当前位置:文档之家› 国内外粒化高炉矿渣粉标准及产业发展概况

国内外粒化高炉矿渣粉标准及产业发展概况

国内外粒化高炉矿渣粉标准及产业发展概况
国内外粒化高炉矿渣粉标准及产业发展概况

国内外粒化高炉矿渣粉标准及产业发展概况近年来我国矿渣粉行业产能过剩严重,产品竞争激烈。国内有些矿渣粉企业为求发展,在深挖国内市场的同时,将眼光聚焦海外。高炉矿渣经不同处理方法形成的几种产物,在世界各国的矿渣市场上分别占有不同的比例。只有掌握当地标准并了解当地的市场行情,才能切实保证企业和用户的利益。本文通过对磨细粒化矿渣粉生产及应用较为活跃的国家和地区的标准、产业发展情况调研,对比中国国标和其他国家标准的异同,研究矿粉走出国门的标准,集中讨论磨细粒化高炉矿渣粉作为混凝土掺合料标准和各国产业发展情况(对钢渣、矿渣骨料等其他产品不做讨论),旨在为国家标准和行业标准与国际标准对接提供技术依据,为准备进军海外市场的厂家提供研究方向和参考依据。

一、总体概念、分类、产出流程及发展

当今世界主流的炼钢方法主要分成两种:一种是高炉、转炉(BOF)炼钢法,另一种是电弧炉(EAF)炼钢法(如图1所示)。目前在世界范围内,高炉、转炉法生产的生钢产量约占总产量的71%,电弧炉炼钢法的产量占29%[1]。高炉矿渣是高炉炼铁时所排出的一种废渣。高炉矿渣的处理方法根据冷却方式不同,主要分为水淬渣、气冷渣和造粒渣三种产品。水淬渣指的是高炉渣经冷水急速冷却形成的5毫米以下粒径的高炉水淬渣颗粒,以高炉水淬渣为主要原料,经干燥、粉磨处理而制成的粉末材料,即为磨细高炉矿渣粉。高炉矿渣粉中玻璃质占80%~90%,具有潜在水硬性,用于混凝土中可增加混凝土强度、提高耐久性,多应用于水泥厂作为混合材料以及混凝土搅拌站作为掺合料。气冷渣指的是高炉渣在空气中慢慢冷却后,经破碎、筛分等处理而形成的块状颗粒,一般用于公路建设或混凝土中取代部分天然砂石。造粒渣是指高炉渣在空气中快速冷却后,经造粒处理形成的20毫米以下粒径的颗粒,较细的颗粒经破碎、粉磨等处理后可

作为水泥混合材料,较粗的经破碎、筛分等处理后,作为轻骨料应用于混凝土中。以上高炉矿渣经不同处理方法形成的几种产物,在各个国家的矿渣市场上分别占有不同的比例。

从高炉矿渣的产出流程可以看出,高炉矿渣的产量与高炉炼铁的生铁产量存在直接联系,一般认为每生产一吨生铁,产出的高炉矿渣为0.25~0.35吨。因而,世界范围内的矿渣资源和市场分布与高炉生铁的产业分布息息相关。图2为世界各大洲采用高炉法的生铁产量图[2],从图2可以看出,高炉生铁产业在世界各地区的发展不平衡,产量从高到低分别是亚洲、欧盟、独联体、北美洲、南美洲等。其中,2017年生铁年产量排名前十的国家和地区分别为中国、日本、印度、俄罗斯、韩国、德国、巴西、美国、乌克兰和台湾地区。2017年亚洲生铁产量占全世界的78.1%,生铁年产量排名前十的国家和地区中有五个是亚洲国家。由此可估计,亚洲地区高炉矿渣的产量和应用在全世界范围内也是第一位的。

矿渣在建筑工程领域应用始于2000多年前的罗马帝国时期[3],生产生铁过程中产生的矿渣经破碎后,用于道路垫层。1813年,第一条利用矿渣做路基材料的现代公路建成于英国。1880年,矿渣浇筑的砌块用于欧洲和美国的路面上。早期矿粉的最大用途是破碎之后的矿渣石用于火车轨道的路基。随着世界生铁产量的攀升,矿渣数量也日益增多,寻找矿渣更多的应用途径成为必须。1862年,德国商人Emil Langen发现了磨细高炉矿渣粉的潜在水硬性。从此,矿渣被广泛应用于水泥混合材料[4]。1909年,德国发布了第一个关于磨细高炉矿渣粉用于水泥生产的标准[5]。

目前,磨细高炉矿渣粉主要应用于水泥厂作为混合材料以及混凝土搅拌站作为掺合料。但是由于生产技术、产业发展和标准制定等方面的情况不同,各国在磨细高炉矿渣粉应用的现状也不同。有些国家的磨细高炉矿渣粉绝大部分应用于水泥混合材,比如日本和巴西;有些国家绝大部分用于混凝土掺合料,比如美国;有些国家和地区则两者兼有,比如中国和欧盟等。

从国际矿渣粉行业发展趋势来看,一方面是在某些地区矿渣粉的应用出现了明显的上升趋势,越来越多的国家开始重视矿渣粉的功能性和环保效益,如中东、东南亚地区;另一方面由于受到经济发展水平、炼钢工艺的技术升级、标准制定的局限和产业发展水平等方面的影响,矿渣粉在某些地区出现供不应求的局面,如欧洲、日本、台湾和美国等国家和地区[6]。中国是生铁、水泥和矿渣粉生产大国,在“一带一路”经济的大背景下,中国企业积极“走出去”进行产业转移,协同、合理开拓海外市场对中国的矿渣粉企业是个不错的选择。

二、亚洲概况

1. 中国

我国是钢铁大国,矿渣资源丰富。根据矿渣粉的国家标准要求及产品性能特点,我国的磨细高炉矿渣粉主要应用于水泥厂作为混合材料以及混凝土搅拌站作为掺合料。此外,还有部分矿渣粉实现了出口。

(1)国标

国标GB/T 18046《用于水泥和混凝土中的高炉矿渣粉》的制订经历了三个阶段,第一版发布于2000年,第二版发布于2008年。随着生产力和矿粉应用的发展,2017年的最新版再次对各项指标进行了调整[7],并将确保矿粉产品质量、杜绝乱掺违规材料作为修订标准的主要目标。表1中给出了国标GB/T 18046三个版本的指标要求。国标采用了国际上较为普遍的形式,根据活性指数和比表面积的大小进行分级,并对有害化学物质含量如三氧化硫、氯离子等进行了限定。与较早版本相比,最新版的国标加入了初凝时间比、不溶物含量、玻璃体含量,并新加入了放射性的规定。S95型号矿渣粉的7天活性根据产业实际情况,适当放宽了要求,从75%降到70%。

表2中列出了国标GB/T 18046-2018中对比水泥的指标要求。

(2)产业发展概况

我国矿渣粉的应用研究工作始于上世纪90年代,经过20多年的发展,矿渣粉的应用在我国十分普遍,广泛应用于水泥产业、预拌混凝土以及预制混凝土产业。表3列出了较有代表性的几种矿渣的典型组成[8]。从表3可以看出,各地矿渣组成成分差异较大,其中氧化硅含量在27.90%~33.54%;氧化铝含量在12.52%~17.30%,与其他国家比相对较高;另外三氧化硫的含量较高,如首钢矿渣2.51%、唐钢矿渣2.77%。

从图2可以看出,2008年我国的高炉生铁产量已经达到世界总产量的一半以上。2009年世界各国在经济危机影响下产能下降,中国高炉生铁产量占比跃居至60.9%,之后经过几年的调整稳定在60%左右。由于生铁产量直接决定矿渣粉产量,从生铁产量可以推算出,中国矿渣粉的产量在十年的时间里基本呈增长趋势。图3(a)、图3(b)和图3(c)分别列出了2011年至2016年中国矿渣粉、生铁和水泥的产量[9],从中可以看出由于受到新常态、去产能等大经济环境的影响,近年来的矿渣粉产量存在波动,2011年中国矿渣粉的产量首次超过1亿吨,2013年产量达到1.26亿吨,2014年产量降为1.18亿吨,首次出现6%的负增长。2015年矿渣粉产量继续下降至9550万吨,较2014年下降19%。2016年由于供给侧结构性改革的推进,矿渣粉产量有所回升。整体来看,中国矿渣粉年产量大体为水泥产量的4%~5%、高炉生铁产量的14%~17%。在国际上,日本矿渣粉消耗量占水泥销量的30%,欧洲矿渣粉消耗量占水泥销量的25%。说明中国矿渣粉的再生利用率是比较低的。

图2 世界各地区高炉生铁产量及中国占全球生铁产量百分比

图3 2011年至2016年中国矿渣粉、生铁和水泥年产量

截至2016年9月,全国已经建成矿渣粉生产线的总产能达到2.1亿吨,但是仅有约50%得到有效利用。

近年来,国内矿渣粉的销售价格也经历了较大波动。表4列出2012年至2016年矿渣粉的年销售价格范围,从中可以看出,矿渣粉销售价格由2012年的每吨190~220元下降至2016年的每吨135~150元/吨。随着我国经济新常态的发展,供给侧结构性改革的深入推进,我国经济有望向积极方向转化,形成良好的发展态势。具体到混凝土相关行业,住房和城乡建设部、工业和信息化部共同力推的高性能混凝土正在日益成为混凝土行业的发展趋势,全国各省区市陆续通过立法

发展绿色建筑以及在其他新兴领域的应用,这些都离不开矿渣粉等优质矿物掺合料。中国矿渣粉产业的发展有望向好。

2. 日本

在日本,粒化高炉矿粉用途主要是作为水泥混合材料加入矿渣水泥和硅酸盐水泥中,其中矿渣水泥中高炉粒化矿粉的掺量占水泥总量的40%~45%;硅酸盐水泥中掺量5%;作为掺合料掺入混凝土中的矿粉非常少,实际应用主要以水泥混合材料为主。鉴于矿渣水泥具有优异的强度、抗硫酸盐侵蚀、抗海水侵蚀的能力以及降低碳排放等环保意义,在桥梁、隧道及海岸大坝等工程中,日本地方政府常指定产业界优先使用矿渣水泥[10]。

(1)标准

日本应用矿渣和标准化的历史十分悠久。高炉矿渣硅酸盐水泥的生产始于1910年,并于1926年制定了第一部关于高炉矿渣硅酸盐水泥标准[11]。从此,日本矿渣协会(NSA)和日本钢铁联盟(JISF)开始制定矿渣在水泥和混凝土中的应用标准,并致力于在相关产业中推广。日本磨细高炉矿粉作为混凝土掺合料的应用始于1985年,1995年日本制定了国标“JIS A 6206:混凝土用磨细高炉矿粉”。无论是用于水泥还是混凝土中的粒化高炉矿渣粉,都必须满足该标准要求。在该标准中,矿粉被分成4000级、6000级和8000级三个级别,并规定相应等级的比表面积和活性指数范围。由于绝大部分矿粉的应用是矿渣水泥和硅酸盐水泥掺合料,4000级是应用最多的。近年来出于减少混凝土温度裂缝的需要,对小于4000级比表面积的矿粉需求增加,2013年日本工业标准局对该标准进行了修改,增加3000级。在日本标准JIS A 6206-2013中,矿粉被分成四个级别,见表5[12]。

与中国国标相比,由于对比表面积的要求较高,日本标准中的4000级相当于中国国标中的S95,日本标准中的6000级相当于中国国标中的S105。此外,值得注意的是,日本标准对氯离子的含量要求不大于0.02%,较中国国标的标准不大于0.06%的标准更为严格;日本标准要求限制氧化镁的含量不大于10%,而中国国标则没有此项要求。除此以外,2017年新版中国国标均与日本标准相当或高于日本标准。

(2)矿渣产业

以2004年为例,日本矿渣的总产量为3470万吨[13],其中高炉矿渣占总产量的91%,另外9%为电转炉矿渣。经营高炉矿渣的企业主要有五家,其中新日本制铁公司(Nippon Steel)生产1260万吨的高炉矿渣,占总量的36%;其次是JFE 钢铁株式会社(JFE Steel)1190万吨,占总量的34%;其他三家钢铁企业,住友金属(Sumitomo Metal Industry)、神户制钢(Kobe Steel)和日新制钢公司(Nisshin Steel)产量总和占总量的21%,其他20多家采用电转炉的钢铁企业的矿渣产量占矿渣总量的9%。

表6列出了日本粒化高炉矿渣粉的典型组成[14]。

图4为1999年至2016年日本高炉矿渣、水淬渣和用于生产水泥的粒化高炉矿渣粉年消耗量[15],从图4可见,日本高炉矿渣总量、水淬高炉矿渣年产量和用于水泥的粒化高炉矿渣粉遵循一定比例关系。水淬高炉矿渣年消耗量占高炉矿渣年消耗量的比例由1999年的不到70%,增加至2006年的79%,从2007年开始至今,该比例基本稳定在80%上下。用于生产的粒化高炉矿渣粉年消耗量占水淬高炉渣年消耗量的比例也从1999年的82%增至2016年的88%。

图4 日本高炉矿渣、水淬渣和用于生产水泥的粒化高炉矿渣粉年消耗量

图5显示了2014年至2016年日本水淬矿渣用途的百分比,水泥生产占85%~90%,混凝土骨料占8%~9.5%,其余用途包括高速公路垫层和工民建工程等,仅占

2%~4%。其中,水泥生产包括水泥熟料的原料和水泥混合材料两种。

图5 (a)2014年、(b)2015年、(c)2016年日本水淬矿渣用途百分比日本是粒化高炉矿渣粉出口国,用于出口的水淬矿渣占到总水淬矿渣量的20%左右。其矿粉出口至东亚、南亚、东南亚、中东、美国、南美洲、澳洲和非洲等地。

3. 韩国

(1)标准

韩国的矿粉标准是“KS F 2563-2009:混凝土用高炉矿渣粉”。从表5的指标来看,韩国标准根据活性指数将矿粉分成三档,Class 1、Class 2和Class 3分别与日本标准中的8000级、6000级和4000级的活性指数相同,但对比表面积的要求有略微提高。韩国标准没有涉及到小于每公斤400平方米的低比表面积矿粉。除此以外,基本与日本标准相同。

(2)矿渣产业

2014年以来,韩国的钢年产量超过7000万吨,成为生铁产量世界前十位的国家之一。如图6所示,韩国从事高炉矿渣生产的钢厂主要是浦项制铁公司(POSCO)

和现代钢厂(Hyundai Steel)。2011年至2017年,浦项制铁公司的高炉矿渣年产量占总年产量的65%~72%,现代钢厂年产量占21%~27%,每年韩国有少量高炉矿渣需要进口[16]。

图6 2011年至2017年韩国高炉矿渣年产量和水泥年消耗量

图7显示了2015年韩国高炉矿渣种类及用途百分比,从图7可见,韩国高炉矿渣中水淬渣占矿渣总量的86.0%,气冷渣占14.0%;水淬渣大部分都用于水泥、混凝土掺合料。从用途上来分,水泥、混凝土掺合料为总高炉矿渣的84.7%,土木工程占10.4%,肥料占2.1%,公路垫层占1.9%。

图7 2015年韩国矿渣种类及用途百分比

4. 台湾地区

(1)标准

台湾的矿粉标准是“CNS 12549 A2233:混凝土及水泥墁料用水淬高炉炉渣粉”[17]。该标准基本沿用美国标准,在实际操作中,其他一些指标如三氧化硫含量、烧失量、氯离子含量等参考日本标准。

(2)矿渣产业

在台湾,粒化高炉矿渣粉被俗称为高炉石粉。从1989年开始,台湾量产粒化高炉矿渣粉。台湾两大钢厂中港集团和中龙集团公司每年总产出约365万吨水淬高炉矿渣[18],台湾市场年需求约500~660万吨,不足部分从日本、韩国和中国大陆等地进口。目前台湾共有13家从业者投入生产或进口供应,全年产能呈逐年上升趋势,2001年台湾高炉石粉的总产能为430万吨[19],2010年到2014年总产能约为900万吨,2015年总产能超过1000万吨,2016年全年产能约1070万吨,约为台湾市场年需求的两倍,导致市场竞争十分激烈。

5. 东南亚地区

新加坡是东盟国家中使用矿渣粉最早和应用技术水平公认最高的国家。在标准方面,新加坡参考欧盟标准制定了自己的国标“SS EN 15167-1: 2008”,该标准参考欧盟标准,仅在细节稍作调整,比如在新加坡标准中,水中养护的温度为27±2℃。新加坡并不生产生铁,因而不生产矿渣粉所需的水淬矿渣。目前新加坡市场所使用的矿渣粉基本上靠进口,国内有一家矿渣粉生产企业,其原材料全部靠进口。在东南亚地区,仅越南和马来西亚有生铁产业,2017年越南年产生铁340万吨,马来西亚年产53万吨,矿渣粉的产量极为有限。但是近年随着东南亚地区的经济发展,矿渣粉的需求逐渐增加,每年从中国和日本进口矿渣粉,具有较高的市场潜力。

三、欧洲概况

欧洲应用高炉矿渣粉的历史非常早[20],自从德国商人Emil Langen于1861年发现玻璃体粒化高炉矿渣的潜在水硬性后,粒化高炉矿渣在德国的应用便迅速发展。早在1909年,德国就发布了世界上第一个关于矿渣硅酸盐水泥(矿渣含量不超过30%)的标准,1917年又发布了世界上第一个高炉矿渣水泥(矿渣含量不超

过85%)标准。德国的产业发展带动其他国家也开始从事相关的产业和研究。从1969年起,英国、德国等发达国家就开始将磨细高炉矿渣粉添加入混凝土中作为矿物掺合料应用。英国第一部有关矿渣的标准发布于1923年。1986年,英国发布了第一部作为混凝土掺合料的磨细高炉矿渣粉标准BS 6699-1986。最新的欧盟水泥标准EN 197-1中列举了9种水泥,除硅酸盐水泥熟料以外,其余八种水泥中可以混合6%至95%的高炉矿渣。2006年,欧盟发布了磨细高炉矿渣粉作为混凝土掺合料的应用标准EN 15167-1:2006[21]。

经过100多年的不懈研究和产业化工作,欧洲地区矿渣应用非常广泛,目前矿渣可以作为水泥混合材料以及混凝土掺合料应用于水泥、混凝土产业,或制成骨料应用于公路基层,或作为骨料加入混凝土中,或作为肥料改善土壤等。

1. 欧盟和英国标准

欧盟标准“EN 15167-1:2006:用于混凝土、砂浆和水泥浆的磨细高炉矿渣粉,定义、规范和准则”适用范围不仅限于欧盟成员国家,还包括部分传统上的英联邦国家,如新加坡和南非。各国使用的欧盟标准并不是完全一样的,允许各国根据自己的实际情况进行微调。目前英国实行的是欧盟标准BS EN 15167-1:2006,但是随着英国脱欧的进程启动,英国标准是否会回到原英国国家标准BS 6699:1992[22]还有待观察。表7中给出了现行欧盟标准、英国标准BS 6699:1992和典型数据[23]。

表8中列出了欧洲国家芬兰、挪威、瑞典、英国的矿渣粉典型化学组成及欧洲矿渣粉的组成范围。

2. 产业发展概况

欧洲矿渣协会从2000年开始,每两年统计其成员(包括欧洲钢铁企业和矿渣处理企业)不同矿渣产品的产量、消耗量和应用情况,参与统计的国家包括奥地利、比利时、保加利亚、芬兰、法国、德国、希腊、意大利、卢森堡、罗马尼亚、波兰、斯洛伐克、西班牙、瑞典、荷兰和英国。图8为近年欧盟不同种类高炉矿渣年产量[29,30]。

从图8中可以看出,高炉矿渣的总产量经历了一定程度的波动。2002年高炉矿渣年产量为1780万吨,为历年最低,随后增至2006年的2890万吨,近年来基本在2500万吨上下波动。从高炉矿渣处理方式来分,欧洲的高炉矿渣产品分为磨细粒化高炉矿渣粉、气冷渣和造粒渣三种,其中造粒渣在2010年之后就没有统计数据,表明该类产品的应用比例很小。磨细粒化高炉矿渣是占比例最高的矿渣产品,每年的产量在2000万吨左右。

图8 近年欧盟不同种类高炉矿渣年产量

欧洲是传统的高炉矿渣应用国,其本土产量不能完全满足市场需求。图9为欧盟2000年、2004年、2008年和2014年的高炉矿渣年消耗总量及各用途占百分比。通过消耗量和图8中总产量的对比,可以看出欧洲市场上高炉矿渣的消耗量要略高于年产量,除2002年为760万吨外,从2000年到2010年大概有210~440万吨的差量。

图9 欧盟高炉矿渣年消耗总量及各用途占百分比

四、北美洲概况

1. 美国

(1)标准

美国材料与试验协会标准(ASTM)作为国际贸易中应用最广泛的国际标准体系之一,不仅被美国采用,也被整个北美地区、部分非洲国家以及东南亚地区等世界上许多国家和企业借鉴与应用。作为混凝土掺合料的粒化高炉矿渣粉的最新版

本,美国标准是2017年发布的“ASTM C989-17: 用于混凝土和砂浆的磨细粒化矿渣粉标准”[31],指标要求见表9。

从表9中可以看出,美国标准中根据活性指数将矿粉分成Grade 120、Grade 100和Grade 80三级,其中Grade 100相当于中国标准中的S95,Grade 80相当于中国标准中的S75,Grade 120比中国标准中的S105的活性指数要高。美国标准中对密度和比表面积均无要求,但是供应商在供货时都会提供该数据以供参考。目前美国市场上的粒化高炉矿渣粉大多为S120,细度多在每公斤600 平方米。值得注意的是,美国砂浆和混凝土技术对含气量的研究十分重视,美国标准中特别规定需要进行砂浆含气量的检测,按照ASTM C185标准执行[32],其中矿粉砂浆的组成为水泥250克、矿粉250克、标准砂1375克。我国目前还没有类似的检验项目,矿粉细度一般采用两种方法测定,一是勃氏法测定比表面积,该方法与我国国标相似;二是45-μm筛余,与我国国标中多采用负压筛析法不同,美国标准中采用水筛法进行。

表10为美国标准ASTM C989-17中对水泥的指标要求,与我国标准GB/T 18046-2018相比,美国标准中对比水泥的指标要求显得更加精简,只有碱含量和28天抗压强度两项指标要求。其中除碱含量稍有区别外,28天抗压强度的最低

矿渣粉基本知识

矿渣粉基本知识 1、什么是矿渣粉? 矿渣,是高炉炼铁产生的水渣,矿渣粉是高炉水渣通过细磨后,达到 相当细度且符合相当活性指数的粉体。 2、矿渣粉国家标准是什么? 目前执行的国家标准是GB/T18046-2008《用于水泥和混凝土中的粒化 高炉矿渣粉》。 3、什么是矿渣粉的活性指数? 简言之:即用50%矿粉和50%水泥拌合制作标准砂浆试件测试的强度,与用100%水泥制作标准砂浆试件测试强度的百分比,就是矿粉的活性指数。 4、矿渣粉分几个等级? 共分为S105、s95、S75三个级别,具体的意义是:如:S105-28天活性指数不小于105%。也就是说:50%矿粉和50%水泥拌合制作试件测试的强度大于100%水泥制作试件测试强度的105%以上的矿粉才符合S105级的要求。其他依此类推。 5、GB/T18046-2008矿渣粉的技术要求有哪几项? 共10项:密度、比表面积、活性指数、流动度比、含水量、三氧化硫 含量、氯离子含量、烧失量、玻璃体含量、放射性等,如下表:

6、矿渣粉的作用及特点? (1)减少坍落度损失;(2)大大提高混凝土耐久性;(3)对混凝土的显著增 强作用;(4)优良的碱骨料抑制剂y(5)增强混凝土的抗腐蚀性;(6)提 高混凝土的可泵性;(7)减少混凝土泌水。(8)改善了混凝土的微现结构 使水泥浆体的空障率明显下降,强化了集料界面的粘结力,使得混凝土的物理力学性能大大提高(8)减少水泥用量节约成本 8、如何确定矿粉(s95级)在混凝土中的掺量? “单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量 (1)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为2030%。 (2)对于地下结构、强度要求中等的混凝土结构,排量一般为30-50%° (3)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%。 (4)对于有较高耐久性能更求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。 9、销售中客广重点关注哪些矿粉质量指标? (1)矿渣粉的7天活性指数:对于矿粉的28天活性指数一般都能够满足要求,而7天活性指标,就不容易达标了7天活性越高,混凝士里就可以 加矿粉,从而为混凝土企业增加利润。s95级7天活性指数一般要大于75%

GBT18046-2000用于水泥和混凝土中的粒化高炉矿渣粉

用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 18046-2000 发布人:jobin 发布时间:2007年6月11日被浏览1836次 用于水泥和混凝土中的粒化高炉矿渣粉GB/T 18046-2000 0. 前言 粒化高炉矿渣粉是优质的混凝土掺合料和水泥混合材,美国、日本和英国等国都制定了相应标准。本标准非等效采用日本JISA6206:1997《混凝土用高炉矿渣粉》标准,根据7、28d活性指数,同时结合我国粒化高炉矿渣粉生产和应用现状,将高炉矿渣粉分为三级,活性指数检验方法采用我国与国际接轨的水泥胶砂强度检验方法(ISO法),其它试验方法采用我国现行的试验方法标准。 1. 范围 本标准规定了高炉矿渣粉的定义、要求、试验方法、检验规则、包装和储存等。 本标准用于作水泥混合材和混凝土掺合料的粒化高炉矿渣粉的生产和检验。 2. 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB175-1999 硅酸盐水泥、普通硅酸盐水泥 GB/T 176-1996 水泥化学分析方法(eqv ISO680:1990) GB/T203-1994 用于水泥中的粒化高炉矿渣 GB/T208-1994 水泥密度测定方法 GB/T2419-1994 水泥胶砂流动度试验方法 GB/T5483-1996 石膏和硬石膏(neqISO1587:1975) GB/T8074-1987 水泥比表面积测定方法(勃氏法)

GB9774-1996 水泥包装袋 GB 12573-1990 水泥取样方法 GB/T 17671-1999 水泥胶砂强度检验方法(ISO法)(idtISO679:1989) JC/T420-1991 水泥原材料中氯的化学分析方法 JC/T667-1997 水泥粉磨用工艺外加剂 3. 定义 粒化高炉矿渣粉(简称矿渣粉):符合GB/T 203标准规定的粒化高炉矿渣经干燥、粉磨(或添加少许石膏一起粉磨)达到相当细度且符合相应活性指数的粉体。矿渣粉磨时允许加入助磨剂,加入量不得大于矿渣粉质量的1%。 注: 1)石膏:应符合GB/T5483中规定的G类或A类二级(含)以上的石膏或硬石膏。 2)助磨剂:应符合JC/T667的规定,但该标准的基准水泥用50%的硅酸盐水泥和50%的矿渣粉组成。 4. 技术要求 矿渣粉技术指标应符合表1的规定。 表1 矿渣粉技术指标要求

粒化高炉矿渣资源化利用的技术现状_程福安

第42卷第3期2010年6月西安建筑科技大学学报(自然科学版) J1Xi c an U niv.of Ar ch.&T ech.(N atural Science Edit ion) V ol.42N o.3 Jun.2010 粒化高炉矿渣资源化利用的技术现状 程福安1,2,魏瑞丽2,李辉1,2 (11西部建筑科技国家重点实验室(筹);21西安建筑科技大学材料科学与工程学院粉体工程研究所,陕西西安710055) 摘要:高炉渣是炼铁过程中产生的副产品,目前我国普遍采用急冷的方法将高炉渣制备成粒化高炉矿渣.基 于不同的性质,对粒化高炉矿渣在建材、肥料及污水处理中的利用技术进行了详细的介绍,最后对其发展进行 了展望. 关键词:高炉渣;建材;肥料;污水处理 中图分类号:X757文献标识码:A文章编号:1006-7930(2010)03-0446-05 高炉渣是生铁冶炼过程中从高炉排出的一种废渣.在高炉冶炼生铁时,从炉顶加入的铁矿石、焦炭、助溶剂等通过热交换发生复杂的化学反应,当炉温达到1300~1500e时,炉料熔融,矿石中的脉石,焦炭中的灰分和助溶剂等非挥发性组分形成以硅酸盐和铝酸盐为主、浮在铁水上面的熔渣,即高炉渣.通常每炼1t生铁产生高炉渣0.3~0.9t[1].2009年我国生铁产量为54374.8万t,以每生产1t生铁产生0.3t高炉渣计算,产生高炉渣1.6312亿t. 高炉渣出炉后在大量水的作用下被急冷成海绵状浮石类物质,即粒化高炉矿渣.其化学成分与硅酸盐水泥熟料相似,具有较高的潜在活性.经适当处理后被大量作为建筑材料的原料使用,不仅降低熟料消耗、节约能源,还可降低由于CO2排放引起的温室效应和废渣堆放产生的环境污染.目前我国80%的高炉渣为粒化高炉矿渣.基于不同的性质,粒化高炉矿渣的具体利用途径也大相径庭.本文将对粒化高炉矿渣在建材、农肥和污水处理领域的资源化利用技术做较深入的介绍与分析. 1在建材领域的应用 1.1作为水泥混合材料 粒化高炉矿渣具有潜在的水硬性,在水泥熟料、石膏等激发剂的作用下可以显示出水化活性,是生产水泥的优质原料,在扩大水泥品种、增加产量、调节标号、改进性能和保证水泥安定性合格方面发挥着重大作用.在前苏联和日本,约有50%的高炉渣被用于生产水泥.我国用于制备矿渣水泥的高炉渣占利用量的78%左右,约有75%的水泥中掺有粒化高炉渣.根据高炉渣用量和激发剂的不同,可将掺加矿渣的水泥分为普通硅酸盐水泥、矿渣硅酸盐水泥、复合硅酸盐水泥、石膏矿渣水泥、石灰矿渣水泥、钢渣矿渣水泥[1-2].其中普通硅酸盐水泥、矿渣硅酸盐水泥和复合硅酸盐有国家标准.其他应用矿渣的水泥产品尚处于研发阶段. 早期人们制备矿渣水泥采用将水泥熟料和矿渣混合粉磨的方法,但因矿渣的易磨性比熟料差,且矿渣水泥中水泥的粒度一般为300~350m2/kg,而矿渣的粒度较细(450~500m2/kg),在水泥细度合格时,矿渣细度无法达到要求,难以发挥其在水泥中的作用.西安建筑科技大学粉体工程研究所于2002年率先在山西长治年产150万t矿渣水泥生产线工程采用将矿渣和水泥熟料分开粉磨的技术,解决了矿渣超细粉磨的技术难题. 1.2作为混凝土掺合料 矿渣微粉除用于配制矿渣水泥,还可作为高活性的掺合料配制高性能矿渣混凝土.矿渣微粉粒度越 *收稿日期:2009-11-30修改稿日期:2010-04-12 基金项目:中国工程院咨询项目(2009-XZ-06);陕西省重点学科建设专项资金资助项目 作者简介:程福安(1966-),男,陕西铜川人,高级工程师,硕士,主要从事工业固体废弃物的的资源化利用研究.

矿渣粉进场检验标准

矿渣粉进场检验标准 2.3.1 本梁场制梁混凝土采用通化金刚冶金渣综合利用有限公司生产的S95(活性指数)磨细矿渣粉。其各项指标均符合《客运专线预应力混凝土预制梁暂行技术条件》(铁科技[2004]120号)、GB/T18046-2008《用于水泥和混凝土中的粒化高炉矿渣粉》、铁科技[2012]249号文的有关规定。每批进场矿渣粉须有质保书或试验报告单,其性能指标见表 2.3。磨细矿渣粉进场必须附有出厂证明书、试验报告单。每批不大于120t同厂家、同批号、同品种、同出厂日期磨细矿渣粉,需要进行进场抽验,任何新选货源或使用同厂家、同批号、同品种、同出场日期产品达3个月者,进场需要全面检验。 表2.3 矿渣粉性能指标及检验频率 序号检验项目标准要求抽验项 目 全检项 目 备注 1 密度, g/m2≥2.8 √ 2 比表面积, m2/kg 400~500 √√ 3 烧失量,%≤3.0 √√ 4 氧化镁含量,%≤14 √ 5 三氧化硫含量,%≤4.0 √ 6 Cl-含量,%≤0.02 √ 7 含水率,%≤1.0 √ 8 流动度比,%≥95 √√

序号检验项目标准要求抽验项 目 全检项 目 备注 9 碱含量,%/ √ 10 活性指 数,% 7d ≥75 √√ 28d ≥95 2.3.2 首批进场的磨细矿渣粉必须进行全项目检验,全检项目为:密度、比表面积、烧失量、氧化镁含量、三氧化硫含量、氯离子含量、含水率、流动度比、碱含量、活性指数,其中碱含量、氯离子含量由制梁场试验室委托铁道部产品质量监督检验中心铁道建筑检验站或桥梁与基础检验站进行检验,随机的抽取不少于20kg矿渣粉作为检验试样。试验室抽检项目为:密度、比表面积、烧失量、需水量比、流动度比、活性指数。 2.3.3 磨细矿渣粉进场后,由设备物资部对进场矿渣粉核查生产厂名、品种、等级、重量、出厂日期、出厂编号等,作好记录,并由设备物资部委托梁场试验室按规定取样做常规检验。经检验确认符合相关技术要求后,由试验室向设备物资部、安质部提交检验报告单后,方可使用。 2.3.4 检验方法符合GB/T18046-2008《用于水泥和混凝土中的粒化高炉矿渣粉》标准中的规定。 2.3.5 检验结果评定 2.3.5.1 符合本细则2.3要求的为合格品。若其中任何一项不

国内矿渣综合利用现状

xx大学xx (250022) 一、国内矿渣综合利用现状 矿渣是黑色冶金工业的主要固体废弃物,2005年我国产钢3.49亿吨,冶炼废渣产生14619万吨,(其中钢渣约为5000万吨,高炉矿渣约9000万吨),综合利用12848万吨,加上历年累积,总贮存量为2亿吨,占地3万亩,这些露天储存的冶炼废渣堆存侵占土地,污染毒化土壤、水体和大气,严重影响生态环境,造成明显或潜在的经济损失和资源浪费。据估算以每吨冶炼废渣堆存的经济损失14.25元计,每年造成经济损失28.5亿元。所以,冶炼废渣的无害化、资源化处理是我国乃至世界各国十分重视的焦点,也是我们推进循环经济的中心内容之一。 矿渣在水泥工业中的综合利用主要经过了三个阶段。 1.第一阶段主要是在1995年以前,粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 2.第二阶段是1995~2000年,学习国外技术,矿渣微粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣微粉比表面积要达到 600m2/kg以上,国内仅有几家粉磨站生产。主要原因是: 进口设备价格昂贵、生产线投资相当大。以年产30万吨矿渣微粉生产线为例,一次性投资至少在5000万元左右。 3.第三阶段是在2000年之后,粉磨设备节能技术和矿渣微粉应用经济技术研究的深入,使广大水泥企业认识到,矿渣微粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣微粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环经济的大力发展,矿渣微粉的产量年年翻番,目前已接近1000万吨/年,建材行业内一个新兴产业正逐步在形成。 二、什么是矿渣

国内外粒化高炉矿渣粉标准及产业发展概况

国内外粒化高炉矿渣粉标准及产业发展概况近年来我国矿渣粉行业产能过剩严重,产品竞争激烈。国内有些矿渣粉企业为求发展,在深挖国内市场的同时,将眼光聚焦海外。高炉矿渣经不同处理方法形成的几种产物,在世界各国的矿渣市场上分别占有不同的比例。只有掌握当地标准并了解当地的市场行情,才能切实保证企业和用户的利益。本文通过对磨细粒化矿渣粉生产及应用较为活跃的国家和地区的标准、产业发展情况调研,对比中国国标和其他国家标准的异同,研究矿粉走出国门的标准,集中讨论磨细粒化高炉矿渣粉作为混凝土掺合料标准和各国产业发展情况(对钢渣、矿渣骨料等其他产品不做讨论),旨在为国家标准和行业标准与国际标准对接提供技术依据,为准备进军海外市场的厂家提供研究方向和参考依据。 一、总体概念、分类、产出流程及发展 当今世界主流的炼钢方法主要分成两种:一种是高炉、转炉(BOF)炼钢法,另一种是电弧炉(EAF)炼钢法(如图1所示)。目前在世界范围内,高炉、转炉法生产的生钢产量约占总产量的71%,电弧炉炼钢法的产量占29%[1]。高炉矿渣是高炉炼铁时所排出的一种废渣。高炉矿渣的处理方法根据冷却方式不同,主要分为水淬渣、气冷渣和造粒渣三种产品。水淬渣指的是高炉渣经冷水急速冷却形成的5毫米以下粒径的高炉水淬渣颗粒,以高炉水淬渣为主要原料,经干燥、粉磨处理而制成的粉末材料,即为磨细高炉矿渣粉。高炉矿渣粉中玻璃质占80%~90%,具有潜在水硬性,用于混凝土中可增加混凝土强度、提高耐久性,多应用于水泥厂作为混合材料以及混凝土搅拌站作为掺合料。气冷渣指的是高炉渣在空气中慢慢冷却后,经破碎、筛分等处理而形成的块状颗粒,一般用于公路建设或混凝土中取代部分天然砂石。造粒渣是指高炉渣在空气中快速冷却后,经造粒处理形成的20毫米以下粒径的颗粒,较细的颗粒经破碎、粉磨等处理后可

粒化高炉矿渣知识汇总

粒化高炉矿渣 粒化高炉矿渣是在高炉冶炼生铁时,所得以硅酸盐与硅铝酸盐为主要成分的熔融物,经淬冷后来不及结晶而形成的细颗粒状玻璃态物质。 一、矿渣在水泥工业中的综合利用主要经过了三个阶段: 第一阶段(1995年以前)粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 第二阶段(1995~2000年)学习国外技术,矿渣粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣粉比表面积要达到600m2/kg以上,国内仅有几家粉磨站生产。主要原因是:进口设备价格昂贵、生产线投资相当大。 第三阶段(2000年后)矿渣粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环目前已接近一亿吨/经济的大力发展,矿渣粉的产量年年翻番,年,正在国内形成一个生产建材的新兴产业。 二、什么是矿渣 “矿渣”的全称是“粒化高炉矿渣”它是钢铁厂冶炼生铁时产生的废渣。在高炉炼铁过程中,除了铁矿石和燃料(焦炭)之外,为降低冶炼温度,还要加入适当数量的石灰石和白云石作为助熔剂。它们在高炉内分解所得到的氧化钙、氧化镁、和铁矿石中的废矿、以及焦炭中的灰分相熔化,生成了以硅酸盐与硅铝酸盐为主要成分的熔融物,浮在铁水表面,定期从排渣口排出,经空气或水急冷处理,形成粒状颗粒物,这就是矿渣。含有95%以上的玻璃体和硅酸二钙,钙黄长石、硅灰石等矿物,与水泥成份接近。 未经淬水的矿渣,其矿物这些形态呈稳定形的结晶体,结晶体除少部分C2S尚有一些活性外,其它矿物基本上不具有活性。如经淬水急冷,形成了玻璃态结构,就使矿渣处于不稳定的状态。因而具有较大的潜在化学能。出渣温度愈高,冷却速度愈快,则矿渣玻璃化矿渣的潜在化学能程度愈高,愈大,活性也愈高。因此,经水淬急冷的高炉矿渣的潜在活性较好。 每生产1吨生铁,要排出0.3-1吨矿渣。 表1我国部分钢铁厂的高炉矿渣化学成分

2 GBT 18046-2008用于水泥和混凝土中的粒化高炉矿渣粉

用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 18046-2008 标准发布单位:国家技术监督局发布 1范围 本标准规定了粒化高炉矿渣的定义、组分与材料、技术要求、试验方法、检验规则、包装、标志、运输和贮存等。 本标准适用于作水泥活性混合材和混凝土掺合料的粒化高炉矿渣粉。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 175 通用硅酸盐水泥 GB/T 176 水泥化学分析方法(GB/T 176-1996,eqv ISO 680:1990) GB/T 203 用于水泥中粒化高炉矿渣 GB/T 208 水泥密度测定方法 GB/T 2419 水泥胶砂流动度测定方法 GB/T 5483 石膏和硬石膏(GB/T 5483-1996,neq ISO 1587:1975) GB 6566 建筑材料放射性核素限量 GB/T 8074 水泥比表面积测试方法(勃氏法) GB 9774 水泥包装袋 GB 12573 水泥取样方法 GB/T 17671 水泥胶砂强度检验方法(ISO法)(GB/T 17671-1999,idt ISO 679:1989)》JC/T 420 水泥原材料中氯的化学分析方法 JC/T 667 水泥助磨剂 3术语和定义 下列术语和定义适用于本标准。 粒化高炉矿渣粉:以粒化高炉矿渣为主要原料,可掺加少量石膏磨细制成一定细度的粉体,称作粒化高炉矿渣粉,简称矿渣粉。 4组分与材料 4.1矿渣

钢渣与矿渣的区别

矿渣与钢渣的区别 高炉矿渣 高炉矿渣是冶炼生铁时从高炉中排出的一种废渣。在高炉冶炼生铁时,从高炉加入的原料,除了铁矿石和燃料(焦炭)外,还要加入助熔剂。当炉温达到1400-1600℃时,助熔剂与铁矿石发生高温反应生成生铁和矿渣。 高炉矿渣是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质组成的,是一种易熔混合物。例如采用贫铁矿炼铁时,每吨生铁产出1.0-1.2t高炉渣;用富铁矿炼铁时,每t生铁只产出0.25t高炉渣 按照高炉矿渣化学成分中的碱性氧化物的多少。高炉矿渣又可分为碱性矿渣、中性矿渣和酸性矿渣。高炉熔渣用大量水淬冷后,可制成含玻璃体为主的细粒水渣,有潜在的水硬胶凝性能,在水泥熟料、石灰、石膏等激发剂作用下,显示出水硬胶凝性能,是优质水泥原料。我国生产的水泥有70%-80%掺用了不同数量的水渣。水渣还可作保温材科,湿碾和湿磨矿渣,混凝土和道路工程的细骨料;土壤改良材料等。 钢渣 钢渣是炼钢过程中排出的废渣,按其炼钢炉型区分有平炉渣、转炉渣、电炉渣三大类。大约每炼1t钢,排渣0.25t左右。 炼钢炉出渣往往在出钢前后分几次排出(或扒出)。例如转炉炼钢有前期渣和后期渣;平炉炼钢有初期渣、中期渣、后期渣,还有粘

在钢水包等处的残余渣;电炉炼钢有氧化渣和还原渣。另外用生铁或废铁炼钢,在化铁炉中先熔化成铁水,所产生的废渣称为化铁炉渣。 钢渣的成分一般含有:CaO40%~50%、MgO5%~10%、SiO210%~20%,FeO和Fe2O3 15%~25%,其主要矿物组成为硅酸二钙、硅酸三钙、铁酸钙及RO等,它与水泥熟料的化学成分相似,具有水硬胶凝性,因此被人们称为劣质熟料。 钢渣的处理工艺主要有冷弃法、热泼法、盘泼水冷法、钢渣水淬法。

矿渣微粉质量技术标准

QB 佳木斯市松江水泥有限公司质量技术标准 QB/ZL 1006-2011 受控状态 分发号 程序编号: 2011-03-01制订2011-04-26实

施佳木斯市松江水泥有限公司化验室制 订 QB/SJJC001--2010佳木斯市松江建材有限公司 粒化高炉矿渣粉质量技术标准 1. 范围 本标准规定了粒化高炉矿渣粉的定义、组分与材料、粒化高炉矿渣粉的质量技术要求及试验方法、检验规则、包装标志、运输和贮存等。 本标准适用于佳木斯市松江建材有限公司粒化高炉矿渣粉的生产、检验与销售。 2.规范性引用文件 GB/T 18046 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 203 用于水泥中的粒化高炉矿渣 3.术语和定义 下列术语和定义适用于本标准 3.1 粒化高炉矿渣 在高炉冶炼生铁时,所得以硅铝酸钙为主要成分的熔融物,经淬冷成粒后,具有潜在水硬性材料,即为粒化高炉矿渣(简称矿渣)

3.2 粒化高炉矿渣粉 以粒化高炉矿渣为主要原料,可掺加少量石膏或粉煤灰制成一定细度的粉体,称作粒化高炉矿渣,简称矿渣粉。 4.组分与材料 4.1 矿渣 符合GB/T 203 规定的粒化高炉矿渣。 4. 1 .1 进厂矿渣水分≤10.0%,烘干矿渣水分≤2.0%, 4.1.2 质量系数K≥1.2 4.1.3 目测矿渣中不得混有外来夹杂物,如含有铁尘泥,未经充分淬冷矿渣等。 4.2 石膏 符合GB/T 5483中规定的G类或M类二级(含)以上的石膏或混合石膏。 4.3 粉煤灰 符合GB/T 1596 中规定的F类或C类粉煤灰。 4.4 助磨剂 符合JC/T 667的规定,其中加入量不应超过矿渣粉质量的0.5%。 5.矿渣粉质量技术标准 矿渣粉应符合下表的技术指标规定

高炉渣的综合利用。

再生金属冶金学课程论文 高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

粒化高炉矿渣粉检测实施细则

粒化高炉矿渣粉检测实施细则 1. 适用范围、检测项目及技术标准 1.1适用范围 用于水泥和混凝土中的粒化高炉矿渣粉(简称矿渣粉)、 1.2检测参数 比表面积、含水量、密度、流动度比、活性指数、烧失量、三氧化硫。 1.3技术标准 1.3.1产品标准(判定标准)及其需引用标准 GB/T 18046-2008 用于水泥和混凝土中的粒化高炉矿渣粉 1.3.2试验方法标准及其需引用标准 a.G B/T 176-2008 水泥化学分析方法 b.GB/T 208-1994 水泥密度测定方法 c.G B/T 2419-2005 水泥胶砂流动度测定方法 d.GB/T 8074-2008 水泥比表面积测定方法(勃氏法) e.G B 12573-2008 水泥取样方法 f.GB/T 17671-1999 水泥胶砂强度检验方法(ISO法) 2. 检测环境条件 a. 试件成型试验室的温度应保持在20℃±2℃、相对湿度不低于50%。 b. 试件养护池水温应保持在20℃±1℃范围内。 3. 检测设备和标准物质 3.1 检测设备

见表1 3.2标准物质 GSB14-1511水泥细度和比表面积标准粉。 表1 4. 取样方法及试样数量 对于同一产家、同一等级、同一品种、连续进场且不超过10d的掺合料为一验收批,但一批的总量不宜超过200t。不足200t者应按一验收批进行验收。 取样按GB 12573-2008规定进行,取样应有代表性,可连续取样,也可以在

20个以上部位取等量样品总量至少

20kg。试样应混合均匀,按四分法缩取出比试验所需量大一倍的试样(称平均样)。 5. 检测方法 5.1 比表面积 5.1.1设备、标准、环境检查 检查核对所需设备正常与否,必要时作记录; 检查核对产品标准和试验方法标准,并记录; 检查核对环境温度,并记录。 5.1.2试样检查 核对和检查试样是否符合要求,并记录。 5.1.3 检测与计算 5.1.3.1检测 检测依据标准:GB/T 8074-2008。 操作步骤、细节,注意事项: 5.1. 3.1.1仪器校准 a.仪器的校准采用GSB 14-1511或相同等级的其他标准物质。有争议时以前者为准。 b.校准周期:至少每年进行一次。仪器设备维修后也要重新标定。 5.1.3.1.2操作步骤 a.测定矿渣粉密度 按GB/T 208测定矿渣粉密度。 b.漏气检查

矿渣知识简介

矿渣知识简介 高炉矿渣是高炉炼铁过程中,由矿石中的脉石,燃料中的灰分和助熔剂(石灰石)等炉料中的非挥发组分形成的废物。主要有高炉水渣和重矿渣之分。高炉水渣是炼铁高炉排渣时,用水急速冷却而形成的散颗粒状物料,其活性较高,目前这类矿渣约占矿渣总量的85%左右。重矿渣是指在空气中自然冷却或极少量水促其冷却形成容重和块度较大的石质物料。 高炉矿渣的主要成分是由CaO、MgO、Al2O3、MgO、SiO2、MnO、Fe2O3等组成的硅酸盐和铝酸盐。SiO2和MnO主要来自矿石中的脉石和焦碳的灰分,CaO 和MgO主要来自熔剂。上述四种主要成分在高炉矿渣中占90%以上。根据铁矿石成分、熔剂质量、焦碳质量以及所炼生铁种类不同,一般每生产1吨生铁,要排出0.3~1.0吨废渣,因此它也是一种量大面广的工业废渣。 粒化高炉矿渣是一种具有良好的潜在活性的材料,它已成为水泥工业活性混合材的重要来源。水泥企业使用粒化高炉矿渣可以扩大水泥品种、改善水泥性能(抗蚀性)。粒化高炉矿渣的活性以质量系数K=(CaO+MgO+Al2O3)/(SiO2+MnO+TiO2)来衡量,系数大则活性高。高炉矿渣的活性与化学成分有关,但更取决于冷却条件。慢冷的矿渣具有相对均衡的结晶结构,主要矿物为钙铝黄长石、镁黄长石、钙长石、硫化钙、硅酸二钙等。除硅酸二钙具有缓慢水硬化性外,其他矿物成分常温下水硬性很差。水淬急冷阻止了矿物结晶,因而形成大量的无定形活性玻璃体结构或网络结构,具有较高的潜在活性。在激发剂的作用下,其活性被激发出来,能起水化硬化作用而产生强度。 在利用高炉矿渣前,需要进行加工处理,根据用途不同,通常是把高炉矿渣加工成水渣、矿渣碎石、膨胀矿渣和膨胀矿渣珠等形式加以利用。其中水渣可用于生产水泥、砖和混凝土制品,而矿渣碎石、膨胀矿渣和膨胀矿渣珠则多用作骨料来制耐热、轻质混凝土。 水渣具有潜在的水硬性胶凝性能,在水泥熟料、石灰、石膏等激发剂作用下,可显示出水硬胶凝性能,是优质的水泥原料。水渣既可以作为水泥混合料使用,也可以制成无熟料水泥。

中国建筑学会标准《混凝土用超细高炉矿渣粉》

中国建筑学会标准 《混凝土用超细高炉矿渣粉》编制说明 《混凝土用超细高炉矿渣粉》 标准编制组 2018年6月

一、工作简况 1. 任务来源 《混凝土用超细高炉矿渣粉》团体标准计划项目是中国建筑学会下达的“关于发布《2017年中国建筑学会标准编研计划(第一批)》的通知”(建会标[2017]3号),该标准的归口单位为中国建筑学会。该标准由中清华大学负责起草,并牵头组织相关单位共同完成。 2. 制定目的 矿物掺合料的活性与其颗粒细度密切相关,近些年,随着粉磨工艺的提高和高效助磨剂的使用,将矿物掺合料进一步磨细的能耗已明显降低,这为开发更高活性的矿物掺合料提供了基础。矿渣的易磨性好,且进一步磨细对其活性的提升效果明显,矿渣粉的生产工艺已较为成熟。通过制定混凝土用超细高炉矿渣粉(以下简称超级矿渣粉)的产品标准,对其性能、规格、质检方法做出技术规定,可以为组织生产、出厂检验和技术交流等提供依据,从而促进超细矿渣粉产业的良性发展。 将超细矿渣粉应用于普通混凝土可以降低水泥用量,且超细矿渣粉是适合制备高强混凝土的掺合料,此外,超细高炉矿渣粉对改善混凝土的抗氯离子侵蚀和抗硫酸盐侵蚀能力的效果明显,因此超细矿渣粉在混凝土中的应用将越来越广泛。随着本标准的推出,超细矿渣粉在生产上更加有序,在应用中更加科学合理,必将明显推动其应用范围和规模的扩大,应用市场大幅增长。 3. 主要的工作过程 为顺利完成标准制定任务,清华大学牵头成立了《混凝土用超细矿渣粉》协会标准编制组。标准编制组由清华大学、四川绵筑新材料有限公司、国家建筑工程质量监督检验中心、中国建筑材料科学研究总院、金泰成环境资源股份有限公司、武汉武新新型建材股份有限公司、新加坡昂国集团、北京交通大学、青岛理工大学、北京东方建宇混凝土科学技术研究院、北京市中超混凝土有限责任公司、中国建筑股份有限公司、济南大学、华南理工大学、中国建筑科学研究院、武汉三源特种建材有限责任公司等16个生产企业、科研单位、施工企业组成,由清华大学王强副教授担任主编。标准编制组涵盖了国内主要的混凝土用超细矿渣粉

GBT18046《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》新旧国家标准的对比及分析

一、前言 新国家标准GB/T 18046-2017《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》于2017年12月29日正式发布,2018年11月1日开始实施。最近,从国内几家权威检测单位了解到,各家正在做新标准检测的相关认证工作,相信很快就会依照新的国家标准对来样进行检测。为了更好地了解修订后的标准,现将GB/T 18046《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》新旧标准中参数的变化及变化原因做初步分析,希望能对矿渣粉行业内的生产单位以及下游应用单位及相关技术人员有一定的参考作用。 二、矿渣粉相关标准的制订和发展 矿渣粉作为混凝土高性能化的重要矿物掺合料,生产规模日益壮大,业已成为独立于水泥的另一个产业板块。为了规范矿渣粉的生产和推广其使用,我国自上个世纪九十年代末开始,陆续颁布了多个地方标准、行业标准和国家标准,对矿渣粉的定义及其相关产品的品质做了相应的规定和要求。据我们的不完全统计,目前我国涉及或引用到高炉矿渣粉和/或GB/T 18046产品的相关标准众多,举例如表1所示。

据此可知,我国目前建筑施工中有大量的标准或规范涉及矿渣粉产品,而直接采用或间接引用国标GB/T 18046中的技术指标要求,是最通用的做法。因此,GB/T 18046作为矿渣粉产品最根本和重要的技术标准。 三、新旧标准变化的原因 1、矿渣粉的行业地位 矿渣是钢铁企业在炼铁过程中产生的最主要的副产品,也是生产优质水泥混合材以及高性能混凝土掺合料的重要原材料。根据发达国家的应用实例,矿渣粉在建筑胶凝材料中的掺合量已达到70%以上,一些欧洲国家甚至允许掺到85-90%,是的重要的资源再生型低碳绿色建筑材料。 我国大型立磨矿渣粉生产和应用虽然起步较晚(1997年建成第一条立磨矿渣粉生产线),但发展十分迅速。根据中国矿渣粉网的统计数据显示,2013年,我国矿渣粉产量已超过 1.2亿吨,位列世界第一。虽然,近几年我国矿渣粉总产量略有下降,但基本徘徊在1亿吨左右。 矿渣粉由于具有“产量大”、“掺量大”以及在水泥混凝土中“性能优”三大特征,决定了矿渣粉具有完全独立于其他混合材的优先地位;矿渣粉行业的生产规模使其成为仅次于水泥行业的一个独立的的行业板块,矿渣粉的行业地位是粉煤灰、硅灰、磷渣粉等其它混合材无法比拟的。 2、矿渣粉行业面临的问题 我国矿渣粉行业也产生了一些新问题,而且越来越突出,急需解决。 1)矿渣粉行业规模大,但缺乏相关规范认证以及监管制度。目前矿渣粉企业较多,

高炉渣的综合利用。

高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。

研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第四产业”。根据西方发达国家的实践经经验,应用先进技术进行工业固体废弃物资源二次利用,不仅能够创造大量社会财富,而且可以间接促进资源综合利用技术的发展,因此又被称为“黄金产业”[2]。目前,我国固体废弃物综合利用产业蓬勃发展,已成为新世纪以来的“朝阳产业”[3],然而由于起步较晚,我国在此领域中的发展程度仍较发达国家仍有一定距离。 1. 高炉渣的生产现状 高炉渣是钢铁冶金工业生产中排放量最大的一种固体废弃物,其排放量与入炉矿石的品味及冶炼制度有直接关系。以目前我国钢铁冶金工艺水平,每冶炼1吨生铁,高炉渣产生量在300-350kg之间[4]。以我国年产生铁9亿吨计算,每年的高炉渣产生量高达3亿吨左右,在所有工业废渣排放量份额中所占比例接近1/3。我国高炉渣总体利用率较低,与发达国家相比仍有较大的差距。高炉渣化学成分由于所炼生铁种类及入炉炉料品位波动而存在一定变动。高炉渣所包含的不同氧化物的含量及种类直接影响着高炉渣的质量,并在一定程度上决定着高炉渣潜在活性的发挥[5]。我国主要类型高炉渣的化学组成如表1.1所示[6]。

矿渣粉简介

什么是矿渣粉? 矿渣粉是粒化高炉矿渣粉的简称,是一种优质的混凝土掺合料,由符合GB/T203标准的粒化高炉矿渣,经干燥、粉磨,达到相当细度且符合相当活性指数的粉体。 矿渣粉分几个等级? 共分为S105、S95、S75三个级别。 矿渣粉的技术要求有哪几项? 按国标《用于水泥和混凝土中的粒化高炉矿渣粉》(GB/T18046-2000)规定,对矿渣粉有八项技术要求:密度、比表面积、活性指数、流动度比、含水量、三氧化硫含量、氯离子含量、烧失量。具体指标列于下表: 矿渣粉的技术指标(GBT18046-2000) 矿渣粉的作用: 1、减少水泥用量节约成本 2、降低混凝土水化热,提高混凝土强度。 3、善了混凝土的微观结构,使水泥浆体的空隙率明显下降,强化了集料界面的粘结力,使得混凝土的物理力学性能大大提高 矿渣粉的价格: 离岸价:220元人民币 粒化高炉矿渣(GBFS)和粒化高炉矿渣粉(GGBFS)。粒化高炉矿渣粉(简称GGBFS,或GGBFS POWDER), S95级,符合国标GB/T18046-2000标准,具有细度小,比面积适宜,早强快硬,水泥强度与混凝土强度相关性好,抗冻,耐磨,耐侵蚀 等特点,广泛应用于桥梁,隧道,涵渠,高层楼房等工程.供给出口和国内水泥等行

业。产品出口亦符合BS6699-1992英国标准。出口采用2000kg太空袋或50kg 袋... 矿渣品质要求 国家标准(GB/203-94)对粒化高炉矿渣的质量要求规定如下: 1、粒化高炉矿渣的质量系数K应不小于1.2;(企业内控标准不小于1.6) 2、粒化高炉矿渣中锰化合物的含量,以MnO计不得超过4%,锰铁合金粒化高炉矿渣的MnO允许放宽到15%;硫化物含量(以硫计)不得超过3%;氟化物含量(以氟计)不得大于2%; 3、粒化高炉矿渣的松散容量不大于1.2kg/L,最大直径不得超过100mm,大于10mm颗粒含量(以重量计)不大于8%; 4、粒化高炉矿渣不得混有外来夹杂物,如铁尖泥,未经淬冷的块状矿渣等; 5、矿渣在未烘干前,其贮存期限从液冷成粒时算起,不宜3个月。 矿渣粉质量标准 国家标准(GB/T18045-2000)<用于水泥和混凝土中的粒化高炉矿渣粉>有如下规定: 1、粒化高炉矿渣粉(简称矿渣粉)定义;符合GB/T203标准规定的粒化高炉矿渣经干燥,粉磨(或添加少量石膏一起粉磨)达到相当细度,且符合相应活性指数的粉体,矿渣粉粉磨时充许加入助磨剂,加入量不得大于矿渣粉质量的1%; 2、矿渣粉密度不小于2.8g/cm3;比表面积不小于350m2/kg;(企业内控标准:不小于400m2/kg。) 3、矿渣粉共分为三级,S105、S95、S75,他们对应的活性指数7天不小于95%、75%和55%,28天不小于105%、95%和75%,流动度比小于85%、90%和95%。 4、矿渣粉含水量不大于1.0%。 5、三氧化硫不大于4.0%。 6、离子不大于0.02%。 7、烧失量不大于3.0%。 主要特点: ●减少坍落度损失●大大提高混凝土耐久性●对混凝土的显著增强作用 ●优良的碱骨料抑制剂●增强混凝土的抗腐蚀性●提高混凝土的可泵性●减少混凝土泌水 性能: 强度较高、凝结硬化较快、耐冻性好、和易性好。 适用范围:

国内矿渣综合利用现状

济南大学陈绍龙(250022) 一、国内矿渣综合利用现状 矿渣是黑色冶金工业的主要固体废弃物,2005年我国产钢3.49亿吨,冶炼废渣产生14619万吨, (其中钢渣约为5000万吨,高炉矿渣约9000万吨),综合利用12848万吨,加上历年累积,总贮存量为2亿吨,占地3万亩,这些露天储存的冶炼废渣堆存侵占土地,污染毒化土壤、水体和大气,严重影响生态环境,造成明显或潜在的经济损失和资源浪费。据估算以每吨冶炼废渣堆存的经济损失14.25元计,每年造成经济损失28.5亿元。所以,冶炼废渣的无害化、资源化处理是我国乃至世界各国十分重视的焦点,也是我们推进循环经济的中心内容之一。 矿渣在水泥工业中的综合利用主要经过了三个阶段。 1.第一阶段主要是在1995年以前,粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 2.第二阶段是1995~2000年,学习国外技术,矿渣微粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣微粉比表面积要达到600m2/kg以上,国内仅有几家粉磨站生产。主要原因是:进口设备价格昂贵、生产线投资相当大。以年产30万吨矿渣微粉生产线为例,一次性投资至少在5000万元左右。 3.第三阶段是在2000年之后,粉磨设备节能技术和矿渣微粉应用经济技术研究的深入,使广大水泥企业认识到,矿渣微粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣微粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环经济的大力发展,矿渣微粉的产量年年翻番,目前已接近1000万吨/年,建材行业内一个新兴产业正逐步在形成。 二、什么是矿渣 “矿渣”的全称是“粒化高炉矿渣”。它是钢铁厂冶炼生铁时产生的废渣。在高炉炼铁过程中,除了铁矿石和燃料(焦炭)之外,为降低冶炼温度,还要加入适当数量的石灰石和白云石作为助熔剂。它们在高炉内分解所得到的氧化钙、氧化镁、和铁矿石中的废矿、以及焦炭中的灰分相熔化,生成了以硅酸盐与硅铝酸盐为主要成分的熔融物,浮在铁水表面,定期从排渣口排出,经空气或水急冷处理,形成粒状颗粒物,这就是粒化高炉矿渣,简称:矿渣。 每生产一吨生铁,要排出0.3~1吨矿渣。 我国部分钢铁厂的高炉矿渣化学成分列入表1,从表中可以看出,矿渣的化学成分与水泥熟料相似,只是氧化钙含量略低。 表1 我国部分钢铁厂的高炉矿渣化学成分 厂名SiO2 Al2O3 Fe2O3 MnO CaO MgO S AG 38.28 8.40 1.57 0.48 42.66 7.40 / AG 32.27 9.90 2.25 11.95 39.23 2.47 0.72 BG 40.10 8.31 0.96 1.13 43.65 5.75 0.23 BG 41.47 6.41 2.08 0.99 43.30 5.20 / SG 38.13 12.22 0.73 1.08 35.92 10.33 1.10 WG 38.83 12.92 1.46 1.95 38.70 4.63 0.05 JG 27.02 15.13 2.08 17.74 33.15 2.31 / 未经淬水的矿渣,其矿物形态呈稳定形的结晶体,这些结晶体除少部分C2S尚有一些活性外,其它矿物基本上不具有活性。如经淬水急冷,由于液相粘度在很短的时间内很快增大,阻滞了晶体成长,形成了玻璃态结构,就使矿渣处于不稳定的状态。因而具有较大的潜

矿渣微粉市场分析

矿渣微粉市场分析 矿渣微粉的生产销售,属其他建筑材料制造业。矿渣微粉,是提高混凝土强度和性能的一种无机矿物掺加料,属建材新产品。其原料是冶金行业的高炉炉渣,用矿渣微粉作为混凝土掺入料不仅可等量取代水泥,降低混凝土成本,又充分利用了高炉炉渣,是新型绿色环保产品。矿渣微粉作为混凝土的一种添加剂,与国内水泥、混凝土的应用发展密不可分。 国内矿渣微粉的发展 矿渣微粉,是优质的混凝土掺合料和水泥混合材。是当今世界公认的配制高耐久性混凝土结构的首选混合材料之一。与普通硅酸盐水泥相比,完全用掺有矿渣微粉的混凝土具有水化热低、耐腐蚀,与钢筋粘接力强,抗渗性强,抗微缩,后期强度高等特点。因此矿渣微粉作为一种质高价廉的新型建筑材料深受建筑业的欢迎。矿渣微粉是钢铁冶炼产生的矿渣,经烘干并与石膏等按一定配比混合后,送入矿渣粉磨机粉磨,后经选粉机筛选成为矿渣微粉。 矿渣作为水泥混合材在19世纪的德国就已经得到应用,在我国也已有40多年的历史,但20世纪90年代以前,大多数是将矿渣和水泥熟料一起粉磨,属粗放型应用。 水泥在掺入矿渣微粉后性能得到提高,在美、英、德、日、韩、新加坡、台湾等许多国家和地区,已将该产品作为百年寿命工程的重要掺和料。矿渣微粉的原料——高炉矿渣是冶炼生铁时从高炉中排出的一种废渣。国内根据铁矿品位的不同,每冶炼一吨生铁,大约产生矿渣0.3 吨~1.0吨。如果全部用矿渣微粉来代替水泥在混凝土中的投放量,目前国内每年可少生产1.5至5亿吨水泥。就可节省不可再生的石灰石资源、煤炭资源,减少向环境排放大量的二氧化碳,建筑物的寿命也可大大延长,因此矿渣微粉的应用对水泥工业的可持续发展有重大的意义。 由于掺有矿渣微粉的混凝土具有水化热低、耐腐蚀、与钢筋粘结力强、后期强度高、防微缩等特点,被广泛应用在大型建筑、水坝、城市道路、水下、海防、油田、化学防腐工程等,国内的广东、北京、上海及珠三角等地也已广泛应用该技术,产品具有广阔的市场前景。矿渣微粉产品的现状 我国国内矿渣微粉产品1996年在上海研发成功,2000年正式颁布国家产品标准。2005年以后,国内的马钢、济钢、韶钢、宝钢、柳钢、沙钢等一大批大型钢铁联合企业,都纷纷开展矿渣微粉生产项目。 从目前矿渣微粉生产企业的分布和产品的推广区域来看,矿渣微粉生产企业早期主要集中在国内南方地区产生,并得到应用,近两年正逐步向我国北方地区推广。 从矿渣微粉主要生产企业的经营模式分析,矿渣作为生铁生产的废弃物,价格相对较低,如长途运输,运输费用会对产品成本有较大影响,因此矿渣微粉生产企业一般选址在生铁企业就近地区。目前国内各钢铁生产联合企业纷纷建立从属的矿渣微粉生产企业,以解决钢铁企业钢铁生产废弃物——矿渣的再利用问题,同时为企业增效。这类企业一般可获得充足的生产原料,对生产比较有利,生产能力一般在年产矿渣微粉50万吨以上的水平。仅2005年一年国内钢铁企业兴建的矿渣微粉生产企业就在7家以上。 由于矿渣微粉的生产工艺较为简单,所需投入资金相对较小,因此矿渣微粉生产企业资产规模一般相对不大。同时由于矿渣微粉下游产品应用较广、性能较好,矿渣微粉产品的发展空间较好。因此矿渣微粉生产企业的发展速度快,近年国内各种规模的矿渣微粉生产企业较多。因此没有钢铁生产企业作为依靠的小型矿渣微粉生产企业的生存空间较为有限,不排除未来产品市场由于新进入者的增加,市场竞争加剧的情况。 (2)行业影响因素分析 上游行业分析

相关主题
文本预览
相关文档 最新文档