较严格的数学定义是豪斯道夫维数,但是由于数据量的限制难以在实际中应用。最早用于计算分形维数的简单方法是计盒法,但是计盒法针对高维系统计算速度太慢,并易受噪声的影响[4] 。关联维数是比较有效的分形维计算方法,自从1983年Grassberger 和Procaccia 提出 从时间序列计算关联维2D [1] 和Kolmogorov 熵[2] 的方法后,就被大量研究人员广泛地使用。它的具体定义如下: 设点12,,,N X X X 是相空间内吸引子上的点,用()r i B X 表示以参考点i X 为中心、 半径是的球形盒子,盒子的形状不会影响维数的计算,盒子r ()r i B X 的概率测度为 ()(1,11N r i i j j i j P B X H r X X N =≠=??????∑)? (2.1) 其中?是Euclidean 范数,而为Heaviside 阶跃函数 H ()1000x H x x ≥?=?

历史波动率的计算方法

Historical Volatility Calculation This page is a step-by-step guide how to calculate historical volatility. Examples and Excel formulas are available in the Historical Volatility Calculator and Guide. Although you hear about the concept of historical volatility often, there is confusion regarding how exactly historical volatility is calculated. If you are using several different charting programs, it is quite likely that you will get slightly different historical volatility values for the same security with the same settings with different software. The following is the most common approach –calculating historical volatility as standard deviation of logarithmic returns, based on daily closing prices. What Historical Volatility Is Mathematically When talking about historical volatility of securities or security prices, we actually mean historical volatility of returns. It looks like a negligible distinction, but it is very important for the calculation and interpretation of historical volatility. Mathematically, historical volatility is the (usually annualized) standard deviation of returns. If you know how to calculate return in a particular period and how to calculate standard deviation, you already know how to calculate historical volatility. If you’re still not sure, detailed step-by-step guide follows. Deciding the Parameters There are 3 parameters we need to set: ?The basic period (for which we calculate returns in the beginning) – often 1 day is used ?How many periods enter the calculation (we’ll refer to this as n) –often 20 or 21 days (the number of trading days and therefore the number of basic periods in one month) ?How many periods there are in a year (this is used for annualizing volatility in the end) I mostly use 1 day (day-to-day returns), 21 or 63 days (representing 1 month or 3 months), and 252 (as there are 252 trading days per year on average).

CorrelationParameter特性

CorrelationParameter特性 假如你考虑在单一宿主应用程序的环境下可能会出现多个工作流实例的话,你可能将会发现传送数据的事件和方法也会传送某种唯一的标识符。一个订单处理系统可能要传送一个客户ID,或者一个包装系统可能要传送一个批号。这个唯一标识符的类型是确定数据唯一实例的完美候选,事实上,的确如此。 当你在你的通信接口中设计方法和事件的时候,你也要为其设计一个数据相关ID的签名。数据相关ID在所有的空间和时间情况下并不保证必须是唯一的。但是,假如它不是一个Guid,它就必定要保证在工作流实例执行期间要被唯一地使用。 也许令人惊讶的是,假如你创建了两个相关的工作流实例,它们使用了同一个参数值(即创建了两个使用了同一客户ID的工作流)在同一时间运行的话,这并不是一个错误。关联仅仅和使用了单一的关联参数值的单一的工作流实例联系起来。使用一个关联参数值创建的工作流在调用方法和事件进行数据交换时使用了不同的关联值的地方则是错误,在这些地方WF可帮助你防止产生错误。 你要在你的接口定义中包括CorrelationParameter特性来通知WF哪些方法参数要承载这个数据关联ID值(把它们放在ExternalDataExchange特性的旁边)。当数据传递的时候WF能够检查参数的内容。例如,假如你的逻辑试图混淆客户或者(包装)批号的话,WF将抛出System.Workflow.Activity.EventDeliveryFailedException。 这个异常对你很有帮助,因为它指出了你的处理逻辑部分存在明确的不匹配的数据。例如,一个客户却为其它客户买单,显而易见,这种结果是不期望发生的。假如你接收到一个异常,你就需要去检查你应用程序中不正确的逻辑处理操作。 CorrelationParameter特性在它的构造器中接收一个字符串。这个字符串代表了你的接口所使用的包含了唯一ID的参数的名称。假如你要为某一指定的方法进行对该参数进行重命名,你就可通过使用CorrelationAlias参数来为这些事件和方法进行参数的重命名。你将在本章的稍后部分读到关于这个参数的更多知识。

波动率

波动率是金融资产价格的波动程度,是对资产收益率不确定性的衡量,用于反映金融资产的风险水平。波动率越高,金融资产价格的波动越剧烈,资产收益率的不确定性就越强;波动率越低,金融资产价格的波动越平缓,资产收益率的确定性就越强。 产生的原因 从经济意义上解释,产生波动率的主要原因来自以下三个方面: 1、宏观经济因素对某个产业部门的影响,即所谓的系统风险; 2、特定的事件对某个企业的冲击,即所谓的非系统风险; 3、投资者心理状态或预期的变化对股票价格所产生的作用。 波动率的分类 1、实际波动率 实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。 2、历史波动率 历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。 3、预测波动率 预测波动率又称为预期波动率,它是指运用统计推断方法对实际波动率进行预测得到的结果,并将其用于期权定价模型,确定出期权的理论价值。因此,预测波动率是人们对期权进行理论定价时实际使用的波动率。这就是说,在讨论期权定价问题时所用的波动率一般均是指预测波动率。需要说明的是,预测波动率并不等于历史波动率,因为前者是人们对实际波动率的理解和认识,当然,历史波动率往往是这种理论和认识的基础。除此之外,人们对实际波动率的预测还可能来自经验判断等其他方面。 4、隐含波动率 隐含波动率是制期权市场投资者在进行期权交易时对实际波动率的认识,而且这种认识已反映在期权的定价过程中。从理论上讲,要获得隐含波动率的大小并不困难。由于期权定价模型给出了期权价格与五个基本参数(St,X,r,T-t和σ)之间的定量关系,只要将其中前4个基本参数及期权的实际市场价格作为已知量代入期权定价模型,就可以从中解出惟一的未知量σ,其大小就是隐含波动率。因此,隐含波动率又可以理解为市场实际波动率的预期。期权定价模型需要的是在期权有效期内标的资产价格的实际波动率。相对于当期时期而言,它是一个未知量,因此,需要用预测波动率代替之,一般可简单地以历史波动率估计作为预测波动率,但更好的方法是用定量分析与定性分析相结合的方法,以历史波动率作为初始预测值,根据定量资料和新得到的实际价格资料,不断调整修正,确定出波动率。[2] 影响 标的资产的波动率是布莱克-斯科尔斯期权定价公式中一项重要因素。在计算期权的理论价格时,通常采用标的资产的历史波动率:波动率越大,期权的理论价格越高;反之波动率越小,期权的理论价格越低。波动率对期权价格的正向影响,可以理解为:对于期权的买方,由于买入期权付出的成本已经确定,标的资产的波动率越大,标的资产价格偏离执行价

相关分析(Correlate)

相关分析(Correlate) Correlation and dependence In statistics, correlation and dependence are any of a broad class of statistical relationships between two or more random variables or observed data values. Correlation is computed(用...计算)into what is known as the correlation coefficient(相关系数), which ranges between -1 and +1. Perfect positive correlation (a correlation co-efficient of +1) implies(意味着)that as one security(证券)moves, either up or down, the other security will move in lockstep(步伐一致的), in the same direction. Alternatively(同样的), perfect negative correlation means that if one security moves in either direction the security that is perfectly negatively correlated will move by an equal amount in the opposite(相反的)direction. If the correlation is 0, the movements of the securities are said to have no correlation; they are completely random(随意、胡乱). There are several correlation coefficients, often denoted(表示、指示)ρ or r, measuring(衡量、测量)the degree of correlation. The most common of these is the Pearson correlation coefficient, which is sensitive only to a linear(只进行两变量线性分析)relationship between two variables (which may exist even if one is a nonlinear function of the other). Other correlation coefficients have been developed to be more robust(有效的、稳健)than the Pearson correlation, or more sensitive to nonlinear relationships.Rank(等级)correlation coefficients, such as Spearman's rank correlation coefficient and Kendall's rank correlation coefficient (τ) measure the extent(范围)to which, as one variable increases, the other variable tends to increase, without requiring(需要、命令)that increase to be represented by a linear relationship. If, as the one variable(变量)increases(增加), the other decreases, the rank correlation coefficients will be negative. It is common to regard these rank correlation coefficients as alternatives to Pearson's coefficient, used either to reduce the amount of calculation or to make the coefficient less sensitive to non-normality in distributions(分布). However, this view has little mathematical basis, as rank correlation coefficients measure a different type of relationship than the Pearson product-moment correlation coefficient, and are best seen as measures of a different type of association, rather than as alternative measure of the population correlation coefficient. Common misconceptions(错误的想法) Correlation and causality(因果关系) The conventional(大会)dictum(声明)that "correlation does not imply causation" means that correlation cannot be used to infer a causal relationship between the variables.

Multi-factor volatility and stock returns

Multi-factor volatility and stock returns Zhongzhi(Lawrence)He a,Jie Zhu b,?,Xiaoneng Zhu b a Brock University,Ontario,Canada b Shanghai University of Finance and Economics,and Shanghai Key Laboratory of Financial Information Technology,China a r t i c l e i n f o Article history: Received13January2015 Accepted15September2015 Available online9October2015 JEL Classi?cation: C1 C58 G12 Keywords: Multi-factor volatility Cross-sectional returns Out-of-sample predictability Asset allocation a b s t r a c t In light of inconclusive evidence on the relation between market volatility and stock returns,this paper proposes a model and examines its impact on cross-sectional pricing.We also evaluate and economic signi?cance of multi-factor volatility.We?nd that the size and value dynamic factor earn signi?cant and positive variance risk multi-factor volatility can signi?cantly improve the out-of-sample return predictability with a positive economic gain in asset allocation. ó2015Elsevier B.V.All rights reserved. 1.Introduction The question of whether volatility affects stock returns is an enduring one in?nancial economics.Merton’s(1973)ICAPM inter- prets the change in market volatility as the time-varying invest- ment opportunity that characterizes a shift in the trade-off between risk and return.In equilibrium,investors taking on addi- tional risk should be compensated through higher expected return, which implies a positive correlation in the volatility-return relationship.However,empirical evidence on the volatility-return relationship is still inconclusive within the single-factor volatility framework.1The assumption of a single market volatility may lead to model misspeci?cation if there exist additional sources of volatil- ity risk that characterize a multi-dimensional change in the invest- ment opportunity set.In this paper,we examine the effect of multi-factor volatility on cross-sectional returns,and evaluate the out-of-sample performance and economic signi?cance of multi- factor volatility as compared to existing benchmarks. Although?nancial theories do not specify the number and the identity of volatility risk factors,the prominent Fama–French(FF) three factors provide a natural guidance for our study on multi- factor volatility.This is motivated by some empirical evidence that the FF size and value factor are proxies for state variables that are linked to fundamental risk in the economy(Liew and Vassalou, 2000;Vassalou,2003).We therefore investigate whether or not the volatility of the size and value factor captures the macroeco- nomic uncertainty risk by examining its impact on cross- sectional returns,its out-of-sample performance,and economic signi?cance. To accomplish this,we develop a two-stage multi-factor volatil- ity model using a dynamic Fama–French three-factor approach. The?rst stage allows us to simultaneously estimate conditional means(as an AR process)and conditional variances(as a GARCH process)of the market,size,and value factor.The second stage estimates variance risk premia of the three factors and tests the cross-sectional pricing restriction.Non-arbitrage requires the exis- tence of signi?cant variance risk premia that drive pricing errors insigni?cant in the cross-section.In addition,we conduct out-of- sample predictive regressions and asset allocation tests to ensure that multi-factor volatility is non-elusive and carries a signi?cant economic value. https://www.doczj.com/doc/0b18690594.html,/10.1016/j.jbank?n.2015.09.013 0378-4266/ó2015Elsevier B.V.All rights reserved. ?Corresponding author at:School of Finance,Shanghai University of Finance and Economics,Guoding Road777,Shanghai200433,China.Tel.:+862165908403. E-mail address:zhu.jie@https://www.doczj.com/doc/0b18690594.html,(J.Zhu). 1For time-series studies,Ghysels et al.(2005),Guo and Whitelaw(2006)and Ludvigson and Ng(2007)?nd that aggregate volatility is positively related to market expected returns,whereas Glosten et al.(1993),Brandt and Kang(2004)and Christensen et al.(2010)document a negative relationship.In the cross-section of stocks,Ang et al.(2006)and Adrian and Rosenberg(2008)?nd a negative price of volatility risk,which is opposite to the prediction of the variance risk premium literature(Bollerslev et al.,2009;Drechsler and Yaron,2011).

七步洗手法操作考核评分标准

油竹新区中心卫生院七步洗手法操作考核评分标准 科室: 姓名: 成绩: 项目 总分 评分细则分值评分标准得分 准备质量标准10分备齐用物(洗手液、擦手纸巾) 5 漏一项扣1分。 服装整洁 5 服装不整齐扣1分,服装不 洁扣2分。 操作流程质量标准 70分1、洗手前修剪指甲,锉平甲缘, 清除指甲下的污垢。 5 双手指甲长度<1毫米(观察) 超过不得分。 2、打开水龙头,使双手充分淋湿。 5 使用方法不对全扣,污染一 处扣1分。 3、取适量洗手液,均匀涂抹至整 个手掌、手背、手指和指缝。 5 1、按七步洗手法的步骤。 2、每步至少来回洗五次 2、要求每步均做,按顺序要 求。 3、少洗步骤,则扣除相应的 分值。 4、第一步:掌心搓掌心。 5 第二步:手指交错,掌心搓掌心。 5 第三步:手指交错,掌心搓手背; 两手互换。 5 第四步:两手互握,互擦指背。 5 第五步:指尖摩擦掌心,两手互换。 5 第六步:拇指在掌中转动,两手互 换。 5 第七步:一手旋转揉搓另一手的脘 部、前臂,直至肘部;交替进行。 5 5、双手在流动水下彻底清洗。 5 6、关闭水龙头(用避免手部再污 染的方式)。 10 7、用一次性纸巾/小毛巾彻底擦 干。 5 终末质量 标准10分1、认真清洗指甲、指尖、指缝和 指关节等易污染部位,手部不佩带 饰物。 4 做不到不得分。 2、操作有序,每步方法正确,动 作连贯。 6 不熟练、不规范扣2分。 口述10分洗手指征10 知识点掌握50%以下不得分。

洗手指征 a)直接接触每个患者前后,从同一患者身体的污染部位移动到清洁部位时。 b)接触患者黏膜、破损皮肤或伤口前后,接触患者的血液、体液、分泌物、排泄物、伤口敷料等之后。 c)穿脱隔离衣前后,摘手套后。 d)进行无菌操作、接触清洁、无菌物品之前。 e)接触患者周围环境及物品后。 f)处理药物或配餐前。 医务人员在下列情况时应先洗手,然后进行手卫生消毒: a)接触患者的血液、体液和分泌物以及被传染性致病微生物污染的物品后。 b)直接为传染病患者进行检查、治疗、护理或处理传染患者污物之后。

《VUCA时代的领导力提升》

VUCA时代下的三维领导力 课程背景: VUCA时代的意思是volatility(易变性),uncertainty(不确定性),complexity(复杂性),ambiguity(模糊性)的缩写,从这个词我们可以看出时代的变迁及特性。作为一个领导者,领导能力非常重要!领导是讲究释放,如何带领一群平凡的人干出不平凡的业绩是对领导的挑战。 《VUCA时代下的三维领导力》主要包含三个部分:第一部分是领导者的对领导的认知与领导力的了解,了解领导的力在发展过程中,有哪些层级的变化,通过优秀先进的领导力分类,找到我们自己处于哪种水平,该做哪些提升。第二部分是领导者的三大业务,分别从战略解码、推动执行、打造团队三个方面夯实自己负责的业务运营效率。核心也是三大思维的强化,从战略思维、变革思维、创新思维来阐述一个领导者必须带动组织变革,系统思考组织发展,创新性的改善业绩;第三部分是领导者的激发团队活力的能力,有有效授权、教练下属、激励团队等方面的能力,带领队伍不断精进,相信通过三维领导力的训练,每个领导者都将增强自己的领导力,把平凡的人逐渐变得越来越不平凡! 课程收益: ●强化领导者与领导力的基础概念,扩大认知边界 ●提升领导者的格局,加强领导对自我的认知事实 ●掌握如何有效领导力的基础原则与领导达成方法 ● 学会如何有效做领导:定战略、做变革、思创新 ●吸取领导的释放活力之术:授权、教练、激励等 课程时间:2天,6小时/天 课程对象:中高层领导者 课程方式:理论讲授+视频教学+游戏互动+角色扮演+案例研讨 课程风格: 源于实战:课程内容来源企业实践经验,课程注重实战、实用、实效

幽默风趣:课程氛围非常好,擅长用互动、故事、案例点燃培训现场 逻辑性强:系统架构强,课程的逻辑性能够紧紧抓住每个听众的思维 价值度高:课程内容经过市场实战打磨,讲解的工具均能够有效运用 方法论新:建构主义+刻意练习+五星教学+行动学习+问题改善工坊 课程模型: 课程大纲 课程简述:通过领导力训练,更新领导者的思维,掌握具体实操的管理技巧,强化能力 培训规则:两天培训以“游戏+视频+案例+理论+实操+演练“的方式开展,确保从学到习开场游戏:谁是第一(让大家在相互融合熟悉的过程中,看到管理对取得好名次的重要性) 团队建设:组名,组长,组徽,组训(采取加减分机制,组与组PK竞争) 第一讲:VUCA时代下领导力的基础 一、VUCA时代对领导的挑战 1. 唯一不变的就是变化 2. VUCA时代下的管理对象变化对我们的新挑战 1)时代的多变、复杂、模糊的挑战 2)对象的代际、人性、成长的挑战

真实波动幅度均值

Average True Range 真实波动幅度均值 A verage True Range is an indespensable tool for designers of good trading systems. It is truly a workhorse among technical indicators. Every systems trader should be familiar with A TR and its many useful functions. It has numerous applications including use in setups, entries, stops and profit taking. It is even a valuable aid in money management. 真实波动幅度均值(A TR)是优秀的交易系统设计者的一个不可缺少的工具,它称得上是技术指标中的一匹真正的劲马。每一位系统交易者都应当熟悉A TR及其具有的许多有用功能。其众多应用包括:参数设置,入市,止损,获利等,甚至是资金管理中的一个非常有价值的辅助工具。 译者注:setups在上篇文章中我也碰到,我把它翻译为参数设置,不知道对不对。 The following is a brief explanation of how A TR is calculated and a few simple examples of the many ways that A TR can be used to design profitable trading systems. A TR是如何计算的?下面我们会简单解释的;如何利用A TR设计交易系统?我们随后也会用几个简单例子说明众多方法中的一些。 How to calculate A verage True Range (A TR). 如何计算真实波动幅度均值(A TR) Range: This is simply the difference between the high point and the low point of any bar. True Range: This is the GREA TEST of the following: 1. The distance from today\'s high to today\'s low 2. The distance from yesterday\'s close to today\'s high, or 3. The distance from yesterday\'s close to today\'s low True range is different from range whenever there is a gap in prices from one bar to the next. A verage True Range is simply the true range averaged over a number of bars of data. 波动幅度:单根K线图最高点和最低点间的距离。(译者将原文用的是条形图改为我们熟悉的K线图) 真实波动幅度:是以下三个波动幅度的最大值 1. 当天最高点和最低点间的距离 2. 前一天收盘价和当天最高价间的距离,或 3. 前天收盘价和当天最低价间的距离 当日K线图出现缺口时,真实波动幅度和单根K线的波动幅度是不同的。

期权微笑波动率微笑

期权微笑/波动率微笑 期权微笑又称为波动率微笑(volatility smiles),是形容期权隐含波动率(implied volatility)与行权价格(strike price)之间关系的曲线。一般来说,Black-Scholes期权定价模型中假设股价波动率是常数,这在实际中一般低估 了标的物的波动率。对于股票期权来说,行权价格越高,波动率越小,当行权 价趋于正无限时,看涨期权价格趋近于0,看跌趋近于正无限,波动率均趋近 于0;而对于汇率期权来说,则行权价越接近现价,波动率越小。 而之所以被称为“波动率微笑”,是指价外期权和价内期权(out of money和 in the money)的波动率高于在价期权(at the money)的波动率,使 得波动率曲线呈现出中间低两边高的向上的半月形,像是微笑的嘴形,因此叫 做微笑期权。 产生原因 期权微笑的产生 许多关于股票期权定价的实证研究发现了期权隐含波动率微笑的现象。其中,隐含波动率是将市场上的期权交易价格和其他参数代入期权理论价格模型,反推出来的波动率数值。根据Black-Scholes模型的常数波动率假设,同种标 的资产的期权应具有相同的隐含波动率,但实证研究表明,同种标的资产、相 同到期日的期权,当期权处在深度实值和深度虚值时,隐含波动率往往更大, 就会出现隐含波动率微笑 同时,由Black-Scholes模型可知期权价格是资产波动率的单调递增函数。那么,当现实中期权处于深度实值和深度虚值,隐含波动率大于Black- Scholes模型假设的常数波动率时,实际期权价格高于Black-Scholes模型推 出的理论价格。 是什么原因导致这种情况下期权价格被高估,出现隐含波动率微笑?现实世界中,期权处于深度实值和深度虚值的概率较低,根据前景理论中的决策权重 函数的特点可知,投资者往往高估小概率事件,对小概率事件赋予过高的决策 权重。另外,前景理论中期望的价值是由“价值函数”和“决策权重”共同决 定的。因此,当投资者对期权深度实值和深度虚值的情况赋予过高的权重时, 会导致其对期权的期望价值过高,引起股票期权价格被高估,出现隐含波动率 微笑的现象。

Volatility-forecasting-using-high-frequency-data-Evidence-from-stock-markets_2014_Economic-Modelling

Volatility forecasting using high frequency data:Evidence from stock markets ☆ Sibel ?elik a ,?,Hüseyin Ergin b a Dumlupinar University,School of Applied Sciences,Turkey b Dumlupinar University,Business Administration,Turkey a b s t r a c t a r t i c l e i n f o Article history: Accepted 24September 2013JEL classi ?cation:C22G00 Keywords:Volatility Realized volatility High frequency data Price jumps The paper aims to suggest the best volatility forecasting model for stock markets in Turkey.The ?ndings of this paper support the superiority of high frequency based volatility forecasting models over traditional GARCH models.MIDAS and HAR-RV-CJ models are found to be the best among high frequency based volatility forecasting models.Moreover,MIDAS model performs better in crisis period.The ?ndings of paper are important for ?nancial institutions,investors and policy makers. ?2013Elsevier B.V.All rights reserved. 1.Introduction Volatility plays an important role in theoretical and practical applica-tions in ?nance.The availability of high frequency data brings a new dimension to volatility modeling and forecasting of returns on ?nancial assets.First and foremost,nonparametric estimation of volatility of asset returns becomes feasible and so modeling and forecasting volatility of asset returns has been a focus for researchers in the literature (Andersen and Bollerslev,1998;Andersen et al.,2001,2003b ,2007;Corsi,2004;Engle and Gallo,2006;Ghysels et al.,2004,2005,2006a,b;Hansen et al.,2010;Shephard and Sheppard,2010).The empirical ?nd-ings of existing studies support the superiority of high frequency based volatility models to popular GARCH models and stochastic volatility models in the literature (Andersen et al.,2003b ).Besides,earlier studies point to importance of allowing for discontinuities (jumps)in volatility models and pricing derivatives (Andersen et al.,2002;Chernov et al.,2003).Availability of high frequency data is also a turning point in order to distinguishing jump from continuous part of price process.Empirical ?ndings from recent studies show that incorporating the jumps to volatility models increase the forecasting performance of models supporting the earlier evidence (Andersen et al.,2003b,2007). This paper aims to suggest the best volatility forecasting model in stock markets in Turkey.For this purpose,?rst,we analyze the data generating process and calculate the high frequency based volatility and examine the return and volatility characteristics.Second,we propose the best volatility forecasting model by comparing different volatility forecasting models. In doing so,the paper will contribute to the literature in terms of ?lling ?ve main gaps.First,it suggests the best volatility forecasting model from the alternatives including high frequency-based models and traditional GARCH models.Second,it reveals the forecasting performance of volatility models during the periods of structural change.Because,recent studies in the literature indicate that ?nancial crisis affect the volatility dynamics deeply (Dungey et al.,2011).Third,it analyses forecasting performance of volatility in stock futures markets rather than spot markets.There are three reasons for usage of stock futures markets in this study.Firstly,there are ?ndings in the literature that futures markets respond to new information faster than spot markets (Stoll and Whaley,1990).Secondly,using futures contracts rather than spot indexes re-duces nonsynchronous trading problems (Wu et al.,2005).Thirdly,using futures contracts provides additional evidence to the existing literature on spot markets (Wu et al.,2005).Fourth,it compares the ?ndings at different frequencies to inference about optimal fre-quency since the sampling selection is important for high frequency data based studies.Because,while higher sampling frequency may cause bias in realized volatility,lower sampling frequency may cause information https://www.doczj.com/doc/0b18690594.html,st,it contributes to literature in terms of presenting evidence from an Emerging Market. Economic Modelling 36(2014)176–190 ☆This paper is based on my doctoral dissertation “Volatility Forecasting in Stock Markets:Evidence From High Frequency Data of Istanbul Stock Exchange ”which was completed at Dumlupinar University,in 2012. ?Corresponding author at:Dumlupinar University,School of Applied Sciences,Insurance and Risk Management Department,Turkey.Tel.:+902742652031x4664. E-mail address:sibelcelik1@https://www.doczj.com/doc/0b18690594.html, (S. ?elik).0264-9993/$–see front matter ?2013Elsevier B.V.All rights reserved. https://www.doczj.com/doc/0b18690594.html,/10.1016/j.econmod.2013.09.038 Contents lists available at ScienceDirect Economic Modelling j ou r n a l h o m e p a ge :w ww.e l s e v i e r.c o m /l oc a t e /e c mo d

相关主题
文本预览
相关文档 最新文档