当前位置:文档之家› 第4章 矿井开拓与开采(已完)

第4章 矿井开拓与开采(已完)

第4章  矿井开拓与开采(已完)
第4章  矿井开拓与开采(已完)

第四章井田开拓与开采

第一节井田开拓

一、井田开拓方式及井口位置

(一) 影响井田开拓的主要因素

本井田地质构造简单,大体为一向西倾斜的单斜构造,煤层倾角0~3°,未发现断层;水文地质条件简单;无老窑开采及采空区,对开采无影响。影响井田开拓方式、井口位置的主要因素有:地形地貌、地质构造、煤层赋存特点、凿井工程地质条件、铁路接轨点位置、水源和电源情况、井下开拓部署、工业场地压煤量、技术装备水平和地质勘探程度等。

1. 地形地貌

本井田内地形总体上为东南高、西北低,海拔标高+1302.5~+1278.5m,地形变化不大,地势平缓。井田具风积沙漠~半沙漠地貌特征,半流动和半固定的新月形沙丘及沙丘链遍布全井田,耕地有限,因此,从地形地貌上看,对井口位置和开拓方式的选择影响不大。

2. 地质构造

本区构造形态为一向北西倾斜的单斜构造,地层倾角小于2°。区内断层不发育,无岩浆岩侵入体,故井田地质构造简单,煤层近水平,无煤层露头,同一煤层井田内高差小于120m,从构造上看,对井口位置和开拓方式的选择影响亦不明显。

3. 煤层赋存特点

井田主要可采煤层3-1煤、4-1煤全区发育,赋存深度一般600~700m左右,赋存稳定,厚度变化小,主采煤层之上仅有一中厚2-2中煤层,2-2中煤层大部可采,仅在井田西南部不可采。4-1煤下部还有4-2中、5-1、5-2、6-2上、6-2中五个煤层,井田范围内均大部可采。除3-1煤和4-1煤为厚~中厚煤层(平均厚度4.75m和3.75m)外,其余煤层均为薄煤层或中厚煤层(平均厚度1.80~2.60m)各煤层倾角平缓(0~3°),

适合长壁机械化开采。

4. 凿井工程地质条件

井田浅部全部被第四系全新统风积沙及沉积砂土地层覆盖,厚度在27.13~135.50m,平均95.26m,南厚北薄,靠近井田储量中心范围内厚度在120m左右,厚度差不明显,新生界地层主要由风积沙、粉细砂、砂粘土、粘砂土组成,下部上更新统砂层富水性较强,上部风积沙层含水相对较弱。因此,从工程地质条件上看,井筒需采用特殊凿井法施工,适合立井开拓,井口位置宜选择在中部或西部。

5. 接轨点位置及外部道路

目前,根据鄂尔多斯市南部铁路公司规划,本矿区内新恩铁路在本井田东北部通过,本矿井接轨点确定在母杜柴登井田东北部大牛地站,因此,从接轨点位置及外部道路上看,井口位置宜选择在井田中部、西部或北部。

6. 水源及电源情况

根据《内蒙古自治区鄂尔多斯呼吉尔特矿区总体规划》,矿区内各矿井的生活用水根据矿区水文地质条件和矿区开发建设规划,统筹建设水源地和输配水管网,位于井田西侧的哈头才当水源地为矿区集中水源地。

母杜柴登井田的供电电源可引自井田北部的图克110kV变电站和葫芦素220kV变电站。

因此,从水源和电源上看,井口位置宜选择在井田西部、中部或北部。

7. 技术装备水平

近年来,我国煤矿矿井技术装备水平有了显著提高,大型多绳摩擦轮提升机与电控装备,大容量立井提升箕斗及提升罐笼等不断创新,为建设特大型立井提供了提升的保证;长距离、大功率带式输送机、多功能无轨胶轮车等连续化、自动化运输设备及工作面高产高效的综放、大采高综采、连续采煤机等现代采掘设备逐渐改变了矿井的生产面貌。因此,从技术装备水平上看,采用立井开拓是可行的。

8. 地质勘查程度

本井田已经完成煤炭勘探工作,可以满足本阶段设计要求。储量级别较高(331)

块段位于井田东北部,其余部分为332和333,东北部适宜布置首采盘区和首采工作面,井口位置应靠近勘查程度高的区域,因此,从地质勘查程度上看,井口位置宜选择在中部或东部。

9. 后备井田扩展区

与母杜柴登井田西侧边界相邻的尔林滩井田以及其东侧边界的二号勘查区南部的煤层覆存条件、地质特征及开采条件基本相同,有利于矿井的联合开发,可作为母杜柴登矿井的潜在后备资源。这部分潜在的后备预测资源总面积约为90.1km2,资源量量约为1481.32Mt,建议业主进快开展工作获得该区域的资源开发权。母杜柴登井田与潜在后备区的关系见图2-1-3。

(二) 井田开拓方式

根据井田煤层赋存条件及上覆新生界松散地层分布情况,井田煤层埋藏较深,平均700m左右,上覆新生界地层松散,含砂比例较大,富水性强,需冻结法施工。若采用斜井开拓,斜井垂高达700m左右,斜长约2.6km左右,斜井井筒穿过新生界地层厚度约105m,斜长约406m,其中穿过第四系富含水沙层厚度约50m,斜长约193m,因此斜井施工技术难度大,费用高,建设工期长,胶带带强高,运营成本高。根据国内目前技术水平,当井田煤层埋深超过400m后,宜采用立井开拓。因此设计推荐本井田采用立井开拓方式。

(三) 井口位置与工业场地选择

1. 工业场地选择原则

根据本井田的地形地貌特点、煤层赋存条件及煤炭外运条件,矿井工业场地选择的主要原则如下:

(1) 有利于井口位置选择及井筒布置;

(2) 有利于主水平开采,兼顾其它水平,有利于水平大巷布置,初期井巷工程量少;

(3) 首采区布置在开采条件好、储量丰富可靠的块段;

(4) 工业场地尽可能靠近公路或铁路,有利于煤炭外运,路线短、工程量小;

(5) 工业场地距离供应点、电源、水源较近,有利于煤炭外运,运输线路短,煤炭

的主运输方向顺畅,井上下综合运营费用省;

(6) 工业场地地形开阔、平缓,便于布置生产系统及生活设施,土石方工程量少;

(7) 工业场地尽量不占或少占耕地,少压煤,征地方便;

(8) 工业场地尽量选择在工程地质条件好、煤层埋深浅、表土层薄、沙层厚度小、富水性弱的地方,避开地质不良地段及洪水位威胁,场地稳定性好,满足防洪要求;

(9) 首采区尽量处于地质构造比较简单的区域。

2.工业场地及井田开拓方案

综合分析上述影响因素,结合确定的立井开拓方式,设计主要提出了三个井口及工业场位置方案,并相应提出了三个井田开拓方案,本报告结合三个场地地面及矿井开拓整体部署来选择矿井适宜的工业场地。三个井口及工业场位置见图4-1-1。

(1) 方案一:西部场地方案

工业场地及井口设在井田西部边界,即钻孔H129附近。本场地铁路接轨及场外道路短,利用总体规划中矿区铁路的母杜柴登矿井会让站,工业场地与矿区铁路靠近布置,工业场地压煤最少,井上、下运输顺向,井筒穿过第四系地层较薄,井下排水方便。同时此井位距离鄂尔多斯市南部铁路公司规划的新恩铁路大牛地接轨点仅仅5km左右。

该方案工业场地内共布置三条井筒,即主井、副井和风井。主井井口标高+1291m,井筒深711m,井底煤仓上口高程+690m,采用半上装载方式,水平式定量装载设备,装载高程+630m,主井井筒穿过上覆第四系地层厚度105m,井筒净直径6.5m,装备一套JKM4.5×6型多绳摩擦式提升机及一对45t箕斗,异侧装卸载,提升机井塔式布置。副井井口标高+1290m,井底水平标高+630m,井底车场布置在主采3-1煤层内,副井井筒穿过上覆第四系地层厚度105m,井筒净直径9.4m,主要担负全矿井辅助提升任务兼安全出口,井筒内布置一套带平衡锤的双层宽罐笼和一套带平衡锤的单层窄罐笼,双层宽罐笼尺寸为8000mm×3800mm×11100mm,除能够满足液压支架等大型设备整体提升外(采煤机、支架运输车、刮板机等大型设备需解体),还能够保证中、小型设备整体进出宽罐笼;风井井口标高1291m,井底标高+460m,井筒穿过上覆第四系厚度108m,井筒净直径6.5m,为专用回风井,担负矿井北部和中部盘区回风,兼作安全出口。

图4-1-1 三个井口及工业场位置示意图

全井田设一个开采水平,水平标高+630m,井底车场设在主采3-1煤层内,后期下部煤层开采主、副立井不再延深。采用主运输暗斜井和辅助运输暗斜井延深至深部各个煤组,回风立井直接延深至下部各个煤组。

矿井移交时,分别在2-2中煤层和3-1煤层中分别布置一个工作面,达到矿井设计生产能力。三条井筒进入煤层后,在3-1煤层内从东到西布置一组水平大巷,井下煤层主要采用大巷条带式开采。移交时为方便在无压茬关系的区域分别布置2-2中煤层和3-1煤层工作面,设计在井底附近大巷北侧两层煤中分别布置两组盘区巷道。井田内各个煤层均采用下行式开采方式。

矿井初期投产3-1煤1个大采高工作面和2-2中煤1个中厚煤层综采工作面,工作面布置在井底无压茬关系的区域。井下煤炭及辅助运输分别采用带式输送机及无轨胶轮车连续运输。

方案一(西部场地方案)开拓方式平面图见图4-1-2。

(2) 方案二:中部场地方案

工业场地位于井田中部,即钻孔H126北侧。该场地井口靠近井田储量中心,井下运营费用低,有利于前期2-2中煤与主采3-1煤配采,初期开拓及回风巷道布置顺畅,井巷工程量省,设备占用少,运输、通风环节少,更易实现合理集中生产。

该方案工业场地内布置三条井筒,即主立井、副立井和中央回风立井。主立井井口标高+1290.8m,井底标高为+507.0m,井筒深度为783.8m,井底煤仓上口标高+635m,井下主井井底装载方式采用下载式,主立井井筒穿过上覆第四系地层厚度120m。副立井井口标高+1290.8m,井底水平标高+605m,井筒深度为685.8m,井底车场位于主采3-1煤层内,井底车场标高+635m,井筒穿过上覆第四系厚度120m。回风立井井口标高+1291.0m,井底标高+620.0m,井筒深度为671.0m,井筒穿过上覆第四系厚度120m。

主立井选用1台JKM4.5×6(Ⅲ)型多绳摩擦式提升机,塔式布置,提升容器为45t 箕斗一对;副立井选用两套提升设备,一套装备一台JKM5×6(Ⅲ)多绳摩擦式提升机,塔式布置,提升容器为一个双层六绳特大罐笼+平衡锤,另一套装备JKM1.6×4(Ⅰ)型多绳摩擦式提升机一台,塔式布置,提升容器为一个交通罐笼+平衡锤;中央回风立井

图4-1-2 方案一(西部场地方案)开拓方式平面图

安设2台对旋轴流式通风机,矿井初期采用中央并列式通风系统。后期采用分区式通风方式。

井田主水平设在3-1煤层中,水平标高+635m,分别在2-2中、4-1、4-2中、5-2及6-2中煤层中设置五个辅助水平。矿井移交时,3条井筒掘进至主水平,后期开采下部各辅助水平时,采用主、副暗斜井延深到各辅助水平,主、副立井均不再延深,回风立井延深至各个辅助水平。

矿井投产在3-1号煤层302盘区东部边界附近布置一个大采高综采工作面,在2-2中煤层201盘区大巷以北的西部边界附近布置一个中厚煤层综采工作面。井下煤炭及辅助运输分别采用带式输送机及无轨胶轮车连续运输。

方案二(中部场地方案)开拓方式平面图见图4-1-3。

(3) 方案三:东部场地方案

工业场地亦位于井田东部,即钻孔H122附近。该场地处井底煤层埋藏较浅,第四系厚度较薄,开拓工程量小。外部道路接线距离短。工业场地位置较平坦,井底位于高级储量块段。

该方案工业场地内共布置三条井筒,即主井、副井和风井。主井井口标高+1288m,井底煤仓上口标高+730m,采用半上装载方式,水平式定量装载设备,装载标高+670m,主井井筒穿过上覆第四系地层厚度120m,井筒净直径6.5m,装备一套JKM4.5×6型多绳摩擦式提升机及一对45t箕斗,异侧装卸载,提升机井塔式布置。副井地表标高+1288m,井底水平标高+670m,井底车场布置在主采3-1煤层内,副井井筒穿过上覆第四系地层厚度120m,井筒净直径9.4m,主要担负全矿井辅助提升任务兼安全出口,井筒内布置一套带平衡锤的双层宽罐笼和一套带平衡锤的单层窄罐笼,双层宽罐笼尺寸为8000mm ×3800mm×11100mm,除能够满足液压支架等大型设备整体提升外(采煤机、支架运输车、刮板机等大型设备需解体),还能够保证中、小型设备整体进出宽罐笼;风井地表标高1288m,井底标高+650m,井筒穿过上覆第四系厚度120m,井筒净直径6.5m,为专用回风井,担负矿井北部和中部盘区回风,兼作安全出口。矿井前期采用中央并列式通风系统,后期在井田西部边界新掘两条进、回风立井,全井田共开凿五条井筒。

图4-1-3 方案二(中部场地方案)开拓方式平面图

全井田设一个开采水平,水平标高+670m,井底车场设在主采3-1煤层内,后期下部煤层开采主、副立井不再延深。采用主运输暗斜井和辅助运输暗斜井延深至深部各个煤组,回风立井直接延深至下部各个煤组。

矿井移交时,分别在2-2中煤层和3-1煤层中分别布置一个工作面,达到矿井设计生产能力。三条井筒进入煤层后,在3-1煤层内从东到西布置一组水平大巷,井下煤层主要采用大巷条带式开采。移交时在井底附近的区域分别布置2-2中煤层和3-1煤层工作面,工作面上下重叠布置,但是在推进方向上错开1.0km左右。井田内各个煤层均采用下行式开采方式。井下煤炭及辅助运输分别采用带式输送机及无轨胶轮车连续运输。

方案三(东部场地方案)开拓方式平面图见图4-1-4。

3. 井口及工业场地方案比较

井口位置3个方案中,三方案与一、二方案比较,三方案突出缺点是:地面铁路接轨距离远;井下煤炭反向运输;距离初期开采3-1煤无压茬关系的块段远,初期工程量大。突出优点是:煤层埋藏较浅,三条井筒长度共减少约100m;第四系厚度较一、二方案减少约30m,特殊凿井费用有所减少;外部公路接线距离较二方案减少约3.5km,较一方案减少约7km。综合分析,三方案与一、二方案比较,缺点大于优点,故首先舍弃三方案,不再深入比较。为此设计只对一、二方案进行深入比较。

(1) 方案一

优点:

①井口位于井田西部边界,工业场地靠近矿区铁路专用线布置,矿井装车站及材料线可直接沿矿区铁路布置(或布置在总体规划中的矿区铁路母杜柴登会让站),产品煤皮带走廊直接上仓装车;场外公路也可与矿区干线对接。

②工业场地靠近矿区铁路布置,场地部分进入铁路煤柱内,故工业场地压煤量较二方案少。

③由于矿井工业场地靠近矿区铁路专用线,使井上、下运输顺向,无反向运输,矿井初期井上、下运输费用省。

④工业场地位于井田西部边缘,使井底处于各煤层深部,井下排水方便,使初期大巷工程量小。

图4-1-4 方案三(东部场地方案)开拓方式平面图

⑤井筒穿过第四系表土砂层较第二方案浅。

缺点:

①井口位于井田西部边界,偏离井田储量中心约3.0km,使井下煤炭、材料设备及人员运送距离长。

②井口位于井田西部边界,主要大巷东西布置,井下工作面主要采用大巷条带式开采,但初期在3-1煤与2-2中煤无压茬范围需布置两组盘区巷道,工作面需自东向西回采,且运输环节多。

③井口位于井田西部边界,且在2-2中煤不可采边缘,煤层大巷开拓准备需自西部边界逐步向东部推进,盘区及工作面依次接替。本井初期布置的3-1煤大采高工作面必须布置在无压茬关系的区域,开拓大巷东西布置后,中一盘区的南部在2-2中煤尚未提前回采的前提下,限制了下面的3-1煤大采高工作面的推进长度。

④井口位于井田西部边界,井下形成单翼开采,随着生产进行,当矿井煤炭目标市场变化,需要增加开发强度,两个厚煤层同采时,不仅通风受到限制,且运煤胶带输送机能力也不能满足要求,故矿井增产余地小,灵活性差。

⑤井口位于井田西部边界,偏离了井田内高级储量块段,增强了井下煤层情况、地质构造的不确定性,给合理的巷道布局,采煤方案选择带来了困难。

⑥井口位于井田西部边界,偏离了井田中心,使主工业场地内的回风井筒有效、合理的服务年限减少,增加了工程量、大大减少了原回风井的利用率。

⑦《呼吉尔特矿区总体规划》的伊乌铁路、省道313中间段(兰家梁——嘎鲁图)、矿区南部220kV变电站目前都是规划设计阶段,其建成后矿区铁路才能自伊乌线上的察汗淖会让站接轨,建设矿区铁路;矿区公路才能自当乃海子向西进入南部矿区;矿区变电所在其上部规划中的220kV图克变电站建成后才能开始建设。新恩铁路和阿小公路目前正处于规划设计阶段。因此上述外部条件需要一定的建设周期,本井开发建设提前于上述外部条件,本井口位置距现有乡镇公路、电源(呼吉库乡)等均较远,特别是施工时进场道路、电源不方便。

(2) 方案二

二方案的优缺点与一方案相反,不再重述。

(3) 方案一、二经济比较

方案一、二技术各有优缺点,设计对其投资进行详细的比较。

矿井工业场地及开拓方式方案技术经济比较见表4-1-1。

表4-1-1 井口位置可比项目经济比较表

(4) 方案比选结果

综合分析,方案三矿井井上下主煤流严重反向,设计不推荐该方案。一方案初期接轨距离,场外道路较二方案短,但其初期井巷工程量多,方案一与方案二初期总投资相差不大;方案一工业场地偏离井田储量中心,虽然初期井上下运输量少,但矿井服务年限内井下总运量及井上、下总运输费用多较方案二大。

二方案井口位于井田储量中心,井下主、辅运输费用低,通风距离短、负压稳定,中央风井服务时间长;井下可两翼或多翼同时开采,首采工作面位置选择容易,厚薄煤层配采容易,有利于矿井稳产、增产;矿井初期及总开拓工程量省。设计推荐方案二。

二、水平划分

(一) 水平划分原则

矿井水平划分应根据煤层赋存条件、地质条件、开采技术与装备水平、资源/储量和生产能力等因素,综合比较确定。对近水平煤层群开采,当煤层间距不大时,宜采用单一水平开拓;当煤层间距大时,可分煤组(层)多水平开采。

(二) 煤层赋存特点

本井田为近水平煤层,煤层倾角0~3°,8个可采煤层含煤段地层总厚度为190m,各煤层平均间距11.22~42.22m,各煤层间距见表4-1-2。井田内3-1及4-1煤为矿井主采煤层,平均厚度为4.75及3.75m,主采煤层可采储量364.40Mt,占全井的56.6%,是矿井主要开采对象,其余较薄煤层平均厚度一般1.0~1.9m左右,可采储量279.11Mt,占全井的43.4%,是矿井的重要组成部分。由于2-2中煤层相对较薄,3-1煤层较厚。且2-2中煤与主采3-1煤层平均间距30.43m,3-1煤可采厚度平均达4.75m,故二者有压茬关系;从压茬关系及厚薄情况看两层应配产。4-1煤以下4-2中煤与4-1煤间距达40~60m,根据上行开采实际资料,二者可以实现配产。2-2中煤与3-1、4-1与4-2中煤分别配产可持续约50年左右。

(三) 煤层群分组

根据煤层赋存特征及间距,共划分为六个煤组。2-2中、3-1、4-1、4-2中煤层间距较远,分别单独划分为一个煤组,5-1和5-2、6-2上和6-2中煤层间距较近,宜联合布置,将5-1和5-2、6-2上和6-2分别划分为两个煤组。

(四) 水平划分

根据井田煤层赋存特征、开拓方式、煤层分组及配产关系,并考虑到第一水平有足够的可采储量和合理服务年限,使之适应高产高效、集中化生产的要求,尽可能多做煤巷、少做岩巷的原则,设计提出了两种划分方案。

表4-1-2 煤层间距表

1. 方案一

方案一井田划分为一个主水平,五个辅助水平。井田主水平设在3-1煤层中,水平标高+635m,分别在2-2中、4-1、4-2中、5-2及6-2中煤层中设置五个辅助水平。矿井移交时,三条井筒掘进至主水平,后期开采下部各辅助水平时,采用主、副暗斜井延深到各辅助水平,主、副立井均不再延深,回风立井则延深至各个辅助水平。

2. 方案二

方案一井田划分为两个主水平,四个辅助水平。一水平设在3-1煤层中,水平标高+635m,分别在2-2中煤、4-1煤和4-2煤层中设置辅助水平。二水平设在5-2煤层中,水平标高+490m,在6-2中煤层中设置辅助水平。井筒掘进至主水平,采用主、副暗斜井延深到各辅助水平,回风立井则延深至各个辅助水平。

3. 方案比选

结合本井田的具体情况对矿井水平划分从如下几个方面进行论证选择

(1) 3-1煤与2-2中煤间距30.43m,4-1煤与4-2中煤间距40~60m,各主采煤层

采用斜巷联系方便。下部较薄煤层(5-1、5-2、6-2上、6-2中),距主采3-1煤层间距较大(距6-2中煤180m,距5-2煤145m),但煤层可采厚度一般在1.0~1.5m之间,多为局部可采,可采储量仅有164.71Mt,服务年限为19.6a,为节省开拓工程量,其下部煤层开拓可利用主水平开拓工程。

(2) 若采用两个水平开拓,一水平井底车场及硐室设在3-1煤层内,主井装载水平在3-1煤层,二水平井底车场及硐室设在5-2煤层内,主井装载水平设在5-2煤层。由于井田各个煤层均为近水平煤层,每个水平内各组煤层与主水平联系的主运输及辅助运输斜巷总长度与方案一相比基本相同,只是相对缩短了每个煤层到井底车场及井底煤仓的运距,却增加了一个水平的开拓巷道及硐室,增加了主提升距离及时间。

(3) 采用两个水平开拓,能够减少排水环节,减少了矿井排水能耗,但是增加了主提升的无效提升量,开拓延深影响矿井正常生产。单水平开拓,矿井提升距离相对短,无效提升量小。

设计认为井田各个煤层为近水平煤层,采用单水平开采,主运输采用带式输送机运输,辅助运输采用无轨胶轮车运输,辅助水平与主水平之间的主、辅运输联系方便,且能够大量减少开拓工程量,设计推荐方案一。

(五) 主水平标高

根据含煤段垂高,主采煤层位置、井底车场支护条件及初期井巷工程量等因素,设计提出了两种水平标高方案。

1. 方案一

该方案将水平标高设在3-1号煤层中,井底车场落底水平标高为+635m,在3-1号煤层中布置一组东西翼大巷。2-2中煤层煤流通过2-2中煤层集中煤仓转载到3-1煤集中配仓联巷,3-1下部各个层煤层煤流通过集中运输斜巷运至3-1煤集中配仓联巷;各个辅助水平辅助运输通过辅助运输斜巷与主水平联系。

优点:

(1) 本矿井煤层顶底板抗压强度偏低,一般22.8~38.8MPa,特别是泥质胶结岩层遇水软化,而煤层抗压强度及整体性较好,较岩层易于维护。而本井主采3-1煤层最厚

(平均4.75m左右),因此,井底车场及硐室设在3-1煤层维护条件最好;

(2) 初期大采高工作面布置在3-1煤中,在2-2中煤布置一个综采工作面,主要开采水平设在3-1煤层内,初期主、辅生产系统联络巷道少,初期井巷工程量最省;

(3) 主采煤层主提升距离短,无效提升量小。

缺点:

(1) 4-1煤层排水需要接力排水,排水环节相对于方案二多;

(2) 主水平距离下部薄煤层相对较远。

2. 方案二

该方案将水平标高设在4-1号煤层中,井底车场落底标高为+590m,在4-1号煤层中布置一组东西翼大巷。2-2中煤层及3-1煤层煤流分别通过2-2中煤层集中煤仓及3-1煤集中煤仓转载到4-1煤集中配仓联巷,4-1下部各个层煤层煤流通过集中运输斜巷运至4-1煤集中配仓联巷;各个辅助水平辅助运输通过辅助运输斜巷与主水平联系。

优点:

(1) 4-1煤层及其以上各个煤层均不需要接力排水,排水环节少;

(2) 主水平距离下部薄煤层相对较近。

缺点:

(1) 4-1煤层厚度相对较薄(平均3.75m左右),但首采煤层为3-1煤层和2-2中煤层,井底车场及硐室维护条件相对较差,初期工程量大,建井工期长。

(2) 3-1煤层和2-2中煤层来煤需要通过煤仓溜到主水平,主提升无效提升量大。

综上所述,设计确定主水平标高为+635m,井底车场及硐室设在3-1煤层内,五个辅助水平不再严格确定水平高程,分别沿煤层布置开拓大巷。

三、开拓巷道布置

(一) 开拓巷道布置

1. 开拓巷道布置的主要原则

(1) 开拓方式简单,移交工程量少,建设周期短;

(2) 运输系统简单,环节少,效率高;

(3) 首采区需要选择在井田高级储量区域。

2. 开拓巷道布置方案

根据选择的矿井工业场地及开拓方式,矿井在中部工业场地内布置三条井筒,即主立井、副立井及中央回风立井,根据井下大巷布置方位不同,设计提出两个大巷布置方案。

(1) 方案一:南北向布置大巷。

该方案在主水平3-1号煤层中沿井田中央附近南北布置一组大巷,并在井田东翼布置一组大巷,大巷呈“T”字型布置,大巷采用煤门与井底车场连接,下部各辅助水平大巷与主水平大巷上下重叠布置,采用大巷条带式开采。井田厚薄煤层配采,采用下行开采。

矿井投产在3-1煤和2-2中煤分别布置1个大采高综采工作面和1个中厚煤层综采工作面,3-1煤工作面布置在303盘区南翼无压茬关系的区域,2-2中煤工作面布置在201盘区西翼。井下煤炭及辅助运输分别采用带式输送机及无轨胶轮车连续运输。

方案一大巷布置平面图详见图4-1-5。

(2) 方案二:东西向布置大巷

该方案沿井田东西向“一”字型布置一组大巷,布置盘区巷道开采局部可采煤层井田西北部区域,主采煤层及局部可采煤层其它区域采用大巷条带式双翼开采。井田厚薄煤层配采,采用下行开采。

矿井投产在在3-1号煤层302盘区东部边界附近布置一个大采高综采工作面,在2-2中煤层201盘区大巷以北的西部边界附近布置一个中厚煤层综采工作面。井下煤炭及辅助运输分别采用带式输送机及无轨胶轮车连续运输。

方案二大巷布置平面图详见图4-1-6。

3. 开拓巷道布置方案技术经济比选

(1) 方案一

优点:

①首采区域3-1煤层与2-2中煤无压茬关系。

图4-1-5 井田开拓大巷布置方案一平面图

图4-1-6 井田开拓大巷布置方案二(推荐)平面图

矿井采用斜井开拓方式的研究毕业论文

矿井采用斜井开拓方式的研究毕业论文 绪论 一、矿井概况 交子里矿井是一座几经挖潜改造和扩建而成的大型矿井,开采历史44年,矿井采用斜井开拓方式,现主采水平为交子里水平,采煤方法为走向长壁全部垮落法,使用综采和综放工艺,矿井提升采用强力皮带提升,通风方式为分区抽出式。 交子里矿井设计能力200万吨/年,2005年省煤炭工业管理局晋规发[2005]256号文件批准核定交子里矿井生产能力为200万吨/年。 交子里矿井现采用斜井开拓方式,井下为单水平开拓,水平标高为交子里m。共有2个斜井和2个立井,其中主斜井为胶带机提升,井筒坡度为0~8°~16o、斜长950米,担负矿井煤炭提升任务;副斜井装备为2JK-250型双滚筒绞车,坡度16°,斜长382m,三个斜井共同担负矿井辅助提升任务;回风立井,担负矿井回风任务;矿井通风方式为中央分区式,通风方法为机械抽出式通风。 井下布置两条运输大巷,一条交子里水平轨道运输大巷采用电机车牵引1T矿车运输完成辅助运输,一条交子里胶带运输大巷,担负矿井的煤炭运输任务。 矿井主采盘区为交子里盘区,由于交子里盘区9#煤层大部分被小煤窑开采和破坏,故本次设计针对10#、11#煤层。 二、设计依据:

1、设计委托书。 2、交子里矿井地质报告。 二零零五年五月四日省煤炭工业局以晋煤规发[2005]256号文批准交子里矿井生产能力为200万吨。 附:晋煤规发[2005]256号文件。 4、《煤矿安全规程》。 5、《煤炭工业矿井设计规》。 6、《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》。 7、《矿井防灭火规》。 8、《矿井通风安全装备标准》。 三、设计的指导思想: 1、本设计依据《汾西矿业(集团)有限责任公司交子里矿井改扩建工程》,并结合交子里矿井现状,利用交子里矿现有生产系统进行设计。 2、最大限度开发利用煤炭资源,合理布置工作面。 3、本着降低投资,加快投产进度,促进合理衔接的思想。 四、设计的主要特点及技术经济指标: 设计特点:井下煤炭运输全部采用胶带输送机连续运煤方式,运输量大,安全可靠。 五、存在的主要问题及建议: 1、问题 根据地质资料提供,交子里盘区由于受小煤窑越层越界开采,9#煤资源损失贻尽,且10#、11#煤也越层采动,小煤窑采空区的低洼

矿井开拓设计

矿井开拓设计 一.矿井基本资料 某矿井含有俩煤层,煤层厚度为m1=6m,m2=8m,煤间距10m,煤层倾角32。煤层埋深煤露头72m,煤倾斜长度1860m,走向长度8000m。设计生产能力180万t/a,采用3t底卸式矿车运输。低瓦斯矿井,水文地质条件简单,顶底板均为中等稳定粉砂岩。 二.储量计算 1.矿井地质资源量 Z=8000*1860*(6+8)*1.25=260400000t 2.矿井工业资源/储量 根据钻孔布置,在煤矿地质资源量中,60%是探明的,30%是控制的,10%是推断的。 根据煤层厚度和煤质,在探明的和控制1的资源量中,70%的是经济的基础储量,30%的是边际经济的基础储量,则矿井工业资源/储量计算。 Zg= Z111b + Z122b + Z2m11+ Z2m22+ Z333k Zg——矿井工业资源/储量 Z111b——探明的资源量中经济的基础储量 Z122b——控制的资源量中经济的基础储量 Z2m11——探明的资源量中边际经济的基础储量 Z2m22——控制的资源量中边际经济的基础储量 Z333k——推断的资源量 Z111b=26040*60%*70%=10936.8万t Z122b=26040*30%*70%=5468.4万t Z2m11=26040*60%*30%=4687.2万t Z2m22=26040*30%*30%=2343.6万t 由于地质条件简单,k在0.8以上取值。 Z333k=26040*10%*k=2083.2万t Zg=Z111b+Z122b+Z2m11+Z2m22+Z333k= 10936.8 +5468.4+4687.2+2343.6+2083.2=25546.2万t。 3.矿井设计资源/储量 矿井设计资源/储量计算,其中P1按矿井工业资源/储量的3%估算, Zs=(Zg-P1) Zs——矿井设计资源/储量 P1——断层煤柱、防水煤柱、井田境界煤柱。地面建筑物煤柱等永久煤柱损失量之和。 Zs=25546.2-25546.2*3%=24779.814万t 4.矿井设计可采储量 矿井设计可采储量按下式计算,其中P2按矿井设计资源/储量的2%估算。 Zk=(Zs-P2)C Zk——矿井设计可采储量; P2——工业场地和主要井巷损失量之和;

煤矿采煤基础知识

采煤基础知识 1、什么叫井田开拓? 答:在井田范围内,由地表进入煤层为开采水平服务所进行的井巷布置和开掘工程叫井田开拓。 2、什么叫煤田? 答:在地质历史发展过程中,由含炭物质沉积而形成的大面积含煤地带。 3、煤层厚度的变化对开采技术的影响可分为哪几类? 答:按煤层厚度可分为极薄煤层(<0.7M)、薄煤层(<1.3M)、中厚煤层( 1.3 ~3.5M )、厚煤层(> 3.5M )、特厚煤层(>8~10M)。 4、煤层倾角的变化对开采技术的影响可分为哪几类? 答:按煤层倾角可分为:近水平煤层、缓倾斜煤层、倾斜煤层、急倾斜煤层。5、什么叫矿井生产系统? 答:矿井生产系统是指在煤矿生产过程中为提升、运输、排水、通风、人员安全出入、材料设备的上下升降、矸石排运、供气、供电、供水等而形成的线路和设施的总称。 6、煤矿井下生产系统包括哪几部分? 答:矿井生产系统分为:运煤系统、通风系统、运料排矸系统、排水系统、供电系统以及空压系统、灌浆系统、瓦斯抽排放系统等。 7、巷道的分类有几种? 答:按巷道轴线和水平面的关系井下巷道可分为:垂直巷道、水平巷道、倾斜巷道。 按巷道的服务的对象和范围井下巷道可分为:开拓巷道、准备巷道、回采巷道。 8、什么叫开拓巷道?准备巷道?回采巷道? 答:开拓巷道:为矿井或阶段服务的巷道。 准备巷道:为采区服务的巷道 回采巷道:为区段服务的巷道 9、什么叫阶段?什么叫开采水平? 答:阶段―――沿煤层的倾斜方向,按一定的标高将井田划分成的若干长条部分。开采水平―――设置了井底车场和运输大巷的水平叫开采水平 10、什么叫矿井年产量?服务年限? 答:矿井年产量―――矿井一年内实际产出的煤炭数量,而井型是指矿井年设计产量。 服务年限―――矿井从投产到报废的全部生产时间叫服务年限。 11、什么叫分区式布置? 答:在阶段范围内,沿走向按一定的长度把阶段划分成的若干块段。 12、运输大巷的布置方式有几种?它的位置应选在什么地方? 答:运输大巷的布置方式有分层运输大巷布置、集中运输大巷布置、分组集中运输大巷布置。对于分层运输大巷多布置在煤层中,集中运输大巷和分组集中运输大巷多布置在岩层中。 13、井田的开拓方式有几种? 答:井田的开拓方式有:立井开拓、斜井开拓、平峒开拓及综合开拓。 14、什么叫井田开拓系统? 答:开拓巷道系统与其形成的生产系统称为井田开拓系统。 15、煤矿主、副井分别担负着什么样的主要提升任务?

矿井通风基本知识复习课程

矿井通风基本知识

矿井通风基本知识 一、矿井通风概述 (一)矿内空气 矿内空气是矿井井巷内气体的总称。它包括地面进入井下的新鲜空气和井下的有毒有害气体、浮尘。矿内空气的主要来源是地面空气,但地面空气进入井下后,化学成分和物理状态会发生一系列的变化,因而矿内空气与地面空气在性质上和成分上均有较大差别。 地面空气进入井下后,由于煤岩中涌出各种气体以及可燃物的氧化,其成分发生变化。风流在经过采掘面等用风地点之前,气成分变化不大,称为新鲜空气或新风;风流经过采掘工作面等用风地点后,其成分发生较大的变化,称为污浊空气或乏风。 1.矿内空气主要成分 矿内空气与地面空气的成分尽管不同,但其成分仍是以氧气和氮气为主,另外包含少量其它气体。 2.矿内空气中的有毒有害气体 (1)一氧化碳:一氧化碳是无色、无味、无臭的气体。一氧化碳毒性很强,吸入人体后会引起中毒、窒息,浓度为0.4%就可使人致命中毒。一氧化碳的主要来源是:火灾、爆破工作、瓦斯和煤尘爆炸。 (2)硫化氢:硫化氢是一种无色、微甜、带有臭鸡蛋味的气体,能燃烧,有强烈的毒性。对人的眼睛、黏膜及呼吸系统有强烈刺激作用。浓度为0.05%

时,半小时内人失去知觉、痉挛、死亡。硫化氢的主要来源:有机物腐烂、硫化矿物水解、老空积水中释放、煤岩中放出。 (3)二氧化硫:二氧化硫是一种无色、具有强硫磺臭味的气体,易溶于水,易积聚在巷道底部。二氧化硫对人体影响较大,能强烈刺激眼和呼吸器官,使喉咙和支气管发炎,呼吸麻痹,严重时会引起肺水肿。二氧化硫的主要来源:含硫矿物氧化、燃烧、在含硫矿体中爆破,以及从含硫矿层中涌出。 (4)二氧化氮:二氧化氮是一种红褐色气体,极易溶于水,它与水结合形成硝酸,对眼睛、鼻腔呼吸及肺部组织起破坏作用,引起肺水肿,但起初只感觉到呼吸道受刺激、咳嗽,经过6~24小时后才出现中毒征兆。俗称的炮烟熏人,其实质就是二氧化氮中毒。二氧化氮的主要来源是井下爆破。 (5)氨气:氨气是一种无色、具有强烈的刺激臭味的气体,易溶于水,毒性很强。氨气对人体上呼吸道黏膜有较大刺激作用,引起咳嗽,使人流泪、头晕,严重时可至肺水肿。氨气主要来源是井下爆破。 (二)矿井气候条件要求 煤矿作业人员在井下工作时,需要一个适宜的气候条件,包括适宜的温度、湿度、风速。(1)采掘工作面的进风流中,氧气浓度不低于20%,二氧化碳浓度不超过0.5%。

第4章 矿井开拓与开采(已完)

第四章井田开拓与开采 第一节井田开拓 一、井田开拓方式及井口位置 (一) 影响井田开拓的主要因素 本井田地质构造简单,大体为一向西倾斜的单斜构造,煤层倾角0~3°,未发现断层;水文地质条件简单;无老窑开采及采空区,对开采无影响。影响井田开拓方式、井口位置的主要因素有:地形地貌、地质构造、煤层赋存特点、凿井工程地质条件、铁路接轨点位置、水源和电源情况、井下开拓部署、工业场地压煤量、技术装备水平和地质勘探程度等。 1. 地形地貌 本井田内地形总体上为东南高、西北低,海拔标高+1302.5~+1278.5m,地形变化不大,地势平缓。井田具风积沙漠~半沙漠地貌特征,半流动和半固定的新月形沙丘及沙丘链遍布全井田,耕地有限,因此,从地形地貌上看,对井口位置和开拓方式的选择影响不大。 2. 地质构造 本区构造形态为一向北西倾斜的单斜构造,地层倾角小于2°。区内断层不发育,无岩浆岩侵入体,故井田地质构造简单,煤层近水平,无煤层露头,同一煤层井田内高差小于120m,从构造上看,对井口位置和开拓方式的选择影响亦不明显。 3. 煤层赋存特点 井田主要可采煤层3-1煤、4-1煤全区发育,赋存深度一般600~700m左右,赋存稳定,厚度变化小,主采煤层之上仅有一中厚2-2中煤层,2-2中煤层大部可采,仅在井田西南部不可采。4-1煤下部还有4-2中、5-1、5-2、6-2上、6-2中五个煤层,井田范围内均大部可采。除3-1煤和4-1煤为厚~中厚煤层(平均厚度4.75m和3.75m)外,其余煤层均为薄煤层或中厚煤层(平均厚度1.80~2.60m)各煤层倾角平缓(0~3°),

适合长壁机械化开采。 4. 凿井工程地质条件 井田浅部全部被第四系全新统风积沙及沉积砂土地层覆盖,厚度在27.13~135.50m,平均95.26m,南厚北薄,靠近井田储量中心范围内厚度在120m左右,厚度差不明显,新生界地层主要由风积沙、粉细砂、砂粘土、粘砂土组成,下部上更新统砂层富水性较强,上部风积沙层含水相对较弱。因此,从工程地质条件上看,井筒需采用特殊凿井法施工,适合立井开拓,井口位置宜选择在中部或西部。 5. 接轨点位置及外部道路 目前,根据鄂尔多斯市南部铁路公司规划,本矿区内新恩铁路在本井田东北部通过,本矿井接轨点确定在母杜柴登井田东北部大牛地站,因此,从接轨点位置及外部道路上看,井口位置宜选择在井田中部、西部或北部。 6. 水源及电源情况 根据《内蒙古自治区鄂尔多斯呼吉尔特矿区总体规划》,矿区内各矿井的生活用水根据矿区水文地质条件和矿区开发建设规划,统筹建设水源地和输配水管网,位于井田西侧的哈头才当水源地为矿区集中水源地。 母杜柴登井田的供电电源可引自井田北部的图克110kV变电站和葫芦素220kV变电站。 因此,从水源和电源上看,井口位置宜选择在井田西部、中部或北部。 7. 技术装备水平 近年来,我国煤矿矿井技术装备水平有了显著提高,大型多绳摩擦轮提升机与电控装备,大容量立井提升箕斗及提升罐笼等不断创新,为建设特大型立井提供了提升的保证;长距离、大功率带式输送机、多功能无轨胶轮车等连续化、自动化运输设备及工作面高产高效的综放、大采高综采、连续采煤机等现代采掘设备逐渐改变了矿井的生产面貌。因此,从技术装备水平上看,采用立井开拓是可行的。 8. 地质勘查程度 本井田已经完成煤炭勘探工作,可以满足本阶段设计要求。储量级别较高(331)

煤矿井田开拓方式.doc

第四节井田开拓方式 一、井田开拓基本知识 (一)矿井储量、生产能力和服务年限 一个煤田的范围很大,面积由数十至数千平方公里,甚至上万平方公里,煤的蕴藏量由几亿到几百亿吨。通常由几个或几十个矿开采。划给一个矿井来开采的那部分煤田,叫做井田(或矿田)。井田的边界多是以自然条件(大断层等)来划分。井田范围的大小,决定了矿井的储量和开采条件,是建设矿井的基本根据。 矿井储量可分为远景储量和工业储量两类,是确定矿井生产能力的重要因素。矿井的工业储量减去设计和开采损失,就是矿井的可采储量。可采储量占工业储量的百分比叫做采出率(也称“回采率”),矿井采出率应大于75%以上。采出率太低,不但浪费了资源,而且减少矿井的服务年限。 矿井可采储量与工业储量、生产能力和服务年限的关系,可用下式表示: Zk=(Zc-P)C Zk=A·T·K 式中Zk——可采储量,万t; Zc——工业储量,万t;

C ——采区设计回采率,薄煤层(煤厚≤1.3m)为 0.85,中厚煤层(煤厚1.3~3.5m)为0.80, 厚煤层(煤厚>3.5m)为0.75; A ——矿井设计生产能力,万t/a; T ——矿井设计服务年限,a; K ——储量备用系数,一般取1.2~1.4。 矿井生产能力,一般指矿井的设计生产能力。按设计的生产能力大小矿井分为大、中、小三种井型: 大型:1.2、1.5、1.8、2.4、3.0、4.0、5.0、6.0Mt/a 及以上; 中型:0.45、0.6、0.9Mt/a; 小型:0.3 Mt/a及以下。 矿井服务年限应与矿井生产能力相适应,使它们之间保持一个技术、经济上都比较合理的关系。《煤炭工业矿井设计规范》(2005年版),对45万t/a及以上矿井,按不同井型,对矿井的设计服务年限作了相应的规定,中型矿井设计服务年限不小于40年,1.2~2.4 Mt/a矿井设计服务年限不小于50年,3.0~5.0 Mt/a矿井设计服务年限不小于60年,6.0 Mt/a及以上矿井设计服务年限不小于70年。 (二)井田内的再划分 煤田划分为井田后,每一个井田的面积仍然比较大,再这样大范围内进行采煤,还必须将井田再划分为若干较小的

矿井开拓考试题

1.阶段:沿煤层倾向,按一定标高把煤层划分为若干个平行于走向的长条部分, 每个部分称为一个阶段。 2.开拓巷道:为全矿井,一个水平或若干采区服务的巷道。 3.水平:通常将设有井底车场,阶段运输大巷并且担负全阶段运输任务的水平,称为开采水平。 2.采掘关系:通常将采煤与掘进的配合关系称为采掘关系。 3.掘进率:生产矿井在统计的时期内每生产10kt煤所分摊的掘进生产巷道总进尺数和开拓总进尺数。 4.开采计划:根据市场对矿井的煤炭产量和质量提出的要求,按照地质情况和生产技术条件,统筹安排采区及工作面的开采与接替。 1、石门:与地面不直接相通的水平巷道,其长轴线与煤层直交或斜交的岩石平巷称为石门 3、井底车场:井底车场是连接井筒和井下主要运输巷道的一组巷道和硐室的总称,是连接井下运输和提升两个环节的枢纽,是矿井生产的咽喉。 4、开拓巷道:一般来说,为全矿井、一个水平或若干采区服务的巷道称为开拓巷道 5、沿空掘巷:沿着已采工作面的采空区边缘掘进的区段平巷 6、采掘平衡:采煤工作面和掘进工作面保持一定的比例,能很好的保证矿井生产的正常接续,做到采掘的同步平衡 7、开拓煤量:井田范围内已掘进开拓巷道所圈定的尚未采出的那部分可采储量。1开拓方式:开拓巷道的布置方式称为开拓方式。 2中央并列式通风:进风井与回风井都位于井田中央的同一个工业场地内,一般利用主,副井分别作为进风井与回风井。 4.运输大巷:为整个开采水平或阶段运输服务的水平巷道。 5.暗立井:又称盲竖井,盲立井。不与地面直接相通的巷道。 1.井田开拓:由地表进入煤层为开采水平服务所进行的井巷布置和开掘工程。 2.开拓系统:开拓巷道的形式、数目、位置及其相互联系和配合,总称开拓系 统。 3.矿井工业储量:井田范围内,经过地质勘探合乎开采要求,可供利用列入平 衡表内的储量 一,填空 1矿井储量可分为(矿井地质储量),(矿井工业储量),(矿井可采储量)。2.根据主、副井筒的形式,矿井开拓方式可分为四种:(平硐开拓),(斜井开拓),(立井开拓)和(综合开拓)。 3.矿井巷道按服务范围可分为(开拓巷道)、(准备巷道)和(回采巷道)三大类。 4.井底车场的调车方式可分为(顶推调车),(顶推拉调车),(专用设备调车),(甩车调车)。 5.根据开采煤层的数目和层间距,运输大巷的布置方式有三种:(分层布置)、(集中布置)和(分组集中布置)。 6.矿井技术改造的内容主要有三个方面:(矿井改扩建)、(合理集中生产)和(生产环节改造)。 7.矿井三量指(开拓煤量),(准备煤量),(回采煤量)。 8.某矿有一工作面编号为1234,其中数字1代表(水平序号),数字2代表(采

第五节矿井开拓设计方案比较示例

第二十五章矿井开采设计 第一节矿井开采设计的依据 建设一个矿井需要国家很多投资,消耗大量的人力、物力,关系到国民经济的发展,必须具备下列依据。 一、设计任务书 设计任务书(计划任务书),是生产管理部门向设计部门委托设计任务的一项指令性文件。 设计任务书—规定了拟建项目的任务和设计内容、技术方向、设计阶段、设计原则、计划按排以及配套工程的发展计划与要求 设计任务书主要内容 (1)矿井建设目的 在国民经济中的作用。 (2)矿井建设规模。 矿井主要产品的产量品种,全部和分期建设规模。 (3)矿井建设根据 地质资源,原材料、设备、动力的供应,劳动力和生活资料来源,产品的用途和用户。 (4)矿井机械化程度。 (5)矿井主要生产协作条件。

所需资料和材料的数量、运输量和供应关系协议(或建议) 资源的综合利用和“三废”治理要求 特殊材料和设备供应建议 交通运输、供电和供水方式 铁路接轨和供电接线的协议以及城镇建设等设施 (6)矿井主要设计原则。 井筒位置 矿井开拓方式 通风方式 产品的加工 运输,工业与生活建筑地点和占用土地估算 建设原则和建筑标准,职工单眷比 防空、防洪和防震以及环境保护等要求 矿井投产标准(分期投产或是一次设计一次投产)及建设工期(7)矿井设计效果。 劳动定员、建设吨煤投资和总投资估算 二、精查地质报告 井田精查地质报告是矿井初步设计的基础。 清楚井田境界内地质构造 清楚储量 明确煤质牌号及其用途 准确的水文地质资料

对地质条件特别复杂的小型煤矿及地方小煤矿,可用详查最终地质报告作为资源的依据。 全矿井特别是第一水平必须有相当数量的高级储量(平衡表内的A+B级储量) 三、国家总的建设方针、政策及有关规程和规范 遵循国家正式颁发的与建设项目有关的方针政策、规程、规范和技术方向等;或国家对建设项目明确规定的有关文件。 四、经批准的上一阶段设计确定的原则 第二节矿井开采设计的程序和内容 一、矿井设计程序 矿井设计的程序应为: 根据批准后的矿区建设可行性研究报告进行矿区总体设计; 矿区总体设计批准后进行矿井可行性研究; 矿井可行性研究报告批准后进行矿井初步设计; 矿井初步设计审批后进行矿井施工图设计。 矿井初步设计的基本内容 (1)矿井的位置、交通、地形、地貌、河流湖泊、沼泽分布及范围、气象及地震、水文、工农业、建筑材料概况,现有的供水、供电状况。 地层、水文地质、主要地质构造、煤层赋存特征、用途、煤质; 说明地质勘探程度及问题,开采影响的因素。 (2)说明井田境界及划分依据,地质储量、可采储量、开采损失及计算方法,年工作制度、生产能力及依据。 (3)说明提出的几个主要开拓方案,并进行技术经济比较,阐明推荐开拓方案的主要内容及理由; 确定井筒数目和位置,井筒断面,设计井底车场及硐室,验算

第三章 开拓开采

第三章井田开拓 第一节开拓方式及井口位置 一、项目设计、施工概况 1、本项目前期设计概况 贵州五轮山煤业有限公司五轮山煤矿为在建矿井,于2003年底开工建设。贵州五轮山煤业有限公司由兖矿贵州能化有限公司(占有五轮山煤矿50%的股权)、贵州能发电力燃料开发有限公司(占有五轮山煤矿30%的股权)、贵州水城矿业(集团)有限责任公司(占有五轮山煤矿20%的股权)三家股东共同出资组建。 本矿井《初步可行性研究报告》、《可行性研究报告》均由中煤国际工程集团南京设计研究院2004年1月—4月完成并通过审查;贵州省煤矿设计研究院2004年12月—2005年6月完成《初步设计》及《安全专篇》,以上设计首采面均布置在6-3煤层中,《安全专篇》审查会中领导及专家提出首采6-3煤层不利于安全生产,因此,贵州省煤矿设计研究院根据专家意见,通过与业主协商对安全专篇煤层开采顺序进行调整,即遵循从上至下的开采顺序,先开采3煤,然后依次为5-2、5-3、6-3、8煤层……,于2005年7月通过贵州工业大学采矿工程科技咨询服务公司评审,修改后的专篇于同年10月提交国家煤矿安全监察局待审。 2006年3月26日,矿井在建设过程中,由于在揭穿5-1煤层施工过程中发生煤与瓦斯突出事故,导致安全条件发生改变,2006年底—2007年4月贵州省煤矿设计研究院根据煤与瓦斯突出鉴定报告重新编制了《初步设计(修改)》和《安全专篇(修改)》,并报送相关部门审查。国家煤矿安全监察局以文件《关于贵州省五轮山煤业有限公司五轮山矿井一期工程安全设施设计的批复》(煤安监函【2007】45号)批复了本矿井安全设施设计。2008年5月贵州省煤矿设计研究院根据审查通过的安全设施设计对初步设计(修改)再次做了调整,并通过中煤国际工程集团南京设计研究院评审,贵州省发展和

矿井开拓延伸设计方案

神华集团乌达矿业公司五虎山煤矿 9#、10#、12#煤层开拓延伸设计 前言 乌达矿业公司五虎山煤矿是国家六十年代投资建设的年设计能力150万吨的大型矿井。该矿井1970简易投产,1983年达产,1990年产量曾突破200万吨。三十年来,五虎山矿共生产煤炭2316.1万吨。 2000年五虎山矿进行技术改造,技改后的矿井主采4#、7#煤层,主产品是低硫精煤、电煤。截止2003年6月,技改后圈定的4#、7#煤层可采储量约为365.4万吨,按年产150万吨计,只能维持二年多,矿井接续紧张。 五虎山矿井开拓延伸涉及的煤层是9#、10#、12#。根据乌达矿区煤层分布及开采状况看,苏海图矿主采12#、13#、15#煤层,已没有9#、10#煤层,黄白茨矿现主采9#煤层,但储量有限,只能开采2年,五虎山矿井9#、10#煤层可采储量约1837.3万吨。9#、10#煤层虽然属高硫煤,但灰分低,发热量高,经市场调研,高硫煤市场前景是明朗的,具有开采价值。本次矿井开拓延伸方案主要设计开采9#、10#、12#煤层,其中先期开采9#、10#煤层,后期开采12#煤层,矿井设计能力可提升至240万吨/年。

第一章矿井概况 第一节地理位臵、交通 五虎山煤矿位于内蒙古自治区乌海市境内,为贺兰山北部煤田乌达矿区的一部分。包兰铁路、110国道从乌达矿区东侧通过。矿区铁路专用线在包兰铁路的乌海西站接轨。区内有乌达通至巴音浩特和吉兰泰等地区的主要公路。 第二节地质概况 五虎山矿井范围拐点坐标: 1:X=4376543 Y=36384241; 2:X=4376553 Y=36380481; 3:X=4376296 Y=36380464; 4:X=4374958 Y=36381152; 5:X=4374110 Y=36381610; 6:X=4372800 Y=36382371; 7:X=4372800 Y=36383131; 8:X=4371973 Y=36383446; 9:X=4372303 Y=36383601; 10:X=4372303 Y=36383921;

矿井通风基本知识(正式版)

文件编号:TP-AR-L8326 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 矿井通风基本知识(正式 版)

编订人:某某某 审批人:某某某 矿井通风基本知识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、矿井通风概述 (一)矿内空气 1. 矿内空气主要成分 矿内空气与地面空气的成分尽管不同,但其成分仍是以氧气和氮气为主,另外包含少量其它气体。 2.矿内空气中的有毒有害气体 (1)一氧化碳:一氧化碳是无色、无味、无臭的气体。一氧化碳毒性很强,吸入人体后会引起中毒、窒息,浓度为0.4%就可使人致命中毒。一氧化碳的主要来源是:火灾、爆破工作、瓦斯和煤尘爆炸。

(2)硫化氢:硫化氢是一种无色、微甜、带有臭鸡蛋味的气体,能燃烧,有强烈的毒性。对人的眼睛、黏膜及呼吸系统有强烈刺激作用。浓度为0.05%时,半小时内人失去知觉、痉挛、死亡。硫化氢的主要来源:有机物腐烂、硫化矿物水解、老空积水中释放、煤岩中放出。 (3)二氧化硫:二氧化硫是一种无色、具有强硫磺臭味的气体,易溶于水,易积聚在巷道底部。二氧化硫对人体影响较大,能强烈刺激眼和呼吸器官,使喉咙和支气管发炎,呼吸麻痹,严重时会引起肺水肿。二氧化硫的主要来源:含硫矿物氧化、燃烧、在含硫矿体中爆破,以及从含硫矿层中涌出。 (4)二氧化氮:二氧化氮是一种红褐色气体,极易溶于水,它与水结合形成硝酸,对眼睛、鼻腔呼吸及肺部组织起破坏作用,引起肺水肿,但起初只感

矿井开拓与生产系统-矿井开拓方式(正式版)

文件编号:TP-AR-L7476 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 矿井开拓与生产系统-矿 井开拓方式(正式版)

编订人:某某某 审批人:某某某 矿井开拓与生产系统-矿井开拓方式 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 煤炭资源埋藏在山里或地下,必须从地面开掘一 系列的井筒和巷道通达煤层,才能进行资源的开采。 这些井筒和巷道构成矿井开拓系统。这些井筒和主要 巷道在井田内的总体布置方式,称为矿井开拓方式。 通常按井筒形式将矿井开拓划分为立井开拓、斜井开 拓、平硐开拓和综合开拓4种方式,如图3-1所示。 图3-1 矿井开拓系统 1—平硐; 2—立井; 3—斜井; 4—斜巷

1.立井开拓 立井开拓是指利用垂直巷道由地面进入地下,并通过一系列巷道通达煤层的开拓方式。当煤层埋藏较深,表土层厚,瓦斯、水文情况复杂等情况下广泛应用的一种开拓方式。 2.斜井开拓 斜井开拓是指利用倾斜巷道由地面进入地下,并通过一系列巷道通达煤层的一种开拓方式。根据井筒位置和开拓巷道布置方式的不同,可分为片盘斜井和斜井分区式开拓。当煤炭储量较少时可采用片盘斜井开拓;斜井分区式开拓又分单水平分区式开拓和多水平分区式开拓。 3.平硐开拓 平硐开拓是指利用水平巷道从地面进入地下并通过一系列巷道通达煤层的开拓方式。采用平硐开拓

矿井开拓巷道开拓方式的概念及分类

矿井开拓巷道开拓方式的概念及分类 在一定的井田地质、开采技术条件下,矿井开拓巷道可有多种布置方式,开拓巷道的布置方式通称为开拓方式。合理的开拓方式,一般要在技术可行的多种开拓方式中进行技术经济分析比较后,才能确定 一、井田开拓方式分类 井田开拓方式种类很多,一般可按下列特征分类。: (一)按井筒(硐)形式 按井筒(硐)形式可分为立井开拓、斜井开拓、平硐开拓、综合开拓。 (二)按开采水平数目 按开采水平数目可分为:单水平开拓(井田内只设1个开采水平);多水平开拓(井田内设2个及2个以上开采水平)。(三)按开采准备方式 按开采准备方式可分为上山式、上下山式及混合式。 (1)上山式开采开采水平只开采上山阶段,阶段内一般采用采区式准备。 (2)上下山式开采开采水平分别开采上山阶段及下山阶段,阶段内采用采区式准备或带区式准备;近水平煤层,开采水平分别开采井田上山部分及下山部分,采用盘区式或带区式准备。 (3)上山及上下山混合式开采上述方式的结合应用。

(四)按开采水平大巷布置方式 (1)分煤层大巷,即在每个煤层设大巷; (2)集中大巷,在煤层群集中设置大巷,通过采区石门与各煤层联系; (3)分组集中大巷,即对煤层群分组,分组中设集中大巷。根据我国常用的开拓方式,其分类可见图3—14所示 因此,立井开拓方式可有立井单水平上、下山式;立井多水平上、下山式;立井多水平上山式;立井多水平上山式及上、下山相结合的方式。如图3—15所示。 图3—15立井开拓方式

(a)立井单水平上下山式;(b)立井多水平上下山式; (c)立井多水平上山式;(d)立井多水平上山及上下山式混合式 1—主井;2—副井;3—井底车场;4—主要石门;5—开采水平运输大巷 二、确定井田开拓方式的原则 井田开拓所要解决的问题是,在一定的矿山地质和开采技术条件下,根据矿区总体设计的原则规定,正确解决下列问题:(1)确定井筒的形式、数目及其配置,合理选择井筒及工业场地的位置。 (2)合理地确定开采水平数目和位置。 (3)布置大巷及井底车场。 (4)确定矿井开采程序,做好开采水平的接替。 (5)进行矿井开拓延深、深部开拓及技术改造。 上述问题解决得是否正确,关系到整个矿井生产的长远利益,关系到矿井的基本建设工程量、初期投资和建设速度,从而影响矿井经济效益。矿井开拓方案一经实施,再发现不合理而改动,那将耽误许多时间,浪费巨大投资。因此,确定开拓问题,需根据国家政策,综合考虑地质、开采技术等诸多条件,经全面比较后才能确定合理的方案。在解决开拓问题时,应遵循下列原则。

煤矿井田开拓方式设计

矿井设计 一、井田概况 某井田含有两层煤,煤层厚度分别为1M 6m,2M 8m,走向长度8km ,倾斜长 度1860m ,煤层间距10m ,煤层倾角34°,煤层露头深度为72m ,设计生产能力 为180万t/a 。瓦斯等级属于低瓦斯矿井。地表较为平坦,水文地质简单,煤层 顶底板均为中等稳定砂岩。初步设计矿井开拓方式,并初步分析大巷布置方式, 同时设计井底车场。 二、井田开拓 一、储量计算 1、矿井地质资源量计算 t 2604025.1)86(18608000万=?+??=Z Z 2、矿井资源/储量计算 以勘探地质报告为基础,矿井可行性研究和初步设计阶段的矿井工业资源/ 储量计算按下式计算: k Z Z Z Z Z Z M M b b g 333222112122111++++= g Z ——矿井工业资源/储量; b Z 111——探明的资源量中经济的基础储量; b Z 122——控制的资源量中经济的基础储量; 112M Z ——探明的资源量中边际经济的基础储量; 222M Z ——控制的资源量中边际经济的基础储量; 333Z ——推断的资源量; k ——可信度系数,取0.7~0.9,地质构造简单、煤层赋存稳定的取0.9;地质 构造复杂、煤层赋存不稳定的取0.7。 根据钻孔布置,在矿井地质资源储量中,60%是探明的,30%是控制的,10%

是推断的。 根据煤层厚度和地质,在探明和控制的资源量中,70%的是经济基础储量, 30%的是边际经济的基础储量,则矿井工业/资源储量: t Z b 万8.10936%70%6026040111=??= t Z b 万4.5468%70%3026040122=??= t Z M 万2.4687%30%6026040112=??= t Z M 万6.2343%30%3026040222=??= 因为地质条件简单,k 取0.9,则t k Z 万6.23439.0%1026040333=??= 则g Z =10936.8+5468.4+4687.2+2343.6+2343.6=25778.8万t 3、矿井设计资源/储量 矿井设计资源/储量可按下式计算)(1P Z Z g S -= 式中S Z ——矿井设计资源/储量; 1P ——断层煤柱、防水煤柱、井田境界煤柱、地面建筑物煤柱、露头煤柱、 水平面煤柱等永久煤柱损失量之和。1P 按矿井设计资源/储量的3%估算。 则t 25005.497%25778.8万=?=S Z 4、矿井设计可采储量 矿井设计可采储量t Z k 万3.20004%804.25005=?=

矿井通风基本知识通用版

安全管理编号:YTO-FS-PD207 矿井通风基本知识通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

编写人:xxxxx 审核人:xxxxx 矿井通风基本知识通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、矿井通风概述 (一)矿内空气 1. 矿内空气主要成分 矿内空气与地面空气的成分尽管不同,但其成分仍是以氧气和氮气为主,另外包含少量其它气体。 2.矿内空气中的有毒有害气体 (1)一氧化碳:一氧化碳是无色、无味、无臭的气体。一氧化碳毒性很强,吸入人体后会引起中毒、窒息,浓度为0.4%就可使人致命中毒。一氧化碳的主要来源是:火灾、爆破工作、瓦斯和煤尘爆炸。 (2)硫化氢:硫化氢是一种无色、微甜、带有臭鸡蛋味的气体,能燃烧,有强烈的毒性。对人的眼睛、黏膜及呼吸系统有强烈刺激作用。浓度为0.05%时,半小时内人失去知觉、痉挛、死亡。硫化氢的主要来源:有机物腐烂、硫化矿物水解、老空积水中释放、煤岩中放出。 (3)二氧化硫:二氧化硫是一种无色、具有强硫磺臭味的气体,易溶于水,易积聚在巷道底部。二氧化硫对人

矿井开拓基础知识

矿井开拓 一、煤田、井田 1. 煤田划分为井田 在同一地质时期生成的大面积含煤地带称为煤田。煤田的范围很大,面积由数十至数千平方公里,煤的储量由几亿到几百亿吨。一个大的煤田通常由几个或十几矿开采,划归一个矿井进行开采的煤田通常称为井田(或矿田)。井田的边界多以大断层等自然条件进行划分。 2. 矿井储量与可采储量 井田范围的大小,决定了矿井的煤炭储量和开采条件,是建设矿井的基本根据。井田范围内煤炭的埋藏量称为矿井储量,矿井储量中工业储量只有一部分能够采出,这部分储量叫做可采储量。 3. 矿井井型与服务年限 矿井生产能力指矿井一年内能生产煤炭的产量,又称为矿井年产量或井型。矿井范围内可采储量按矿井设计生产能力计算其可生产年限,称为矿井设计服务年限。我国目前按设计生产能力把煤矿分为大、中、小三种类型,每种类型又分为若干个等级,目前我国井型系列如表2-2-1所示。 表2-2-1 矿井井型和服务年限 二、井田再划分 煤田划分为井田后,每一个井田的面积仍然比较大, 为便于开采,还必须将井田再划分为若干较小的区、段,以便有计划的按一定顺序进行开采。 1. 井田划分为阶段 开采缓倾斜、倾斜和急倾斜煤层时,通常沿煤层倾斜方向,按一定标高,将井田划分为若干长条部分,每一个长条部分称为阶段,如图2-2-1所示。阶段大小一般用阶段斜长或阶段垂高来表示,它的走向长度等于井田走向全长。 第三阶段 第二阶段第一阶段-800-500-300-150第四阶段 图2-2-1 井田划分为阶段 H-阶段垂高;h-阶段斜长

阶段与阶段之间以水平面分界,分界面又称为水平面。布置有主要运输大巷和井底车场,担负该水平开采范围内主要运输和提升任务的水平称为开采水平。水平常用该处标高、开采顺序和用途来表示,如图2-1中的-150、-300、-500、-800水平,又称为第一水平,第二水平以及运输水平、回风水平等。 阶段的开采顺序一般是自上而下依次进行的,在开采第二阶段时,第一阶段的运输水平可变为第二阶段的回风水平。 一个井田如果只有一个开采水平,称为单水平开拓,它适用煤层倾角在16°以下,井田倾斜长度较小的矿井;当用两个以上开采水平来开采井田时,称为多水平开拓。从技术经济的角度考虑,一个矿井最好用一个开采水平来保证矿井的年产量,这样生产组织、技术管理简单,技术经济指标较好。 2. 阶段内的布置 阶段内的布置有连续式、分区式和分带式三种。 ⑴连续式 当阶段内的走向长度和倾斜长度都较小时,可在井田的每一翼沿阶段倾斜全长布置一个回采工作面,并且回采工作面可以由井田中央向井田边界推进(连续前进式开采),或者从井田边界向井田中央推进(连续后退式开采),这种布置称为连续式布置如图2-2-2所示。 a b 图2-2-2 阶段内的连续式布置方式 a-连续前进式开采;b-连续后退式开采 ⑵分区式 当阶段的走向长度和倾斜长度都较大时,在阶段范围内,沿走向把阶段划分为若干部分,每部分长度约为600~1200m,沿倾斜的长度等于阶段斜长,在其中有独立的通风和运输系统,这样的每个部分称为采区,这种布置称为分区式布置,如图2-2-3所示。

矿井开拓与开采

2 矿井开拓与开采 2.1 煤层埋藏及开采条件 2.1.1 地质构造及特征 1、地层及地质构造 (1)地层特征 矿区地表出露的主要地层为第四系(Q)、石炭系下统摆佐组(C1b)、上司组(C1s)、旧司组(C1j)、详摆组(C1x)、汤耙沟组(C1t)。由新至老简述如下:1)第四系(Q) 黄色、黄褐色粘土、亚粘土及植物根系,含砾砂、砂岩、泥岩碎块,主要分布在缓坡及沟谷地带,厚0~20m。 2)摆佐组(C1b) 地表掩盖强烈,未出露完全,地层剖面仅测制其底部地层;浅灰、灰白色厚层至块状燧石结核灰岩,顶部为细晶白云岩。以白云岩与下伏上司组泥晶灰岩分界。厚大于40m。 3)上司组(C1s) 上部灰岩页岩段:岩性主要由灰色中厚~厚层状生物碎屑灰岩、泥质灰岩、黑色页岩组成。含燧石条带或团块。含丰富的动物化石,主要有双壳类、珊瑚等。 中下部砂岩页岩段:由石英砂岩、页岩组成,以页岩为主,中夹多层泥质灰岩薄层,底为细粒石英砂岩。 下部灰岩段:主要岩性组合为泥晶灰岩、泥质灰岩夹页岩,以泥晶灰岩为主,含燧石团块,产丰富的动物化石,主要为双壳类、菊石、珊瑚等。 底部为泥质灰岩,与旧司组页岩分界。本组厚420~500m左右。 4)旧司组(C1j) 分布于矿区南西部,岩性以深灰~灰黑色中厚层状泥质灰岩、黑色页岩、泥晶灰岩、生物碎屑灰岩。以底部中厚层状泥晶灰岩、泥质灰岩与下伏祥摆组页岩分界,属整合接触。本组厚约150~210m。 下部以泥质灰岩与页岩组成,向上页岩增多。中部以泥质灰岩及泥晶灰岩为主,夹页岩薄层,含少量燧石团块,产双壳类化石。上部以页岩夹泥晶灰岩为主,含燧石团块。

5)详摆组(C1x) 本区的主要含煤地层,以页岩、砂岩为主,上部夹泥灰岩(或泥质灰岩)薄层。厚230~452m。含煤8~9层,单层煤厚0.1~1.90m,多以煤线及透镜体产出。根据岩性组合及含煤特征可分为三段。 第三段(C1x3):厚140~204m,平均厚172m,主要岩性组合为:中~厚层状石英砂岩、泥质粉砂岩、页岩薄煤层及煤线组成,含菱铁矿团块及条带。 上部主要岩性黑色页岩夹泥质灰岩,含少量菱铁矿团块,产双壳类、腕足、珊瑚等化石。 中部主要为黑色页岩、砂质页岩,局部夹石英粉砂岩薄层,含较多菱铁矿团块及条带,厚度较大,岩性单一。 下部主要由石英砂岩、石英粉砂岩、泥质粉砂岩、页岩、煤层组成,含煤层三层:M1、M2、M3;其中M3为局部可采煤层,其余煤层不可采。 以底部M3煤层底板石英砂岩与下伏页岩分界,标志清楚,属整合接触。 第二段(C1x2):厚125~215m,平均厚度170m,主要岩性组合为:石英砂岩、石英粉砂岩、泥质粉砂岩、页岩组成旋回性韵律。上部夹薄煤层或煤线,页岩中含菱铁矿团块及条带,产双壳类,海百合化石,以及生物遗迹化石。以底部厚层状石英砂岩与下伏页岩、砂质页岩分界,标志清楚,属整合接触。 第一段(C1x1):厚113~147m,平均厚130m,为主要的含煤段,主要岩性组合为:石英砂岩、石英粉砂岩、泥质粉砂岩、页岩、煤层或煤线。产双壳类、海百合化石,生物遗迹化石,以及碳化植物茎叶化石碎片等。 矿区含煤层八层,有可采及局部可采煤层三层,编号为M5、M5、M9。M5、M9在矿区内较为稳定,属全区可采煤层,M3为极不稳定煤层,属局部可采煤层。 6)汤耙沟组(C1t) 本组总厚560.2m。主要岩性为灰~深灰、灰黑色中厚—厚层状致密灰岩及结晶灰岩,下部夹硅质灰岩、页岩、炭质页岩;顶部为泥质灰岩,局部为燧石结核。自下而上颜色变浅,硅质含量减少,泥质成分增多。产丰富的动物化石。主要有双壳类、珊瑚、腕足、海百合等。 (2)地质构造 矿区主要构造单元为六盘水断陷威宁北西向构造变形区,主要构造形迹位于龙街向斜南部扬起端与北西向翻努背斜交汇部位,总体呈单斜构造,次级褶皱不发育。地层总体走向近北西西,倾向南西,地表倾角10~39°,一般10~20°左右。矿区共发

相关主题
文本预览
相关文档 最新文档