当前位置:文档之家› 弦切角定理及其推论

弦切角定理及其推论

弦切角定理及其推论
弦切角定理及其推论

弦切角定理及其推论

定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.

证明:设圆心为O,连接OC,OB,。

∵∠TCB=90°-∠OCB

∵∠BOC=180°-2∠OCB

∴∠BOC=2∠TCB (定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)

∴∠TCB=∠CAB (定理:弦切角的度数等于它所夹的弧的圆周角)

弦切角定理推论:两弦切角所夹的弧相等,则这两个弦切角也相等。

应用举例:

第一个算出地球周长的人

──埃拉托色尼

2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼。

埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。

细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说和智慧。

埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。

垂径定理推论证明

一、 ③AE=BE ①⌒AC = ⌒BC ④CD ⊥ AB ②⌒AD = ⌒BD ⑤CD 过圆心(即CD 是直径) 证明:∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) 连接OA ,OB ∵⌒AD = ⌒BD ∴∠AOD=∠BOD 在△AOE 和△BOE 中 OA=OB ∠AOE=∠BOE OE=OE ∴△AOE ≌△BOE (SAS ) ∴AE=BE ,∠AEO=∠BEO=90° ∴CD ⊥AB 二、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC ④CD ⊥AB ③AE=BE ⑤CD 过圆心(即CD 是直径) 证明:连接OA ,OB 在△AOE 和△BOE 中 OA=OB AE=BE OE=OE ∴△AOE ≌△BOE (SSS ) ∴∠AOE=∠BOE ,∠AEO=∠BEO=90° ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) ∵∠AEO=∠BEO=90° ∴CD ⊥AB 21 21

三、①⌒AC = ⌒BC ②⌒AD = ⌒BD ④CD⊥AB ③AE=BE ⑤CD过圆心(即CD是直径)证明过程同上 四、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径) 证明:连接OA,OB ∵CD⊥AB ∴∠AEO=∠BEO=90° 在Rt△AOE和Rt△BOE中 OA=OB OE=OE ∴Rt△AOE≌Rt△BOE(HL) ∴∠AOE=∠BOE,AE=∠BE ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC,⌒AD = ⌒BD ∴⌒ CAD= ⌒ CBD = 圆周 ∴CD过圆心(即CD是直径) 五、①⌒AC = ⌒BC ②⌒AD = ⌒BD③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径)证明过程同上 六、②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ⑤CD过圆心(即CD是直径)④CD⊥AB 2 1

Simson定理

几何表示 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线, 则三垂足共线. □ 一阶描述 基本定义: 选定 A,B,C 三点 □ 取外接圆上任意一点 P □ 得到三个垂足 D,E,F □ 基本描述: : A,B,C 三点不共线 西姆松定理 它们的坐标分别为 这三点构成的三角形的外接圆心及半径分别为 P 点的坐标为 . 全部 (x 1,y 1),(x 2,y 2),(x 3,y 3).l 1=AB,l 2=BC,l 3=CA.(u,v),r.(a,b)D(a 1,b 1),E(a 2,b 2),F(a 3,b 3). 91

□ ● : P 在三角形 ABC 的外接圆上 □ ● : P 不同于 A,B,C □ ● : D 是 P 到 BC 的垂足 □ ● : E 是 P 到 CA 的垂足 □ l 1l 2l 3(l 21=(x 1-x 2)2+(y 1-y 2 )2 [l 22=(x 2-x 3)2+(y 2-y 3)2 [l 23=(x 3-x 1)2+(y 3-y 1 )2[l 1+l 2>l 3[l 2+l 3>l 1[l 3+l 1> l 2)92^uvr ((x 1-u)2 +(y 1-v)2=r 2 [ (x 2-u)2+(y 2-v)2=r 2[(x 3-u)2 +(y 3-v)2 =r 2 [(u-a)2+(v-b)2=r 2) 93\(a=x 1[b=y 1)[\(a=x 2[b=y 2)[\(a=x 3[b=y 3) 94(a 1-x 2)(b 1-y 3)-(a 1-x 3)(b 1-y 2)=0[(a 1-a)(x 2-x 3)+(b 2-b)(y 2-y 3)=0 95^

切线长定理弦切角定理切割线定理相交弦定理

切线长定理弦切角定理切割线定理相交弦定理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直 线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相 等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆 外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆 外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5) 圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定 理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦 定理 ⊙O中,AB、CD为 弦,交于P. PA·PB= PC·PD. 连结AC、BD,证: △APC∽△DPB.

相交弦定理的推论⊙O中,AB为直 径,CD⊥AB于P. PC2=PA·PB.用相交弦定理. 切割线定理⊙O中,PT切⊙O于 T,割线PB交⊙O于 A PT2=PA·PB连结TA、TB,证: △PTB∽△PAT 切割线定理推论PB、PD为⊙O的两 条割线,交⊙O于 A、C PA·PB= PC·PD 过P作PT切⊙O于 T,用两次切割线定 理 圆幂定理⊙O中,割线PB交 ⊙O于A,CD为弦 P'C·P'D=r2- OP'2 PA·PB=OP2- r2 r为⊙O的半径 延长P'O交⊙O于 M,延长OP'交⊙O 于N,用相交弦定理 证;过P作切线用 切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE 设CE为x,在Rt△ADE中,由勾股定理

垂径定理及其推论

圆部分知识点总结 垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都分别相等。 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 点和圆的位置关系 设⊙O 的半径是r,点P到圆心O 的距离为d,则有: dr; 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 切线的性质与判定定理 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA 、PB 是两条切线 ∴PA PB =;PO 平分BPA ∠

垂径定理

2 1 垂径定理 一、 圆的对称性 圆是轴对称图形,对称轴是 二、 如图是一个圆形纸片把该纸片沿直径AB 折叠,其中点A 和点是一组对称点 (1)思考∵OC=OD, ∴Δ OCE ≌ΔODE, ∠OEC= ∠OED= ∴AB 与CD 的位置关系是 (2)又∵点C 和点D 是一组对称点 ∴CE= 即点E 是CD 的中点 (3)根据折叠可得,弧AC=弧AD, 弧BC=弧BD, 结论:垂径定理及其推论 1、垂直于弦的直径 弦,并且 弦所对的两段弧 2、推论:平分弦(不是直径)的直径 并且 弦所对的两条弧 三、规律总结;垂径定理及其推论与“知二得三” 对于一个圆和一条直线,若具备: (1) 过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个 条件中的任何两个条件都可以退出其他三个结论 四、 垂径定理基本图形的四变量、两关系 四变量:弦长a,圆心到弦的距离d,半径r ,弓形高h ,这四个量知道任意两个可求其他两个。 五、垂径定理及其推论的应用 (一)、选择题: 1、已知圆内一条弦与直径相交成300角,且分直径成1CM 和5CM 两部分,则这条弦的弦心距是: A 、 B 、1 C 、2 D 、25 2、AB 、CD 是⊙O 内两条互相垂直的弦,相交于圆内P 点,圆的半径为5,两条弦的长均为8,则OP 的长为: A 、3 B 、3 C 、3 D 、2 3、⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A B C . D .4、如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5 B .4 C .3 D .2 5、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C . 375 D .377 6、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A .6.5米 B .9米 C .13米 D .15米 7、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( ) A .60° B .50° C .40° D .30°

弦切角定理试题

C B O A D C E O A B D 弦切角定理测试卷 姓名 _____ 1.已知一个圆的弦切角等于50°,那么这个弦切角所夹的弧所对的圆心角的度数为 _______ . 2.如图,AB 是直径,点D 在AB 的延长线上,BD=OB ,若CD 切⊙O 于C 点,则∠CAB 的度数为 ,∠DCB 的度数为 ,∠ECA 的度数为 ___ . 3.如图,AB , AC 是⊙O 的两条切线,切点分别为 B 、 C 、 D 是优弧BC 上的点,已知 ∠BAC=800,那么∠BDC =______. 4.如图,AB 是⊙ O 的弦, AD 是⊙ O 的切线,C 为弧AB 上任一点,∠ACB=1080,那么∠BAD =______. 5.如图,PA , PB 切⊙ O 于 A , B 两点, AC ⊥PB ,且与⊙ O 相交于 D ,若∠DBC=220,则∠APB==________. 2题图 3题图 4题图 5 题图 6、如图,CD 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ? ,则DBE D的大小为( ) A. 20° B. 40° C. 60° D. 70° 7、如图,AB 是半圆O 的直径,C 、D 是半圆上的两点,半圆O 的切线PC 交AB 的延长线于点P ,∠PCB =25°,则∠ADC 为( ) A.105° B.115° C.120° D.125° 8、如图,AB 是⊙O 的直径,EF 切⊙O 于C ,AD ⊥EF 于D ,AD=2,AB=6,则AC 的长为( ) A.2 B.3 C.23 D.4 9、如图,AB 是⊙ O 的直径, AC , BC 是⊙ O 的弦, PC 是⊙ O 的切线,切点为 C ,∠BAC=350 ,那么∠ACP 等于( )A. 350 B. 550 C. 650 D. 125 6题图 7题图 8题图 9题图 10、如图,在⊙ O 中, AB 是弦, AC 是⊙ O 的切线, A 是切点,过 B 作BD ⊥AC 于D ,BD 交⊙ O 于 E 点,若 AE 平分∠BAD ,则∠BAD=( ) A. 300 B. 450 C. 500 D. 600 11、如图,E 是⊙O 内接四边形 ABCD 两条对角线的交点,CD 延长线与过 A 点的⊙ O 的切线交于F 点,若 ∠ABD=440,∠AED=1000 ,弧AD=弧AB , 则∠AFC 的度数为( ) A.780 B.920 C.560 D. 1450 C B A D C B A D P O C B D E O A F B P C O A C B D A P O A E B C O D

垂径定理及推论(各省市中考题)

E A B C O 1. (2013 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连 结EC .若AB =8,CD =2,则EC 的长为( ▲ ) (A )215 (B )8 (C )210 (D )213 答案:D 4.2 垂径定理及推论 选择题 基础知识 2013-09-29 2. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 (A ) 3 (B ) 5 (C )15 (D ) 17 答案:B 4.2 垂径定理及推论 选择题 基础知识 2013-09-24 3. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则 下列结论错误.. 的是( ). (A )? ?AD BD = (B )AF BF = (C )OF CF = (D )90DBC ∠=°

答案:C 4.2 垂径定理及推论 选择题 基本技能 2013-09-22 4. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m. 答案:0.2 4.2 垂径定理及推论 填空题 基本技能 2013-09-22 5. (2013 湖北省黄石市) 如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点 C 为圆心,CA 为半径的圆与AB 交于点 D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 C A D B

(答案)奥赛经典-奥林匹克数学中的几何问题---第六章西姆松定理及应用答

第六章西姆松定理及应用 习题A 1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有() sin sin sin B C B C PL PM PN ∠+∠∠∠= + ,即 sin sin sin mn A ln B lm C ?∠=?∠+?∠再应用正弦定理,得mn a ln b lm c ?=?+?. 2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=?,90BFP CFP ∠=∠=?,90CEP AEP ∠=∠=?,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线. 又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线. 3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的 内心.由12CAI BAC ∠=∠,而()11 909022 CKI CIK B C BAC ∠=?-∠=?-∠+∠=∠,从而A ,I ,C , K 四点共圆. 又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线. 4.设正ABC △外接圆弧?AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为 D , E , F ,正三角形边长为a .由面积等式可得a b c h h h +-= .此式两边平方,得 ()2222324 a b c a b b c a c h h h h h h h h h a +++--=. 由 sin sin b a h h PAC PBD PA PB =∠=∠=,有a b h PA h PB ?=?. 同理,a c h PA h PC ?=?,故a b h PA h PB k PC ?=?=?. 又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠, 得PFD PAC △△≌,故c h PA a DF = ?,同理,a h PB a DE =?,b h PC a EF =?,即 a c b a c b h h h h h h k EF DE EF ???===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ? ---=--=?, 故222234 a b c h h h a ++=. 5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A e 与B e 另交于D ,A e 与C e 另交于E ,B e 与C e 另交于F . 注意到A e 与B e 中,公共弦MD ⊥连心线AB ;A e 与C e 中,公共弦ME ⊥连心线AC ;B e 与C e 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线. 习题B 1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z 三点共线,故U ,V ,W 三点共线.

弦切角定理及其推论

弦切角定理及其推论 定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 证明:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴∠BOC=2∠TCB (定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB (定理:弦切角的度数等于它所夹的弧的圆周角) 弦切角定理推论:两弦切角所夹的弧相等,则这两个弦切角也相等。 应用举例:

第一个算出地球周长的人 ──埃拉托色尼 2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼。 埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。 细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说和智慧。 埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

垂径定理及推论教学设计

24.1.2垂径定理及其推论教学设计 【教材分析】 本节是《圆》这一章的重要容,也是本章的基础。它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。所以它在教材中处于非常重要的位置。 【教学目标】 根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面: 知识目标: 使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。 方法与过程目标: 经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。 情感态度与价值观目标: 在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。 【重点与难点】 重点:垂径定理及其推论的发现、记忆与证明。 难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。 【学生分析】 九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、部心理上逐步朝着自我反省的思维发展。虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。 【教学方法】 鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。

平面几何-五大定理及其证明

平面几何定理及其证明 梅涅劳斯定理 1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均 证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1) AD FA 因为 CG // AB ,所以 EC ( 2) DB BE C F ,即得 A D C F EC FA DB EC FA 2.梅涅劳斯定理的逆定理及其证明 定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若 二、 塞瓦定理 3 .塞瓦定理及其证明 定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC 不是ABC 的顶点,则有 AD BE CF 1 DB EC 由(1)宁(2) DB 可得兀 AD BE CF DB EC FA 1 ,那么,D E 、F 三点共线. 证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有 AD / BE CF 丽 EC FA 因为AD Bl CF DB EC FA 1,所以有誥 段AB 上,所以点D 与D 重合.即得D 鴿.由于点D D 都在线 E 、F 三点共线. 证明: 运用面积比可得 AD DB S ADP S BDP S ADC S BDC 根据 等 比定理有 S ADP S ADC S ADC S ADP S APC S S BDP BDC S BDC S BDP S

垂径定理及其推论

圆部分知识点总结 令狐采学 垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦 直径平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 点和圆的位置关系 设⊙O的半径是r,点P到圆心O的距离为d,则有:d

P在⊙O内; d=r?点P在⊙O上; d>r?点P在⊙O外。 过三点的圆 1、不在同一直线上的三个点确定一个圆。 2、经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 直线与圆的位置关系 直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线L的距离为d,那么:直线L 与⊙O相交?dr; 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于 它的内对角。 切线的性质与判定定理 径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。

第6章 西姆松定理及应用(含答案)

第六章西姆松定理及应用 【基础知识】 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线). 证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有 β α γ βL M A P B N C 图6-1 PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠. 又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线. 注 此定理有许多证法.例如,如下证法: 如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则 PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=?,cos LC PC β=?,cos CM PC γ=?, cos MA PA α=?,cos AN PA β=?,cos NB PB γ=?.对ABC △,有 cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ ?????=??=???.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线. 西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略). 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N 及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上. 【典型例题与基本方法】 1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键 例1如图6-2,过正ABC △外接圆的AC 上点P 作PD ⊥直线AB 于D ,作P E A C ⊥于E ,作P F B C ⊥于F .求证: 111 PF PD PE += .

弦切角定理练习-初三数学

一、填空 1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____. 2.已知:如图7-144,直线DC与⊙O相切于点C,AB为直径,AD⊥DC于D,∠DAC=28°,则∠CAB=____ . 3.已知:如图7-145,PA切⊙O于点A,∠P=15°,∠ABC=47°,则∠C= ____. 4.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____. 二、选择 5.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于() A.62.5°B.55° C.50°D.40° 6.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径, 则图中与∠PAB相等的角的个数为() A.1 个B.2个C.4个D.5个 7.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径, MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是 A.38°B.52°C.68°D.42° 三、解答 8.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°, AD为⊙O一弦.求∠ADC与∠PCA的度数. 9.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于 P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求 ∠A的度数.

10.已知:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BE⊥AC于E.若AE=6cm,EC=2cm,求BD的长. 2 11.已知:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC. 12.已知:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE于F.求证: (1)△ABE为等腰三角形; (2)若 BC=1cm,AB=3cm,求EF的长.

垂径定理及其推论

垂径定理及其推论 一、 复习旧知 复习前面学习的圆的基本元素,重点复习圆心角、弧、弦之间的关系;强调圆是旋转对称图形、轴对称图形和中心对称图形。 二、 情境导入(出示赵州桥图片) 问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m ,你能求出赵州桥主桥拱的半径吗?现在同学们不会求,但是学了这节课你们就能把主桥拱的半径求出来了。 三、 出示学习目标 1、 利用圆的轴对称性探究垂径定理 2、 理清垂径定理及其推论的题设和结论。 3、 运用垂径定理及其推论进行有关的计算和证明。 4、 学会与垂径定理有关的添加辅助线的方法 四、 自学探究 1、如图,在纸上画⊙O ,AB 是⊙O 的一条弦, 作直径CD ⊥AB, 垂足为E.沿CD 折叠,你能发现图中有那些相等的线段和弧? 你能发现什么结论? 线段: AE=BE 弧: AC=BC, AD=BD 2、得出猜想 垂直于弦的直径平分弦,并且平分弦所对的两条弧 D

即如果CD⊥AB,那么AE=BE,弧AC=弧BC,弧AD=弧BD 3、请根据猜想写出命题的已知、求证,并写出证明过程 4、得出结论经过证明,以上命题是真命题。即垂直于弦的直径平分弦,并且平分弦所对的两条弧是成立的,我们把这个真命题叫做垂径定理 四、检测 1、(出示图形)检查下列图形是否具备应用垂径定理的条件? 五、例题讲解 已知:如图在⊙O中,弦AB的长是8cm,圆心O到AB的距离为3cm,求⊙半径 技巧总结:从例题看出圆的半径OA,弦心距OE及半弦长AE构成Rt△AOE.把垂径定理和勾股定理结合起来,解决问题。 六、练习 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB= cm。 七、思考 将垂径定理的题设和结论调换,命题还成立吗? 1、如果圆的一条直径平分弦(不是直径),那么它垂直于弦,并且平分弦所对的 两条弧 写出此命题的已知求证,并进行证明。 2、经验证,命题是正确的,由此得出垂径定理的推论1:平分弦(不是直径)的 直径垂直于弦,并且平分弦所对的两条弧。

四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)

平面几何中的四个重要定理 梅涅劳斯(Menelaus ) 定理(梅氏线) △ ABC 的三边BC 、CA 、AB 或其延长线上有点 P 、Q 、R ,贝U P 、Q 、R 共线的充 塞瓦(Ceva )定理(塞瓦点) △ ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,贝U AP 、BQ 、CR 共点的充要条件 西姆松(Simson )定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 要条件是 BP CQ AR 1 PC QA RB 是BP 殂塑1。 PC QA RB P 圆 。

-可编辑- 圆上。 例题: 1、设AD 是厶ABC 的边BC 上的中线,直线CF 交AD 于F 。求 、 AE 2AF 证:—— ED FB AE DC BF 【分析】CEF 截厶ABD T -------------------------- 1 (梅氏定理) ED CB FA 【评注】也可以添加辅助线证明:过 A 、B 、D 之一作CF 的平 行线。 【分析】连结并延长 AG 交BC 于M ,贝U M 为BC 的中点。 BE CF GM (DB DC) = GM 2MD EA FA = AG MD 2GM MD AB 、AC 于 E 、F ,交 CB 于 D 。 求证: BE CF 1。 EA FA DEG 截厶 ABM T DGF 截厶 ACM T BE AG MD EA GM DB CF AG MD FA GM DC 1 (梅氏定理) 1 (梅氏定理) A 2、过△ ABC 的重心G 的直线分别交

5、已知△ ABC 中,/ B=2 / C 。求证: 【评注】梅氏定理 【评注】梅氏定理 CG 相交于一点。 【分析】 【评注】塞瓦定理 3、D 、E 、F 分别在△ ABC 的 BC 、 匹圧些,AD 、BE 、 DC FB EA 【分析】 4、以△ ABC 各边为底边向外作相似的等腰厶 BCE 、△ CAF 、△ ABG 。求证: AE 、BF 、

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA 长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . (特殊情况) 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 (记忆的方法方法) 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

平面几何4--张角定理及西姆松定理

平面几何(4)----张角定理及西姆松定理 张角定理:设A ,C ,B 顺次分别是平面内一点P 所 引三条射线PA ,PC ,PB 上的点,线段AC ,CB 对 点P 的张角分别为,,αβ且180o αβ+<,则A ,C ,B 三点共线的充要条件是: sin()sin sin PC PB PA αβαβ+=+. 例1. 如图,已知ABCD 为四边形,两组对边延长后得到交点E ,F ,对角线BD//EF ,AC 的延长线交EF 于G ,求证:EG=GF. 例2. 已知ABC 的顶点A ,B ,C 对应的三边长分别为a ,b ,c ,E 为其内切 圆圆心,AE 交BC 于D ,求证:AE b c ED a +=

例3. 如图,在四边形ABCD 中,对角线AC 平分,BAD ∠在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G ,求证:GAC EAC ∠=∠ 例4. 如图,已知AM 是ABC 的边BC 上的中点,任作一直线顺次交AB ,AC ,AM 于P ,Q ,N ,求证: ,,AB AM AC AP AN AQ 成等差数列.

西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线(此线常称为西姆松线). 西姆松定理的逆定理: 若一点在三角形三边所在直线上的射影共线,则改点在此三角形的外接圆上. 例1. 如图,过正ABC 外接圆的 AC 上点P 作PD ⊥直线AB 于D ,作PE ⊥AC 于E ,作PF BC ⊥于F ,求证: 111PF PD PE +=

例2. 如图,设AD ,BE ,CF 为ABC 的三条高线,自D 点作DP AB ⊥于P ,DQ BE ⊥于Q ,DR CF ⊥于R ,DS AC ⊥于S ,连PS. 求证:Q ,R 在直线PS 上. 例3. 如图,设P 为ABC 外接圆上一点,作'PA BC ⊥交圆周于'A ,作'PB ⊥直线AC 交圆周于'B ,作'PC AB ⊥交圆周于'C ,求证:'''////AA BB CC

相关主题
文本预览
相关文档 最新文档