当前位置:文档之家› Peano定理解的存在性定理的应用主讲范进军

Peano定理解的存在性定理的应用主讲范进军

Peano定理解的存在性定理的应用主讲范进军
Peano定理解的存在性定理的应用主讲范进军

第二讲 Peano 定理(解的存在性定理)的应用

(主讲:范进军)

例 利用 Peano 存在定理证明如下隐函数存在定理:

设D 是空间 n

R R ′ 内的一个区域,函数 :?(,)(,) n

F D R t x F t x ?? 是连续可微的, 而且满足条件

00 (,)0 F t x = 和 00 det{(,)}0,

x F t x 1 其中初值 00 (,) t x D ? 。 则方程 (,)0 F t x = 确定一个满足条件 00 () x t x = 的隐函数

() x x t = 。

证明 由条件 00 det{(,)}0 x F t x 1 (其中 00 (,) t x D ? )知,存在充分小的矩形区域

{ } 00 (,):||,||||(,0) n Q t x R R t t a x x b a b =?′-£-£> ,

使得当(,) t x Q ? 时矩阵 00 (,) x F t x 是可逆的. 因此函数

1 (,){(,)}(,)

x t f t x F t x F t x - =- 在区域Q 上是连续的。 根据 Peano 定理知,初值问题

00

(,), () dx

f t x

dt x t x ì = ? í ? = ? 存在一个局部解 00 (),[,](0) x t t t h t h h j =?-+> 。 从而

1 ()

{(,())}(,()) x t d t F t t F t t dt

j j j - =- , 0 || t t h -£ 。 它等价于

()

(,())(,())

0 t x d t F t t F t t dt

j j j += , 0 || t t h -£ , 即

(,())

0 dF t t dt

j = , 0 || t t h -£ 。

因此,

(,()) F t t C j = (常数), 0 || t t h -£ 。

再由初始条件得 00 (,)0 C F t x == 。 故 () x t j = 满足恒等式 (,())0 F t t j = , 0 || t t h -£ 。 这就证明了 (,)0 F t x = 至少存在一个满足条件 00 () x t x = 的隐函数 () x t j

= 。 下面再证隐函数的唯一性。 设 1 () x t j = 和 2 () x t j = 都是方程 (,)0 F t x = 满足初始条 件 00 () x t x = 的隐函数。 则我们有

12 (,())(,())0 F t t F t t j j -= , 0 || t t a -£

, 其中 0 a > 为适当下的常数。 另外对向量函数 (,) F t x 的第i 个分量 (,) i F t x 应用 Lagrange 中值公式,得

1 1 (,()()())()0 n

i

i j j j

F t t t u t u t x j q = ? += ? ? , 1,2,, i n = L , 其中 21 ()()() u t t t j j =- , () j u t 是 () u t 的第 j 个分量,而 () i t q 满足不等式0()1 i t q << 。 注意,当a 充分小时, 210 ()() t t x j j ?? ,从而上述线性方程组的系数矩阵近似于

00 (,) x F t x ,所以它是非退化的。 因此,上线性方程组蕴含

()0 u t = ,亦即 21 ()() t t j j = 。 这就证明了唯一性。 证毕。

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

解的存在唯一性定理证明

解的存在唯一性定理 利用逐次逼近法,来证明微分方程的初值问题的解存在与唯一性定理。 一、【存在、唯一性定理叙述】 如果方程的右端函数在闭矩形区域上满足如下条件: (1)、在上连续; (2)、在上关于变量满足利普希茨条件,即存在常数,使对于上任何一点和有以下不等式:。 则初值问题在区间上存在唯一解, 其中

二、【证明】 逐步迫近法: 微分方程等价于积分方程。 取,定义 可证明的满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设是微分方程定义于区间上满足初值条件 的解,则是积分方程定义于区间上的连续解。反之亦然。 证: 因是微分方程的解,有 两边从到取定积分,得: 代入初值条件得: 即是积分方程定义于区间上的连续解。 反之,则有 微分得: 且当时有。即是微分方程定义于区间上满足初值条件的解。 现取,代入积分方程的右端,所得函数用表示,则,再将代入积分方程的右端,所得函数用表示,则,以上称为1次近似, 称为2次近似。以此类推得到次近似。 从而构造逐步迫近函数序列为: 命 题 2:对所有,函数序列在上有定义、连续且满足不等式 证:当时, 。显然在上有定义、连续且有 ,即命题2当时成立。 由数学归纳法,设命题2当时成立,则对有: 知在上有定义、连续且有 命题2当时也成立。 由数学归纳法原理得命题2对所有均成立。 命 题 3:函数序列在上一致收敛。

证:只须考虑级数-----(*) 在上一致收敛。 因其部分和为:,因, 设对成立。 则当时有 即对所有,在成立 。 其右端组成正项收敛级数 由魏氏判别法,级数(*)在上一致收敛。即在上一致收敛。命题3得证。 现设 则在上有定义、连续且 命 题 4: 是积分方程在上的连续解。 证: 由利普希茨条件 及在上一致收敛于,知函数序列在上一致收敛于。 于是即 是积分方程在上的连续解。 命题5:设是积分方程在上的另一连续解。则。 证: 现证也是序列在上的一致收敛极限函数。由, , 得: , 。 设,则 。由数学归纳法,对所有,有 。 因此,对所有,在有成立。但当时。故在上的一致收敛于。由极限的唯一性,得。

小学数学四年级上册《不确定性》资料不确定性原理

小学数学四年级上册 《不确定性》资料 不确定性原理: 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x 的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。 海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△q∝1/λ。再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。所以,位置要测得越准确,所需波长就要越短,单个量子的能量就越大,这样粒子的速度就被扰动得更厉害。简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确。如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置[3] 。换而言之,对粒子的位置测得越准确,对粒子的速度的测量就越不准确,反之亦然。[3] 经过一番推理计算,海森伯得出:△q△p≥?/2。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”

函数零点存在性定理

?函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

透过不确定性原理看物理世界

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 题目:透过不确定性原理看物理世界 姓名:任丽行 学号:0103 专业:物理学 年级: 2008级 指导老师:宗福建 山东大学物理学院 二零一零年十二月 1

透过不确定性原理看物理世界 物理学院 2008级任丽行学号:0103 【摘要】不确定性原理由海森堡提出,表述了一个粒子的位置和动量不能被同时确定的最小程度。当粒子的位置非常确定时,其动量将会非常不确定。由此可以推广到许多对共轭物理量之间。不确定性原理是量子力学几率解释和波粒二象性的必然结果。在量子力学的发展史上,不确定性原理起到了极为重要的推动作用,尤其是玻尔与爱因斯坦两位物理学大师关于海森堡关系的争论,更是为相对论量子力学的发展奠定了基础。 【关键词】不确定性;海森堡;波粒二象性;理想实验 1.引言 本文主要研究了海森堡不确定性原理提出的背景、推理过程、后续的讨论与发展,以及它对量子力学与整个物理学的发展所起的推动作用。文中主要涉及三位物理学大师:海森堡、玻尔和爱因斯坦。由海森堡提出并论证的不确定性关系是玻尔互补原理的最好证明。爱因斯坦通过设计一系列的理想实验企图反驳不确定性原理,没想到反过来证明了不确定性原理的正确性。本文就是以不确定性原理为主线,把它与互补原理及波粒二象性联系在一起,简单地讨论了它的涵义以及量子力学的一些基本问题,从而透过不确定性原理来瞻仰近代物理学的发展历程。 2.理论背景 不确定性原理又名“测不准原理”,英文名为“Uncertainty principle”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。不确定性原理是指在一个量子力学系统中,一个粒子的位置和它的动量不可被同时确定。位置和动量满足如下关系: 2

函数零点存在性定理基础题

函数零点存在性定理基础题 1.函数()25x f x =-存在零点的区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 【答案】B . 【解析】 函数单调递增,并且()()()23130f f ?=-?<,所以在区间()3,2上存在一个零点. 2.若函数在区间内存在一个零点,则实数的取值范围是( ) A .1a > B .1a <- C .1a <-或1a > D .11a -<< 【答案】C . 【解析】 由零点存在性定理得:(1)(1)0,(1)(1)0,f f a a -<-+<因此1a <-或1a >.选C . 3.函数f (x )=ln x - 2x 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(1e ,1)和(3,4) D .(e ,+∞) 【答案】B . 【解析】 ∵f (1)=-2<0,f (2)=ln2-1<0,又∵f (x )在(0,+∞)上是单调增函数, ∴在(1,2)内f (x )无零点.又∵f (3)=ln3- 23 >0,∴f (2)·f (3)<0. ∴f (x )在(2,3)内有一个零点.故选B . 4.已知定义在R 上的函数()f x 的图象是连续不断的,且有部分对应值表如下: 那么函数()f x 一定存在零点的区间是 ( ) A .()1-∞, B .()12, C .()23, D .()3+∞, ()1f x ax =+(1,1)-a

【答案】C . 【解析】 根据函数的对应值表可得(1) 6.10,(2) 2.90,(3) 3.50f f f =>=>=-<,根据函数的零点存在性定理,一定存在零点的区间是()2,3.故选C . 5.函数f (x )=log 3x -8+2x 的零点一定位于区间( ) A .(1,2) B .(2,3) C .(3,4) D .(5,6) 【答案】C . 【解析】 函数f (x )=log 3x -8+2x 为增函数, ∵f (3)=log 33-8+2×3=-1<0,f (4)=log 34-8+2×4=log 34>1>0, ∴函数在(3,4)内存在零点.故选C . 6.方程log 3x +x =3的解所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 【答案】C . 【解析】 可构造函数f (x )=log 3x +x -3,方程log 3x +x =3的解所在的区间是函数f (x )=log 3x +x -3零点所在的区间,又函数f (x )=log 3x +x -3在定义域上单调递增,结合零点存在性定理对四个选项中的区间进行验证即可. 由于f (0)不存在,f (1)=-2,f (2)=log 32-1<0,f (3)=1>0, 故零点存在于区间(2,3),方程log 3x +x =3的解所在的区间是(2,3) 故选C .

Picard存在和唯一性定理

Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程 (2.1) 的初值问题 (2.2) 的解的存在与唯一性定理. 定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域 上满足如下条件: (1) 在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解 其中 在证明定理之前,我们先对定理的条件与结论作些说明: 1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的, 但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数 存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有 其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,

但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。 3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这 时,过点 的积 图 2-5 分曲线 当 或 时,其中 , ,到 达R 的上边界 或下边界 .于是,当 时,曲线 便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间 上存在. 由于定理假定 在R 上连续,从而存在 于是,如果从点 引两条斜率分别等于M 和-M 的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取 则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之 中. 图 2-6

根的存在性证明(零点定理)

根的存在性定理:如果)(x f 在闭区间[a,b]上连续 0)(,,0)()(=∈<ξξf b a b f a f )使得(则存在。 证明 利用构造法的思想,将)(x f 的零点范围逐步缩小。先将[a,b]二等分为],2[],2, [b b a b a a ++,如果0)2 (=+b a f 。则定理获证。如果0)2(≠+b a f ,则f(a)和f(b)中必然有一个与)2 (b a f +异号,记这个小区间为[11,b a ],它满足2-0)()(1111a b a b b f a f -=<且区间的长度。又将[11,b a ]二等分,考虑中点的函数值,要么为零,要么不为零。如果中点的函数值为零,则定理获证。如果中点的函数值不为零,那么必然可以选出一个小区间,使得f(x)在这个区间的端点值异号,记这个小区间为 ],[22b a ,它满足[a,b]?[11,b a ]],[22b a ?,0)()(2222 22<-=-a f b f a b a b 且。采用这样的方法一直进行下去,或者到有限步时,某个区间的中点的函数值为零,这样定理的结论成立。或者所有区间的中点的函数值不为零,那么我们就会得到一个无穷的区间序列{],[n n b a },它满足:① [a,b]?[11,b a ]?????],[22b a ;②n n n a b a b 2-=-;③0)()(δ,使得f(x)在],[),(b a ?+-δξδξ上与)(ξf 同号。根据所构造的区间的性质②,存在正整数N ,当n>N 时, ],[),(],[b a b a n n ?+-?δξδξ。根据区间的性质③,0)()(

不确定性原理的前世今生

不确定性原理的前世今生 · 数学篇(一) 在现代数学中有一个很容易被外行误解的词汇:信号 (signal)。当数学家们说起「一个信号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者手机屏幕顶部的天线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据。简单地说,它是一个函数,定义在通常的一维或者多维空间之上。譬如一段声音就是一个定义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等。 在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来。按照上面所说的办法,把一个信号理解成一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理解这一信号的内容来说常常不够。例如一段声音,如果单纯按照定义在时间上的函数来表示,它画出来是这个样子的: 这通常被称为波形图。毫无疑问,它包含了关于这段声音的全部信息。但是同样毫无疑问的是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提琴无伴奏 Partita No.3 的序曲开头几个小节。下面是巴赫的手稿,从某种意义上说来,它也构成了对上面那段声音的一个「描述」: 这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划的是声音的高低(即声音震动的频率)。人们直到十九世纪才渐渐意识到,在这两种描述之间,事实上存在着一种对偶的关系,而这一点并不显然。 1807 年,法国数学家傅立叶 (J. Fourier) 在一篇向巴黎科学院递交的革命性的论文 Mémoire sur la propagation de la chaleur dans les corps solides (《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达

存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程 (,),dy f x y dx =在区间0x x h -≤上存在唯一解00 (),()y x x y ??== ,其中 (,)min ,, max (,) x y R b h a M f x y M ∈? ?== ??? 逐步迫近法 微分方程(,)dy f x y dx =等价于积分方程0 0(,)x x y y f x y dx =+ ? 取00()x y ?= , 定义0 01()(,()), 1,2,x n n x x y f x x dx n ??-=+=? 可证明lim ()() n n x x ??→∞ =的 ()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命题1 先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间00x x x h ≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+≤≤+?定义于区 间0 0x x x h ≤≤+上的连续解。反之亦然。

证 因()y x ?=是微分方程 (,)dy f x y dx =的解,有 ()(,())d x f x x dx ??= 两边从0x 到0 x h +取定积分 000()()(,()), x x x x f x x dx x x x h ???-= ≤≤+? 代入初值条件00()x y ?=得 000()(,()),x x x y f x x dx x x x h ??=+ ≤≤+? 即()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+ ≤≤+?定义于区间00x x x h ≤≤+上的连续解。 反之,则有 000()(,()), x x x y f x x dx x x x h ??=+ ≤≤+? 微分之 ()(,())d x f x x dx ??= 且当0x x = 时有00 ()x y ?=。即 () y x ?=是微分方程 (,) dy f x y dx =定义于区间 00x x x h ≤≤+上满足初值条件00()x y ?=的解。 现取00()x y ?=,构造逐步迫近函数序列 000001()1,2,()(,()), x n n x x y x x x h n x y f x x dx ???-=??≤≤+=? =+?? ? 命题2 对所有n ,函数序列()n x ?在0 0x x x h ≤≤+上有定义、连续且满足不等 式 0()n x y b ?-≤ 证 当1n =时0 100()(,)x x x y f x y dx ?=+ ?。显然1()x ?在0 0x x x h ≤≤+上有定义、 连续且有 0000()(,)(,)()x x n x x x y f x y dx f x y dx M x x M h b ?-= ≤ ≤-≤≤?? 命题2当1n =时成立。设命题2当n k =时成立,则对1n k =+

根心定理

根心定理 根心定理:三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一: (1)三根轴两两平行; (2)三根轴完全重合; (3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。 该定理是平面几何上非常重要的定理。 一、点对圆的幂 平面上任意一点对圆的幂定义为以下函数: 考虑到圆的方程也可以写为圆心-半径的形式: 由此也可以把点对圆的幂定义为: 这里 是点到圆心的距离,是圆的半径。 点对圆的幂的几何意义是明显的: 若点在圆外,则幂为点到圆的切线长度的平方; 若点在圆上,则幂为0; 若点在圆内,则幂为负数,其绝对值等于过点且垂直于的弦长的一半的平方。 二、根轴 平面上两不同心的圆 显然,对两圆等幂的点集是直线: 该直线称为两圆的根轴。根轴必垂直于两圆的连心线。 若两圆相交,则根轴就是连接二公共点的直线; 若两圆相切,则根轴就是过切点的公切线; 若两圆相离或内含,则根轴完全位于两圆之外,但仍垂直于两圆的连心线。

当圆1和圆2相离或内含时,用尺规作出这两圆的根轴需要依赖“根心定理”(见第三部分)。具体的做法是:另作一个适当的圆3与前两圆都相交,圆3分别与前两圆形成根轴,这两条根轴的交点即是圆1、圆2和圆3的根心,它必定在圆1和圆2所形成的根轴上;同理,再找一个适当的圆4,找到圆1、圆2和圆4的根心。连接所找到的两个根心,即得到圆1和圆2的根轴。 三、根心与根心定理(解析几何证法) 三个两两不同心的圆 任意两圆形成一条根轴,因而共有三条根轴: 这三条根轴的直线方程(以下简称为根轴方程)是线性相关的,即由其中两个根轴方程进行线性组合,可以得出第三个根轴方程。因此: (i)若平面上某一点是其中两个根轴方程的公共解(亦即两根轴的公共点),则必定也是第三条根轴上的点。 (ii)若某两个根轴方程无公共解(即平行),则三个根轴方程中的任意两个均无公共解(即三条根轴两两平行)。 具体而言,三个两两不同心的圆的根轴,仅仅包含下面三种情况: (1)三根轴两两平行; (2)三根轴完全重合; (3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。 上面所证明的即是“根心定理”。 以上用解析几何的方法证明了根心定理。在平面上,二元方程对应一条曲线,而方程组的解对应着曲线的公共点。利用这个思想,从根轴方程的线性相关性出发,容易得到平面几何上的根心定理。这种证明方法十分简单。 四、根心定理的相关例题 以下例题选自2013年(第54届)国际数学奥林匹克竞赛(IMO)第二天第4题:

浅析不确定性原理的哲学内涵

浅析不确定性原理的哲学内涵 摘要:不确定性原理作为量子力学中的基本原理之一,主要描述了对两个力学量算符在任一时刻其几率分布宽度的的关系。本文先介绍了何为不确定性原理,再重点阐释了对不确定性原理的哲学审视,最后在借鉴先哲们精粹思想的同时也对不确定性原理提出了一些浅显的看法。 关键词:不确定性原理变量哲学 1、引言 海森堡提出的不确定性原理以其特殊的性质给科学和哲学解释提出了挑战。不确定性原理,告诉我们微观客体的任何一对互为共轭的不确定变量都不可能同时确定出确定值,使人们放弃了经典的轨道概念。这表明,几率性、随机性、偶然性,并非是由于人类认识能力不足所导致的,而是自然界客观事物的本性。科学的发展要求从哲学层次来认识不确定性原理在科学理论中的作用和地位,分析它的本体论及认识论内涵,总结其基本特征,进而为不确定性原理的科学研究提供富有启示意义的哲学观念和方法论原则。 2、不确定性原理 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出,它反映了微观粒子运动的基本规律。 在云室(一种观察微观粒子运动径迹仪器)中观察到的电子径迹的解释上,海森堡的想法是如何用已知的数学形式去描述云室中的电子径迹。云室中的径迹并不是能反映粒子明确位置和速度的一条无限细的线,在云室中看到的电子径迹的宽度要比电子本身的线度大得多,这可能代表了电子的位置具有某种不确定性。通过推算,得到了一种不确定性原理,它表明:同时严格确定两个共轭变量(如位置和速度,时间和能量等)的数值是不可能的,它们的数值准确度有个下限。这是一条自然定律,它说明,在微观粒子层次上,同时得到一个粒子运动的位置和速度的严格准确的测量值在原则上是不可能的。用这个理论去解释试验中所观察到的电子轨迹,经过重新的分析整理,最终确定:云室中电子径迹并不是一条连续的线,实质上它是一系列离散而模糊的斑点,它们近似排列成线,并非真正的电子“径迹”,也就是说电子的位置是不确定的。 海森堡进一步验证此不确定性满足新的量子力学,得到了标准的量子条件:Pq-qP=h/2π (P为动量,q为与动量对应的位置,h为普朗克常量s)。 由上式出发,海森堡导出了位置和与速度相关的p的不确定关系式:ΔpΔq≥h。 3、不确定性原理的哲学思考 不确定性原理告诉人们:经典的轨道概念已不再适用,像经典物理学精确把握宏观物体那样将微观粒子的信息精确测出也是不可能的。更重要的是,波函数的统计诠释与不确定性原理两者可共存于一个理论体系,不确定性原理可以由量子力学基本公设推导,而且推导结果也没有超出量子力学的几率诠释。我们需要将二者结合起来,看看它们究竟告诉了我们什么。 有一些社会科学工作者,由于望文生义或不太理解量子力学理论,认为不确定性原理之不确定,几率诠释之几率。深入的思考者则认为,几率诠释告诉我们微观粒子之状态我们不能百分百把握,而不确定性原理则干脆将“不确定”确定下来,告诉我们不确定不是我们的仪器有什么问题,而是客观世界正是如此,不仅

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dx dy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 对于所有的 都成立,L 称 2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dx dy +=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ?=h x x ≤-0且满足初始条件: 这里 00)(y x =?),min(M b a h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只 就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

不确定性原理的推导

不确定性原理的推导 一、(普遍的)不确定性原理推导: 对于任意一个可观测量A ,有(见(12)式): 2??()() A A A ΨA A Ψf f σ=--= (1) 式中:?()f A A ψ≡- 同样地,对于另外一个可观测量 B ,有: 2 B g g σ= 式中:?(g B B ψ≡- 由施瓦茨不等式(见(16)式),有: 2 22 A B f f g g f g σσ=≥ (2) 对于一个复数z (见(17)式): 2 22221 [Re()][Im()][Im()][ ()]2z z z z z z i *=+≥=- (3) 令z f g =,(2)式: 2 2 21[]2A B f g g f i σσ?? ≥- ??? (4) 又 ??()()f g A A B B ψψ=-- ?? ()()ΨA A B B ψ=-- ???? ()ΨAB A B B A A B ψ=--+ ???? ΨAB ΨB ΨA ΨA ΨB ΨA B ΨΨ=-++ ?? AB B A A B A B =--+ ??AB A B =- 类似有: ?? f g BA A B =-

所以 ?????? ,f g g f AB BA A B ??-=-=?? (5) 式中对易式:??????,A B AB BA ??≡-? ? 把(5)代入(4),得(普遍的)不确定性原理: 2 22 1??,2A B A B i σσ????≥ ????? (6) 二、位置与动量的不确定性 设测试函数f (x ),有(见(23)式): []d d ,()()()d d x p f x x f xf i x i x ??=-???? d d d d d d f x f x i i x i x i x ? ?= -- ??? ()i f x = (7) 去掉测试函数,则: [],=x p i (8) 令??,A x B p ==,把(8)代入(6): 2 222x p σσ?? ≥ ??? 由于标准差是正值,所以位置与动量的不确定性: 2 x p σσ≥ (9)

函数零点存在性定理.

? ? 函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

不确定性原理(非平稳作业)

学生:李洋学号:2014524019 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”。傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。海森堡证明,对易关系可以推导出不确定性,或者,使用玻尔的术语,互补性:不能同时观测任意两个不对易的变量;更准确地知道其中一个变量,则必定更不准确地知道另外一个变量。该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。「不确定性原理」也有了新的形式。在连续情形下,我们可以讨论一个信号是否集中在某个区域内。而在离散情形下,重要的问题变成了信号是否集中在某些离散的位置上,而在其余位置上是零。数学家给出了这样有趣的定理: 一个长度为N 的离散信号中有a 个非零数值,而它的傅立叶变换中有 b 个非零数值,那么a+b ≥ 2√N。也就是说一个信号和它的傅立叶变换中的非零元素不能都太少。但是借助不确定性原理,却正可以做到这一点!原因是我们关于原信号有一个「很多位置是零」的假设。那么,假如有两个不同的信号碰巧具有相同的K 个频率值,那么这两个信号的差的傅立叶变换在这K 个频率位置上就是零。另一方面,因为两个不同的信号在原本的时空域都有很多值是零,它们的差必然在时空域也包含很多零。不确定性原理(一个函数不能在频域和时空域都包含很多零)告诉我们,这是不可能的。 在传统的信号理论中,频域空间和原本的时空域相比,信息量是一样多的,所以要还原出全部信号,必须知道全部的频域信息,就象是要解出多少个未知数就需要多少个方程一样。我的理解:测量物必然改变被测物,在微观世界的测量,改变值无法忽略,物质是否具有确定性是不可知的。不确定性原理是世界自身存在的原理,与测量与否没有关系。 王老师,我所研究的领域是微弱信号检测,研究传感器自身噪声,并且通过仿真模拟。 领域相关期刊:电子学报

函数零点存在性定理图文稿

函数零点存在性定理文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有 f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1:

若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有 ______(写出所有正确结论的序号). 答案 由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,16)内无零点. (3)正确, (1)不能确定, (2)中零点可能为1, (4)中单调性也不能确定. 故答案为:(3) 例题2: 已知函数有零点,则实数的取值范围是() 答案: 例题3: 例题4: 函数f(x)=3ax-2a+1在[-1,1]上存在一个零点,则实数a的取值范围是()A. a ≥ 1/5; B. a ≤ -1 ; C. -1 ≤ a ≤ 1/5 ; D. a ≥ 1/5 或 a ≤ -1答案:由题意可得f(-1)×f(1)≤0,解得 ∴(5a-1)(a+1)≥0 ∴a≥ 1/5 或a≤-1 故选D .

测不准原理的理解及应用

不确定性原理的理解及应用 姓名: 班级: 学号:

摘要:不确定性原理作为量子力学中的一个重要组成部分,从海森堡提出至今一直受到各方争论和质疑。本文主要介绍不确定性原理的简单理解以及应用,对初学者理解不确定性原理是很有帮助的。 关键词:测量,准确性, 正文: 1.引言: 唯物主义告诉我们:物质是不依赖于人的意识的客观存在;时间的本质是物质而不是意识;先有物质后有意识;意识只不过是物质在人脑中的客观反映而已。这些都是正确的观念。然而随着二十世纪自然科学的发展,尤其是人们在探索微观世界发现了新的规律,被某些唯心主义者引用来向唯物主义的基本观点发难。其中倍受争议的是著名物理学家海森堡的“不确定性原理”。 2. 不确定性原理的介绍: 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系(E=h/2π*ω,p=h/2π*k),是物理学中又一条重要原理。【1】 3:不确定性原理的发现: 1927年,海森堡在经过长期的探索后提出了不确定性原理。他对此原理的解释是:设想一个电子,要观测到它在某个时刻的位置,则须用波长较短、分辨性好的光子照射它,但光子有动量,它与波长成正比,故光子波长越短,光子动量越大,对电子动量的影响也越大;反之若提高对动量的测量精度,则须用波长较长的光子,而这又会引起位置不确定度的增加。因而不可能同时准确地测量一个微观粒子的动量和位置,原因是被测物体与测量仪器之间不可避免的发生了相互作用。 人们习惯于对物体运动轨迹的准确描述,大到天体如何运行,小到微尘如何飞扬。这种认识必须基于对物体能够准确定位。为了预测一个物体的运动状态,必须准确测量它的位置和速度。测定必须施加一个物理作用于作为被测对象的物体之上,这在任何一种测量中都无法幸免。显然,对在微观粒子尺度空间的测量方法用光照最合适。然而,光照是无法把粒子的位置确定到比光的波长更小的程度的。为了测定的准确,必须用更短波长的光,这意味着光子的能量更高,这样测定对粒子速度的扰动将很厉害。因此,不能同时准确的测定粒子的位置和速度。事实上,宏观世界和微观世界都受到不确定性原理的制约,只不过对宏观物体的测量,一定波长的光已经足够精确,且扰动对其速度的影响小到远远无法计较。

高中数学必修一 零点存在性定理及典例

零点存在性定理 如果函数y = f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0那么,函数y = f (x )在区间[a ,b ]内有零点,即存在c ∈(a ,b ),使得f (c ) = 0这个c 也就是方程f (x ) = 0的根 定理的理解 (1)函数在区间[a ,b ]上的图象连续不断,又它在区间[a ,b ]端点的函数值异号,则函数在[a ,b ]上一定存在零点 (2)函数值在区间[a ,b ]上连续且存在零点,则它在区间[a ,b ]端点的函数值可能异号也可能同号 (3)定理只能判定零点的存在性,不能判断零点的个数 例:函数y = f (x ) = x 2 – ax + 2在(0,3)内,①有2个零点. ②有1个零点,分别求a 的取值范围. 解析:①f (x )在(0,1)内有2个零点,则其图象如下 则(0)0(3)00032 f f a b a >??>????≥??<-??>?

相关主题
文本预览
相关文档 最新文档