当前位置:文档之家› 基于霍尔传感器的转速测量)

基于霍尔传感器的转速测量)

基于霍尔传感器的转速测量)
基于霍尔传感器的转速测量)

成绩评定:

传感器技术

课程设计

题目基于霍尔传感器的转速测量

摘要

转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。

关键词:转速测量,霍尔传感器,信号处理,数据处理

目录

一、设计目的------------------------- 1

二、设计任务与要求--------------------- 1

2.1设计任务------------------------- 1

2.2设计要求------------------------- 1

三、设计步骤及原理分析 ----------------- 1

3.1设计方法------------------------- 2 3.2设计步骤------------------------- 2

3.3设计原理分析--------------------- 16

四、课程设计小结与体会 ---------------- 16

五、参考文献------------------------- 16

一、设计目的

1.学习基本理论在实践中综合运用的初步禁言,掌握模拟电路的设计的基本方法,设计步骤,培养综合设计与实物调试能力。

2.学会霍尔传感器的设计方法和性能指标测试。

3.进一步了解霍尔传感器的组成框图和各个单元的工作原理以及相互之间的联系。

4.培养实践技能,提高分析和解决问题的能力。

5.提高自己对文献资料的搜索和信息处理能力。

二、设计任务与要求

2.1设计任务

1、查阅传感器有关方面的相关资料,了解此方面的发展状况。

2、掌握所用器件的特性。

3、采用合理的设计方案。

4、设计、实现该系统。

5、撰写设计报告。

2.2设计要求

1.掌握霍尔传感器的使用方法

2.熟悉使用单片机测量转速

三、设计步骤及原理分析

3.1设计方法

系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化

为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用STC89C51单片机,显示器采用8位LED数码管动态显示。系统原理框图如图1所示:

图1

系统软件主要包括测量初始化模块、信号频率测量模块、浮点数算术运算模块、浮点数到BCD码转换模块、显示模块、按键功能模块、定时器中断服务模块。系统软件框图如图2所示。

图2

3.2设计步骤

1 单片机主控电路设计

系统选用 STC89C51 作为转速信号的处理核心。STC89C51 包含2 个16位定时/计数器、4K×8 位片内 FLASH 程序存储器、4个8位并行I/O口。16 位定时/计数器用于实现待测信号的频率测量。8位并行口P0、P2用于把测量结果送到显示电路。4K×8 位片内FLASH

程序存储器用于放置系统软件。STC89C51与具有更大程序存储器的

芯片管脚兼容,如:89C52(8K×8 位)或 89C55(32K×8 位),为系统

软件升级打下坚实的物质基础。STC89C51最大的优点是:可直接通

过计算机串口线下载程序,而无需专用下载线和编程器。

STC89C51单片机是在一块芯片中集成了CPU、RAM、ROM、定时

器/计数器和多功能I/O口等一台计算机所需要的基本功能部件。其

基本结构框图如图3.1,包括:

·一个8位CPU;

·4KB ROM;

·128字节RAM数据存储器;

·21个特殊功能寄存器SFR;

· 4个8位并行I/O口,其中P0、P2为地址/数据线,可寻址64KB ROM或64KB RAM;

·一个可编程全双工串行口;

·具有5个中断源,两个优先级,嵌套中断结构;

·两个16位定时器/计数器;

·一个片内震荡器及时钟电路;

计数脉冲输入

T0 T1

中断输入

图3 STC89C51单片机结构框图

STC89C51系列单片机中HMOS工艺制造的芯片采用双列直插(DIP)方式封装,有40个引脚。STC89C51单片机40条引脚说明如下:

正常运行和编程校验(8051/8751)时为5V电

(1)电源引脚。V

CC

为接地端。

源,V

SS

(2)I/O总线。P0.0- P7.0(P0口),P0.1- P7.1(P1口),P0.2- P7.2(P2口),P0.3- P7.3(P3口)为输入/输出引线。

(3)时钟。

XTAL1:片内震荡器反相放大器的输入端。

XTAL2:片内震荡器反相放器的输出端,也是内部时钟发生器的输入端。

(4)控制总线。

由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。

值得强调的是,P3口的每一条引脚均可独立定义为第一功能的输入

图4

单片机的片外总线结构:

①地址总线(AB):地址总线宽为16位,因此,其外部存储器直接寻址为64K字节,16位地址总线由P0口经地址锁存器提供8位地址(A0至A7);P2口直接提供8位地址(A8至A15)。

②数据总线(DB):数据总线宽度为8位,由P0提供。

③控制总线(CB):由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。

2 脉冲产生电路设计

LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

LM358的封装形式有塑封8引线双列直插式和贴片式。

特性:

?内部频率补偿

?直流电压增益高(约100dB)

?单位增益频带宽(约1MHz)

?电源电压范围宽:单电源(3—30V)

?双电源(±1.5一±15V)

?低功耗电流,适合于电池供电

?低输入偏流

?低输入失调电压和失调电流

?共模输入电压范围宽,包括接地

?差模输入电压范围宽,等于电源电压范围

?输出电压摆幅大(0至Vcc-1.5V)

如图5所示,信号预处理电路为系统的前级电路,其中霍尔传感元件b,d为两电源端,d接正极,b接负极;a,c两端为输出端,安装时霍尔传感器对准转盘上的磁钢,当转盘旋转时,从霍尔传感器的输出端获得与转速率成正比的脉冲信号,传感器内置电路对该信号进行放大、整形,输出良好的矩形脉冲信号,图中LM358部分为过零整形电路使输入的交变信号更精确的变换成规则稳定的矩形脉冲,便于单片机对其进行计数。

图6

3.4 数据显示电路设计

3.4.1 数码管结构和显示原理

图8为数码管的引脚接线图,实验板上以P0口作输出口,经74LS244驱动,接8只共阳数码管S0-S7。表7为驱动LED数码管的段代码表为低电平有效,1-代表对应的笔段不亮,0-代表对应的笔段亮。若需要在最右边(S0)显示“5”,只要将从表中查得的段代码64H写入P0口,再将P2.0置高,P2.1-P2.7置低即可。设计中采用动态显示,所以其亮度只有一个LED数码管静态显示亮度的八分之一。

图8数码管的引脚接线这里设计的系统先用 6 位LED数码管动态显示小型直流电机的转速。当转速高于六位所能显示的值(999999)时就会自动向上进位显示。

3.4.2 缓冲器74LS244

系统总线中的地址总线和控制总线是单向的,因此驱动器可以选用单向的,如74LS244。74LS244还带有三态控制,能实现总线缓冲和隔离,74LS244是一种三态输出的八缓冲器和线驱动器,该芯片的逻辑电路图和引脚图如图3.5所示。

从图可见,该缓冲器有8个输入端,分为两路——1A1~1A4,2A1~2A4。同时8个输出端也分为两路——1Y1~1Y4,2Y1~2Y4,分别由2个门控信号1G和2G控制,/1G, /2G三态允许端(低电平有效)。当1G为低电平时,1Y1~1Y4的电平与1A1~1A4的电平相同,即输出反映输入电平的高低;同样,当2G为低电平时,2Y1~2Y4的电平与2A1~2A4的电平相同。而当1G(或2G)为高电平时,输出1Y1~1Y4(或2Y1~2Y4)为高阻态。经74LS244缓冲后,输入信号被驱动,输出信号的驱动能力加大了。74LS244缓冲器主要用于三态输出的存储地址驱动器、时钟驱动器和总线定向接收器和定向发送器等。常用的缓冲器还有74LS240,241等。

图9 74LS244逻辑电路图

74LS244的极限参数如下:

电源电压………………………………………………7V

输入电压………………………………………………5.5V

输出高阻态时高电平电压……………………………

5.5V

利用上述器件设计的显示电路如图3.6所示。8个共阳的LED 数码管(S0-S7)同名的引脚连接在一起,由单片机P0口通过74LS244

驱动(段控制),R12-R19 为限流电阻。单片机P2口的8个引脚分别通过三极管Q0-Q7控制8个LED 数码管的公共端(位控制)。单片机的主时钟为12MHz 。

P0口 和 P2口都是准双向口,输出时需要接上拉电阻。P0内部没有上拉电阻,P2口内部有弱上拉。所以P0口外围电路设计为低电平有效,高电平无效。要使数码管S0-S7的其中一个亮,其对应的P2端口要置高,P2的其余端口置低。如要让S0数码管亮,则要将P2.0置高,P2.1-P2.7置低即可。

系统将定时把显示缓冲区的数据送出,在数码管LED 上显示。

3.5 稳压电源设计

如图3.7所示为5-12V 连续可调稳压电源,采用L4960芯片制作的输出电流可达10A ,输出电压在5-12V 间连续可调,是一个实用的开关型稳压电源。其工作原理为:220V 交流电源经变压器T1降压,桥堆VD1整流,C1、C2滤波后得到一直流电压。

IC 第①、②脚为直流电压输入端,其最高输入电压为+40V 。该直流电压经IC 内部的振荡器调制为200kHz 左右的高频开关电压,振荡器的开关频率由外接振荡电容器C4决定。当C4的值取为3300pF 时,电源的开关频率约为200kHz ;R3、C6为环路调节放大器的频率补偿网络,由第7脚输入。IC 第④脚为抑制输入端,其闭锁电压的阈值为0.7V ,输出电压经取样电阻R2反馈至第④脚后与R1比较,当阈值电压大于0.7V 时,输出关闭,起到短路过流保护作用。第6脚为输出电压调节控制端,由电位器RP1及电阻R4将输出电压分压后得到调节电压检测值,调节电位器RP1可控制输出电压的大小,输出电压值可由公式:VO=Vref (){}4/1R R R L h ++进行估算。其中,Vref 为基准电压,为2.1V 。

IC 为专用开关型稳压集成电路L4960,其外壳接地并接散热器。IC 外围电路中,除振荡电容C4选择高频电容器外,电阻R1、R2应选择允许偏差<1%的高精度金属膜电阻外,其余元件无特殊要求,

按图中参数选取小型器件即可。由于输出电压为高频开关式,因此IC和功率三极管VT所需的散热器仅为普通稳压电源的三分之一,且性能远远高于普通的稳压电源。

图10 5-12V连续可调稳压电源电路

3.6 串行通信模块设计

STC89C51单片机有一个全双工的串行通信口,以便于单片机和电脑之间进行串口通信。为了与计算机进行通讯,设计了RS232串行通信接口,将该接口与PC机的串口连接,可以实现单片机与PC 机的串行通信,进行双向数据传输。进行串行通信要满足一定的条件,比如电脑的串口是RS232电平(-5至-15V为1,+5至+15V为0),而单片机的串口是TTL电平(大于+2.4V为1,小于+0.7V为0),两者之间必有一个电平转换电路,图11用MAX232集成电路实现RS232电平与TTL电平的相互转换。此串行通信功能模块完成源程序代码下载到STC89C51芯片中,它需要和微机上的ISP下载器软件配合使用来完成这样的功能。系统总电路为以上硬件各功能模块的有机结合,如图12所示。

图11.MAX232串行通信

图12. 系统总电路

3.7系统软件设计

本设计软件主要为主程序、数据处理显示程序、按键程序设计、定时器中断服务程序四个部分。

(1)主程序主要完成初始化功能,包括LED显示的初始化,中断的初始化,定时器的初始化,寄存器、标志位的初始化等。主程序流程图如图12所示。

(2)数据处理显示模块程序。此模块中单片机对在1秒内的计数值进行处理,转换成r/min送显示缓存以便显示。具体算法如下:设单片机每秒计数到n个值,即n/2 (r/s)(圆盘贴两个磁钢)。则n/2 (r/s)=30n(r/min)。即只要将计数值乘以30便可得到每分钟电机的转速。数据处理显示模块流程图如图13所示。

图12 主程序流程图图13 数据处理显示模块流程图

图14.定时器1中断服务程序流程图

(3)按键程序设计。按键程序包括按键防抖动处理、判键及修改项目等程序。按键流程图如图14所示。

(4)定时器1中断服务程序设计。定时器1完成计时功能,定时50ms,进行定时中断计数并每隔1s更新一次显示数据。流程图如图15所示。

图15

(3)按键程序设计。按键程序包括按键防抖动处理、判键及修改项目等程序。按键流程图如图4.3所示。

(4)定时器1中断服务程序设计。定时器1完成计时功能,定时50ms,进行定时中断计数并每隔1s更新一次显示数据。流程图如图15所示。

3.8制作调试

3.8.1 硬件调试

硬件调试时先分步调试硬件中各个功能模块,调试成功后再进行

统调。安装固定电机和霍尔传感器时,粘贴磁钢需注意,霍尔传感器对磁场方向敏感,粘贴之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。

霍尔传感器探头要对准转盘上的磁钢位置,安装距离要在10mm 以内才可灵敏的感应磁场变化。在磁场增强时霍尔传感器输出低电平,指示灯亮;磁场减弱时输出高电平,指示灯熄灭。当电机转动时,感应电压指示灯高频闪烁,所以视觉上指示灯不会有多大的闪烁感。当给NJK 8002D 型霍尔传感器施加15V电压时其输出端可以输出4V的感应电压。输出幅值为4V的矩形脉冲信号。

LM358整形电路调试:在焊接硬件电路时需细心排除元器件和焊接等方面可能出现的故障,元器件的安装位置出错或引脚插错都可能导致电路短路或实现不了电路应有的功能,甚至烧坏元器件。为方便调试,用信号发生器产生的1KHz的正弦信号送给LM358整形电路,调试直到可以输出矩形脉冲信号为止,该整形电路调试即可完成。然后以此信号为测试信号送给单片机系统,进行测量、显示等其他功能的调试。

3.8.2 软件调试

测量系统与PC机连接时一定要先连接串行通信电缆,然后再将其电源线插入USB接口;拆除时先断开其电源,再断开串行通信电缆,否则极易损坏PC机的串口。

在进行软件编程调试时需要用到单片机的集成开发环境MedWin V2.39 软件,编程时极易出现误输入或其他的一些语法错误,最重要的还有一些模块无语法错误却达不到预期的功能,都要经过调试才能排除。MedWin V2.39 软件具有很强大的编程调试功能,能够模拟仿真实际单片机的端口和内部功能部件的状态值。该软件中有硬件调试和软件调试功能,可以观察单片机内存单元对应的运行值,可以显示单片机端口、中断、定时器1、定时器2还有串口对应的运行值。可以单步调试也可以模块调试,最好的是可以对你所怀疑的语句模块设置断点。MedWin V2.39 具有的强大的编译调试功极大地方便了对软件部分的调试。在具体调试过程中,系统将各功能模块

如数据处理程序、按键程序设计、中断服务子程序、LED显示程序分别分开进行调试,最后进行主程序的整体调试。编译无误后生成目标代码BIN文件

采用STC 单片机下载软件STC-ISP将其下载到实验板的单片机中。下载软件的最后一步:点击软件STC-ISP界面中的[下载]按钮,在点击前一定要保持实验板的串行通信线及电源线与PC机连接良好,并且实验板的电源开关处于关闭状态,然后点击[下载]按钮,再打开实验板电源开关,此时软件将自动完成程序下载。最后将硬件和软件结合起来整体调试实现系统的测速功能。

3.9设计原理分析

转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机STC89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

四、课程设计小结与体会

霍尔传感器具有不怕灰尘、油污,安装简易,不易损坏等优点,在工业现场得到了广泛应用。利用霍尔传感器设计的转速测量系统以单片机STC89C51为数据处理核心,采用定时器定时中断的方法实现计数,对测量数据进行计算得到转速数据,并将结果送数码管显示。整个测量系统硬件电路简单,容易调试,软件部分编程采用C51,有较高的编程效率。测试结果表明对电动机转速的测量精度较高,基本能够满足实际的测试需要,有一定的实际应用价值。

五、参考文献

[1]何希才,薛永毅.传感器及其应用实例[M].北京:机械工业出

版社,2004.1

[2]谭浩强.C程序设计(第二版)[M].北京:清华大学出版社,1999

[3]谢嘉奎,宣月清,冯军 . 电子线路[M].北京:高等教育出版社,2004

[4]康华光 .电子技术基础[M].北京:高等教育出版社,2004

[5]胡斌 . 图表细说电子元器件[M].北京:电子工业出版社,2004.5

[6][德]克劳斯·贝伊特.电子元件[M]. 北京:科学出版社,1999.8

[7]余锡存,曹国华.单片机原理与接口技术[M] .西安:西安电子科技大学出版社,2000.7

附录A

部分程序清单:

//============源代码

_HYTC=============================================================== =

#include

#include ---

#include

#define uchar unsigned char

#define uint unsigned int

//#include

//const uchar code tab1[]={0x48,0xeb,0x52,0x62,0xe1,0x64,0x44,0xea,0x40,0x60};

//const uchar code tab2[]={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01};

//uchar buf[8]={0,0,0,0,0,0,0,0};

//unsigned char code dispbit[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};

unsigned char code dispbit[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};

//unsigned char code

dispcode[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x40};

unsigned char codedispcode[]={0x48,0xeb,0x52,0x62,0xe1,0x64,0x44,0xea,0x40,0x60,0xff,0xb f};

uchar dispbuf[8]={0,0,0,0,0,0,10,10};

传感器原理——基于霍尔传感器的转速测量系统设计

传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words: rotate speed measurement, Hall sensor, signal processing, data processing

基于霍尔传感器的转速测量)

成绩评定: 传感器技术 课程设计 题目基于霍尔传感器的转速测量

摘要 转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 2 3.2设计步骤------------------------- 2 3.3设计原理分析--------------------- 16 四、课程设计小结与体会 ---------------- 16 五、参考文献------------------------- 16

一、设计目的 1.学习基本理论在实践中综合运用的初步禁言,掌握模拟电路的设计的基本方法,设计步骤,培养综合设计与实物调试能力。 2.学会霍尔传感器的设计方法和性能指标测试。 3.进一步了解霍尔传感器的组成框图和各个单元的工作原理以及相互之间的联系。 4.培养实践技能,提高分析和解决问题的能力。 5.提高自己对文献资料的搜索和信息处理能力。 二、设计任务与要求 2.1设计任务 1、查阅传感器有关方面的相关资料,了解此方面的发展状况。 2、掌握所用器件的特性。 3、采用合理的设计方案。 4、设计、实现该系统。 5、撰写设计报告。 2.2设计要求 1.掌握霍尔传感器的使用方法 2.熟悉使用单片机测量转速 三、设计步骤及原理分析 3.1设计方法 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

根据霍尔传感器的电机测速装置设计

检测与转换技术大作业报告 题目 院系 班级 学生姓名 日期

霍尔传感器在电机转速测量装置上 的应用设计 利用霍尔传感器,设计了一种电机转速测量装置并提出了相应的测速算法,还设计了转速信号处理电路,将脉冲信号转化为标准的T TL 电平,便于A T89C52 单片机的计数运算,并通74LS164 寄存器将转速信号显示在L ED 上。该电机测速装置具有线路简单、实时性好、成本低、安装调试方便和节省空间等优点,尤其是在测量空间有限、轴偏心或传感器不便安装的条件下,该测量方法具有明显的优势。 第一章测速电路相关元件分析 1.1 AT89C52单片机 AT89C52是一个低电压、高性能CMOS8位单片机,片内含8KB的可反复擦写的Flash只读程序存储器和256B的随机存取数据存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读/写口线。AT89C52主要功能特性和引脚图如下所示: ·完全兼容MCS-51指令系统 ·8k可反复擦写Flash ROM ·全静态操作:时钟频率0-24MHz

·三级加密程序存储器 ·3个16位可编程定时/计数器中断 ·256x8bit内部RAM ·32个可编程的双向I/O口 ·2个外部中断源,共8个中断源 ·2个读写中断口线 ·可编程串行UART通道 ·低功耗空闲和掉电模式 ·软件设置睡眠和唤醒功能 1.2 LM317T三端稳压器 LM317T是可调节三端正电压稳压器,在输出电压范围为1.25V到37V时能够提供超过1.5A的负载电流。此稳压器使用非常容易,只需两个外接电阻来设置输出电压。其主要功能特性如下所示: ·输出电流超过1.5安 ·输出电压在1.2伏和37伏间连续可调 ·内部热过载保护 ·不随温度变化的内部短路电流限制

霍尔传感器测量转速

测试技术应用案例 (霍尔传感器测量转速) 班级: 学号: 姓名:

霍尔传感器测量转速 一.霍尔传感器的优点 1.测量范围广:霍尔传感器可以测量任意波形的电流和电压, 如:直流、交流、脉冲波形等。 2.精度高:在工作温度区内精度优于1%,该精度适合于任何波形 的测量。 3.线性度好:优于%。 4.动态性能好:响应时间小于1μs跟踪速度di/dt高于50A/μs。 5.性价比高。 各式各样的霍尔传感器 二.霍尔传感器测转速原理 霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。利用霍尔效应可以设计制成多种传感器。霍尔电位差U H的基本关系为: U H=K H IB K H =1/nq(金属) 式中K H――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度; 利用霍尔效应表达式:U H=K H IB,当被测物体上装上N只磁性体时,物体每转一周磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 三.测量设备 本案例以实验室霍尔元件测量圆盘转速为例。 实验设备:CSY2000系列传感器与检测技术实验台。

1、主控台部分,提供高稳定的±15V、+5V、±2V~±10V可 调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。 2、旋转源0-2400转/分(可调) 需用器件与单元:霍尔传感器、5V直流源、转速调节装置、转动源单元、数显单元的转速显示部分。 四.实验方案 1.实验装置如下图 2.将5V直流源加于霍尔元件电源输入端。 3.将霍尔转速传感器输出端(黄)插入数显单元F i n端。 4.将转速调节中的2V-24V转速电源引入到台面上转动单元中转 动电源2-24VK插孔。 5.将数显单元上的转速/频率表波段开关拨到转速档,此时数显 表指示转速。 6.调节转速调节电压使转动速度变化。观察数显表转速显示的变 化。 五.实验结果计算 磁体经过霍尔元件,霍尔元件就会发出就会发出一个信号,经放大整形得到脉冲信号,两个脉冲的间隔时间即为周期,通过周期就可算出转速。

基于霍尔传感器的转速测量系统设计

基于霍尔传感器的 转速测量 姓名:** 班级:** 学号:** 指导老师:** 基于霍尔传感器的转速测量

摘要 本文介绍一种用STC89C51单片机测量小型电动机转速的方法,霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,通过LCD 直观地显示电机的转速值。结合硬件电路设计,采用模块化方法进行了软件设计。编制了电机转速的测量设计了测量模块、转速模块、显示模块等的C51程序。系统以单片机STC89C51为控制核心,用霍尔集成传感器作为测量小型直流电机转速的检测元件,经过单片机数据处理,用8位LED数码管动态显示小型直流电机的转速。 关键词:单片机;转速测量;霍尔传感器 背景: 在直流电机的多年实际运行的过程中,机械测速电机不足之处日益明显,其主要表现为直流测速电机DG中的炭刷磨损及交流测速发电机TG中的轴承磨损,增加了设备的维护工作量,也随着增加了发生故障的可能性;同时机械测速电机在更换炭刷及轴承的检修作业过程中,需要将直流电动机停运,安装过程中需要调整机械测速电机轴与主电机轴的同轴度,延长了检修时间,影响了设备的长期平稳运行。 随着电力电子技术的不断发展,一些新颖器件的不断涌现,原有器件的性能也随着逐渐改进,采用电力电子器件构成的各种电力电子电路的应用范围与日俱增。因此采用电子脉冲测速取代原直流电动机械测速电机已具备理论基础,如可采用磁阻式、霍尔效应式、光电式等方式检测电机转速。 经过比较分析后,决定采用测速齿轮和霍尔元件代替原来的机械测速电机。霍尔传感器作为测速器件得到广泛应用。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。霍尔效应这种物理现象的发现,虽然已有一百多年的历史,但是直到20世纪40年代后期,由于半导体工艺的不断改进,才被人们所重视和应用。我国从70年代开始研究霍尔器件,经过20余年的研究和开发,目前已经能生产各种性能的霍尔元件,霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特点。 (一)转速的测量原理 转速是工程中应用非常广泛的一个参数,而随着大规模及超大规模集成电路技术的发展,数字测量系统得到普遍应用,利用单片机对脉冲数字信号的强大处理能力,应用全数字化的结构,使数字测量系统的越来越普及。在测量范围和测量精度方面都有极大的提高。转速的测量方法有很多,由于转速是以单位时间内的转速来衡量的,所以本文采用霍尔元器件测量转速。 霍尔器件是有半导体材料制成的一种薄片,其长为l,宽为b,厚度为d。若在垂直于薄片方向(即沿厚度d的方向)施加外磁场,在沿长为l的方向的两端面加外电场,则其内部会有一定的电流通过。由于电子在磁场中运动,所以将受到一个洛仑兹力,其大小为: F=qVB, 式中:F为洛伦兹力;q为载流子电荷,V为载流子运动速度,B为磁感应强度。

霍尔测速实验

246810 1214 1618202224 霍尔传感器V-n 曲线图 电压(V )/V 转速(n )/r p m 霍尔测速实验报告 一、实验目的: 了解霍尔组件的应用——测量转速。 二、实验仪器: 霍尔传感器、+5V 、+4、±6、±8、±10V 直流电源、转动源、频率/转速表。 三、实验原理; 利用霍尔效应表达式:U H =K H IB ,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。 四、实验内容与步骤 1.安装根据图28-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。 图28-1 2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。 3.打开实验台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值。也可用示波器观测霍尔元件输出的脉冲波形。 五、数据记录与分析 2、用matlab 绘制V-RPM 曲线图

3、霍尔组件产生脉冲的原因 因为霍尔传感器本身是磁场和霍尔元件之间由于磁性交替变化而产生的脉冲信号变化。两者之间通常会设有遮光原件,能够在变化过程中间断的影响到两者之间的磁通量。有磁场照射霍尔元件导通,没有磁场照射霍尔元件截止,不断的交替变化引起了脉冲的信号变化,所以霍尔测速时,所长生的波形也就是脉冲电,只是随转速的改变频率发生了改变,频率变化越快证明转速越快。 六、实验报告 1.分析霍尔组件产生脉冲的原理。 2.根据记录的驱动电压和转速,作V-RPM曲线。

霍尔转速测量实训报告

河南工程学院 课程设计 霍尔转速测量 学生姓名:## 学院:电气信息工程学院专业班级:电气工程及其自动化####专业课程:自动检测技术 指导教师:## 2014年6月26日

一、设计的背景和目的 1.设计的背景 在工程实践中,我们经常会遇到各种需要测量转速的场合。例如在发动机、电动机等旋转设备的试验、运转和控制中,常需要分时和连续测量和显示其转速及瞬时速度。 传统式的转速测量通常是采用测速发电机为检测元件,这种方法是模拟式的,因此其得到的信号是电压信号,其抗干扰能力差,灵活性差。霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达.55℃~150℃。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 2.设计的目的 实验介绍了霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,利用硬件电路设计,编制了电机转速的测量设计了测量模块、显示模块等,并通过PROTEUSE软件进行了仿真。仿真结果表明所设计的电路原理上是可行的。 二、设计的功能 根据霍尔传感器的原理,当转动的物体比如说电机在转动时,如果能在其转子上加上一个磁铁,然后让霍尔传感器去感受就能在LED数码管上得到一定时间内的转动的脉冲数,然后通过芯片的内部计算从而得到转速,并且显示在数码管

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

霍尔传感器组成的转速测量电路

霍尔传感器测量转速 测量转速的方法分为模拟式和数字式两种。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 一、主要内容 利用强磁铁与霍尔元件组成测试转体转速的测量电路,包括计数与显示电路。 二、基本要求 1. 实现基本功能 3. 画出电路图 三、主要技术指标(或研究方法) 测量范围0—6000r/min 精度±5r/min 工作电压5V~12V 工作电流低于500mA 工作环境温度-60℃~65℃ 四、 应收集的资料及参考文献 霍尔元件原理与应用 显示元件原理 数据采样整理单 2.1 系统组成框图 在测量电机转速时采用电磁感应式传感器。当电机转动时,带动传感器。这种传感器可以将转速信号转变成一个对应频率的脉冲信号输出,经过信号处理后输出到计数器。脉冲信号的频率与电机的转速是一种线性的正比关系,因此对电机转速的测量,实质上是对脉冲信号的频率的测量。 我采用的是以STC89C52单片机为核心将处理好的信号经过数据处理转换成所测得的实际十进制信号的系统。系统硬件原理框图如图2-1:

系统框图原理如图2-1所示,系统由传感器、信号处理、显示电路和系统软件等部分组成。传感器采用霍尔传感器,负责将转速转化为脉冲信号。信号处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS 兼容信号。 处理器采用STC89C52单片机,显示器采用8位LED 数码管动态显示。 2.2霍尔传感器测转速原理及特性 1、霍尔传感器测速原理: 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b、d。若在垂直于薄片平面(沿厚度 d)方向施加外磁场B,在沿l方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为: qVB f = 式中:f —洛仑磁力, q—载流子电荷, V—载流子运动速度, B—磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d—元件厚度, B—磁感应强度, I—控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和单位控制电流下输 出霍尔电动势的大小。应注意,当电磁感应强度B反向时,霍尔电动势也反向。 若控制电流保持不变,则霍尔感应电压将随外界磁场强度而变化,根据这一原理,可以将两块永久磁钢固定在电动机转轴上转盘的边沿,转盘随被测轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔元件,转盘随轴旋转时,霍尔元件受到磁钢所产生的磁场影响,输出脉冲信号。传 单 片 机 四位数码管显示电路 霍尔传感器 信号处理 图2-1系统框图

速度测量实验

霍尔测速实验 一、实验目的:了解霍尔转速传感器的应用。 二、基本原理:利用霍尔效应表达式U H = K H IB ,当被测圆盘上装上N 只磁性 体时,圆盘每转一周,磁场就变化N 次,霍尔电势相应变化N 次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12) 三、需用器件与单元:霍尔转速传感器、转速调节2-24V 、转动源单元、数显单元的转速显示部分。 四、实验步骤: 1、根据图5-4,将霍尔转速传感器装于传感器支架上,探头对准反射面的磁 钢。 2、将直流源加于霍尔元件电源输入端。红(+)接+5V ,黑(┴)接地。 3、将霍尔转速传感器输出端(蓝)插入数显单元F in 端。 4、将转速调节中的2-24V 转速电源引到转动源的2-24V 插孔。 5、将数显单元上的转速/频率表波段开关拨到转速档,此时数显表指示转速。 6、调节电压使转动速度变化。观察数显表转速显示的变化。 五、思考题: 1、利用霍尔元件测转速,在测量上是否有限制? 2、本实验装置上用了十二只磁钢,能否用一只磁钢,二者有什么区别呢? 图1霍尔、光电、磁电转速传感器安装示意图

实验三十一光纤传感器测速实验 一、实验目的:了解光纤位移传感器用于测量转速的方法。 二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。 三、需用器件与单元:光纤传感器、光纤传感器实验模块、转速/频率数显表、直流源±15V、转速调节2~24V,转动源模块。 四、实验步骤: 1、光纤传感器按图1装于传感器支架上,使光纤探头与电机转盘平台中磁钢反射点对准。 2、按“光纤位移特性实验”的连线图,如图2所示,将光纤传感器实验模 块输出V o1与数显电压表V i 端相接,接上实验模块上±15V电源,数显表的切换 开关选择开关拨到20V档。①用手转动圆盘,使探头避开反射面(暗电流),合 上主控箱电源开关,调节Rw 2使数显表显示接近零(≥0),此时Rw 1 处于中间位 置。②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表 指示最大,重复①、②步骤,直至两者的电压差值最大,再将V o1 与转速/频率数显表fi输入端相接,数显表的波段开关拨到转速档。 图2光纤传感器位移实验模块 3、将转速调节2-24V,接入转动电源24V插孔上,使电机转动,逐渐加大转速源电压。使电机转速盘加快转动,固定某一转速,观察并记下数显表上的读 数n 1 。 4、固定转速电压不变,将选择开关拨到频率测量档,测量频率,记下频率 读数,根据转盘上的测速点数折算成转速值n 2 (转速和频率的折算关系为:转速=频率*60/12)。 5、将实验步骤4与实验步骤3比较,以转速n 1 作为真值计算两种方法的测

传感器测转速的原理【详述】

传感器测转速的原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 转速测量原理 转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T 法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。脉冲信号的周期与电机的转速有以下关系: 霍尔传感器如何测转速_霍尔传感器测转速原理 式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期根据公式即可计算出直流电机的转速。 测量电机转速的第一步就是要将电机的转速表示为单片机可以识别的脉冲信号,从而进行脉冲计数。霍尔器件作为一种转速测量系统的传感器,它有结构牢固、体积小、重量轻、寿命长、安装方便等优点,因此选用霍尔传感器检测脉冲信号,其基本的测量原理如图所示,

当电机转动时,带动传感器运动,产生对应频率的脉冲信号,经过信号处理后输出到计数器或其他的脉冲计数装置,进行转速的测量。 霍尔传感器如何测转速_霍尔传感器测转速原理 霍尔传感器测转速方案 霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为: 霍尔传感器如何测转速_霍尔传感器测转速原理

霍尔转速传感器测速实验

实验九霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。 三、需用器件与单元 霍尔转速传感器、转速测量控制仪。 四、实验步骤 1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。 3、将霍尔传感器输出端(黄线)接示波器或者频率计。 4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化), 或用频率计观察输出频率的变化。

五、实验结果分析与处理 1、记录频率计六组输出频率数值如下: 由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。 1

基于霍尔传感器的电机转速测量系统设计

摘要 在当今工业生产过程中,越来越多的场合需要测量电机的转速,转速已成为电机最重要的工作参数之一。测量转速的方法有许多,最常用的两种方法为:光电式传感器测转速,霍尔式传感器测转速。本文将着重介绍基于单片机的霍尔式传感器测量转速。 关键词:霍尔传感器,单片机,转速。

目录 1引言 (2) 2设计要求 (2) 3方案论证 (2) 3.1测量方法的选型 (3) 3.2核心处理模块的方案 (3) 3.2.1控制芯片的选型 (3) 3.2.2采用51单片机测量的方案论证 (4) 3.2.3软件系统设计方案 (4) 3.3电机转速测量模块的方案 (5) 3.4电机转速控制方案 (5) 3.5显示模块方案 (6) 4系统设计 (6) 4.1单片机模块 (6) 4.1.1 51单片机介绍 (6) 4.1.2系统的复位电路 (8) 4.1.3系统时钟电路设计 (8) 4.1.4 IO口管脚分配 (9) 4.2电机转速控制 (9) 4.3显示模块 (10) 4.3.1 LCD1602介绍和指令 (10) 4.3.2LCD1602的工作时序 (13) 4.4霍尔传感器模块 (13) 5.软件系统设计 (14) 5.2程序模块 (15) 5.2.1数据采集处理部分和PWM输出部分 (15) 5.2.2 LCD1602显示部分 (16) 参考文献 (17) 原理图 (18)

1.引言 转速是电动机极为重要的一个状态参数,在很多运动系统的测控中,都需要对电机的转速进行测量,速度测量的精度直接影响系统的控制情况,它是关系测控效果的一个重要因素。不论是直流调速系统还是交流调速系统,只有转速的高精度检测才能得到高精度的控制系统。 本系统以AT89C51单片机为控制核心,用霍尔传感器作为测量小型直流电机转速的检测元件,经过单片机实时数据处理,用LCD1602显示小型直流电机的转速。本系统可对转速0—3000r/min 进行高精度测量。且还可扩展更宽的测量范围。 2.设计要求 基于霍尔传感器的电机转速测量系统设计,测量范围:0-3000转/分,测量精度:±3转/分,实时显示。 3.方案论证 根据题设要求,本系统的原理框图如图3-1所示 图3-1:原理框图 电机 单片机控制模块 显示模块 霍尔传感 器 电机转速控制

基于51单片机和霍尔开关传感器的转速测量仪

基于51单片机和霍尔传感器的转速测量仪 摘要 系统由传感器、信号处理、系统软件等部分组成。传感器采用霍尔开关传感器(JK8002C),负责将转速转化为脉冲信号;信号处理电路(反相器74LS14)包含待测信号整形反相等部分,波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS 兼容信号。处理器采用51单片机,显示器采用单片机开发板自带的8 位LED 数码管动态显示。 课题背景 在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 1. 硬件部分概述 1.1系统组成框图

图1-1系统框图 系统框图原理如图1-1所示,系统由传感器、信号处理、数码管显示、蜂鸣器超速报警和系统软件等部分组成。传感器采用霍尔开关传感器(JK8002C),负责将转速转化为脉冲信号。信号处理电路反相器74LS14)包含待测信号波形变换、波形整形等部分,波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS 兼容信号。处理器采用51单片机,显示器采用8 位LED 数码管动态显示。 1.2霍尔传感器测转速原理及特性霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的jk8002c的霍尔传感器,其响应频率为100KHz ,额定电压为5-30 (V)、检测距离为10 (mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 1.3转速测量原理霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为l、b、d。若 在垂直于薄片平面(沿厚度d)方向施加外磁场B,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为: f qVB 式中:f—洛仑磁力,q —载流子电荷,V—载流子运动速度,B—磁感应强度。这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差UH称为霍尔电压。霍尔电压大小为:U H RH I B/d (mV) 式中:RH—霍尔常数,d—元件厚度,B—磁感应强度,I—控制电流

霍尔传感器的转速测量-2

霍尔传感器的转速测量 班级:电气20101 姓名:黄科学学号:2010120113 一.系统组成 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用STC89C51单片机,显示器采用8位LED 数码管动态显示。系统原理框图如图2.1所示 二.系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r /min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机STC89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。 三.霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz,额定电压为5-30(V)、检测距离为10(mm)。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V,直流电源要有足够的滤波电容,测量极性为N极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm处。当磁钢与霍尔元件相

相关主题
文本预览
相关文档 最新文档