当前位置:文档之家› 排队论模型

排队论模型

排队论模型
排队论模型

排队论模型

随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。

排队论模型及其在医院管理中的作用

每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。

一、医院系统的排队过程模型

医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。

图1 医院系统的多级排队过程模型

二、排队系统的组成和特征

一般的排队系统都有三个基本组成部分:

1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。

2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。

3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

三、排队模型的分类方法

一个实际问题作为排队问题求解时,首先要研究它属于哪个模型。如果按照排队系统特征的各种可能情形来分类,是很多的。但通用的分类方法为:X/Y/Z

其中X处填写表示相继到达间隔时间的分布;Y处填写表示服务时间的分布;Z处填写并列的服务台的数目。

按照惯例,下面的符号常用来代替上式中的符号。

M——泊松到达或离去(或者到达间隔为指数分布或服务时间为指数分布)G——一般离去分布(或一般服务时间分布)

D——定长服务时间

如M/M/1即表示到达过程服从泊松分布,服务时间服从负指数分布,服务台为一个的情形。

四、排队系统的数量指标

1. 队长指在系统中的顾客数,它的期望值记作Ls;(这里及以后的顾客都可理解为病人)排队长(队列长),指在系统中排队等待服务的顾客数,它的期望值记作Lq;队长=排队长+正被服务的顾客数。一般情形,Ls(或Lq)越大,说明服务率越低。

2. 逗留时间指一个顾客在系统中的停留时间,它的期望值记作Ws。

等待时间,指一个顾客在系统中排队等待的时间,它的期望值记作Wq。逗留时间=等待时间+服务时间

据心理学调查,诊病问题中仅仅等待时间是病人们所关心的。

五、排队模型

1. M/M/1模型

M/M/1模型即指顾客到达服从泊松分布,服务时间服从负指数分布,单服务台的情形。它又分为标准型、顾客源有限型和服务系统容量有限型三种。由于一个城市或任何地区的所有人都被认为是医院的可能“顾客”,这样大的数目可以认为是无限的,因此顾客源为有限的这种情形本文就不讨论了。有些服务系统的容量是有限的,医院也有这种情形,如规定一天门诊挂100个号,那么第101个病人就会被拒绝。但是笔者近期观察了几家医院,发现由于实行了“门诊计量奖”,一般在日班门诊这段时间内到来的病人不会被拒绝(特殊科室除外)。因此我们也可假定医院系统的容量一般是无限的。这样我们就只讨论标准型。

标准的M/M/1模型是指适合下列条件的排队系统:

(1)输入过程——病人源是无限的,单个到来且相互独立,一定时间的到达数服从泊松分布,到达过程已是平稳的(到达间隔时间及期望值、方差均不受时间影响)。

(2)排队规则——单队,且对队长设有限制,先到先服务。

(3)服务机构——单服务台,各病人的诊治时间是相互独立的,服从相同的负指数分布。

此外,还假定病人到达间隔时间和诊治时间是相互独立的。

因M/M/1模型要求到达规律服从参数为λ的泊松过程,服务时间服从参数为μ的负指数分布,所以先介绍这两个概念:

λ——平均到达率,表示单位时间平均到达的病人数。

μ——平均服务率,表示单位时间能被服务完的病人数(期望值),而1/μ就表示一个病人的平均服务时间。在排队论中“平均”就指概率论中的数学期望,这是一种习惯用法。

这两个参数都需要实测的数据经过统计学检验来确定(方法见例1)。

λ/μ有着重要意义,它是相同时间区间内病人到达的期望值与能被服务的期望值之比,这个比是刻划服务效率和服务机构利用程度的重要标志。

令ρ=λ/μ我们称ρ为服务强度。

在解排队论问题时,要求求出系统在任意时间的状态为n(系统中有几个病它决定了系统运行的特征。

人数)的概率P

n,

关于服务的排队系统

对于呼叫中心来说,服务水平是最重要的KPI之一,是衡量呼叫中心服务质量的指标,提高并维护服务水平是每一个呼叫中心管理者都应该认真面对的问题。但是服务水平的控制却不是那么容易,原因是服务水平不像接通率那样,可以直接由现成的容易理解的数据得到,并且服务水平的波动也非常大。

要控制服务水平,首先要理解服务水平,了解影响服务水平的因素。所以在此,我们对服务水平进行深度的数学分析,全面了解服务水平的计算方法与主要的影响因素,并且给出控制服务水平的方法。

服务水平(Service Level)是一个百分比,指的是在指定时间内接听的电话的比例。在业内,一般来说服务水平采用的是20秒内接通率或者15秒内接通率。从理论上来说,只要我们可以知道每一通呼入的具体数据,就可以通过每通电话从转入人工到客户代表接起的时间,把在20秒或者15秒之内接听的呼入统计出来,再与总体呼入量相比,就可以得到准确的服务水平。

但是每天面对成千上万的呼入量,要得到每一通电话的具体数据是非常烦琐的,也是没有必要的。我们使用的CMS系统会自己帮我们统计这些数据,并且经过后台计算,得到服务水平的结果。但是CMS系统只告诉我们数据,服务水平与其他指标之间的关系还是需要我们自己去分析和理解,然后去控制。

其实,把呼叫中心简单化来看,就是一个非常标准的排队论模型。

从模型本身来看,是非常简单的三个过程,顾客到来、接受服务和离开。其中当顾客比较多,而服务台不能同时服务足够多的顾客时,就有顾客开始排队,直到自己被服务为止。对于呼叫中心,情况基本相同,服务水平就是本模型中有多少顾客等待时间少于20秒或者15秒。所以我们就可以利用排队论模型来对呼叫中心的相关数据进行分析。在排队论模型中,几个关键前提是:

1.顾客的到来服从固定的分布;

2.服务台的服务时间服从固定的分布;

3.服务规则。

下面就根据排队论模型的关键前提来对呼叫中心进行建模。

相信每个呼叫中心都有预测分析人员,会掌握每日的呼入分布,例如:上午的9:00-11:00和下午的3:00-5:00是呼入的高峰期,而吃饭时间呼入会比较小。呼入的分布从大的时段上看是有规律的,例如年周期、月周期、周周期等等。但是小到一定的程度呼入量就会趋向于随机分布。例如,从上午9:00-9:30的半小时,我们可以预测大约有300通呼入,但是我们不能预测呼入在这半小时中的分布情况,因为在半小时之内,呼入是随机的。那么,我们认为在半小时的时间内,呼入服从泊松分布。

相信每个呼叫中心的班次不同,各个时段的上班人数也不同,但是经过时段细分后,每半小时的上班人数是固定的。在我们的呼叫中心里,服务时间服从于以平均ACD与平均ACW之和为数学期望的负指数分布。

在每个呼叫中心,CTI和PBX对呼入进行分配,一般都采用了先到先服务的排队规则。

这样,以我们的呼叫中心为例,就得到排队论模型如下:

时间段:半小时

顾客:呼入的电话……服从泊松分布

服务台:所有的客户代表……服从负指数分布

服务规则:先到先服务

如果有的呼叫中心设定了系统容量或者到时间自动放弃等,也可以加入排队论模型,本模型只讨论系统容量默认为无限大,没有限时自动放弃(例如)的情况。这样,此模型中的指标也与呼叫中心的指标相对应,如下:顾客离开……呼叫放弃(半小时)

平均排队时长……平均速度应答(半小时)

平均顾客离开前等待时间……平均放弃时长(半小时)

这样通过对呼叫中心进行建模,我们可以掌握每半小时内的呼入等待分布、平均放弃分布、平均ACD与平均ACW之和的分布。进而明确影响这些指标的因素,通过对每半小时的指标控制来对整日、整周、整月的KPI指标进行控制。

在此,先考虑呼入不会放弃的情况,假设在半小时之内,呼入的电话服从参数为λ的泊松分布,客户代表的服务时间服从参数为?的负指数分布,目前有n 个客户代表上班,系统内有i个客户的概率为P(i),分析这个时候的排队系统,得到状态转移关系图:

由此得到差分方程:

求解,可以得到:

之后便可以进一步得到平均等待电话数和平均速度应答的公式:

由此数学模型,我们就可以计算出在半小时之内的平均速度应答情况,例如:在上午10:00-10:30之间,平均呼入为200通,则可设定λ=200。客户代表

的平均ACD+平均ACW为180秒,则可设定?=10。本时段有25名客户代表上班,则可设定c=25。

通过公式计算,可以得到,平均速度应答为7.5秒,平均等待人数为0.8个。当然这只是理想的情况,在实际工作中,客户在等待时间过长的时候会主动放弃,不过在CMS系统中,我们可以得到客户的平均放弃时长,把这个参数也加入到模型之中。如果CTI和PBX的设定不同,也可以在本模型中修改参数。

根据最简单的模型演示,我们也可以得到呼入的速度应答分布,如下图:

从图中可以看到,根据?、λ、c等参数的变化,分布曲线也是不同的,但是大体形状相同。因为呼入进线都需要客户代表有一个反映时间与震铃时间,所以在0秒处应答的电话为0。平均服务水平就是曲线与时间轴之间的面积。例如:20秒内接通率为曲线从0到20所做的定积分。而平均速度应答就是使积分面积等于总面积一半的点。

在本图中需要注意一点,当把呼入放弃加入本模型之后,主动放弃的呼入将不计入本曲线之内。

在本曲线中,?、λ、c等参数的变化是会影响图形形状的,如果λ很大,而c过小,则曲线将会便矮。如果λ>c?,则曲线形状将发生比较大的变化,因为变化后的曲线类型比较多,在此不一一讲述。

从排队论模型中可以看到,直接影响服务水平的可控制因素为?、λ、c等参数,同时服务规则等也会产生影响。我们在此对影响因素进行逐一分析。

1、λ

严格意义上说,λ是不可控制的,因为λ代表了电话的呼入情况。但是从大的时段上来看,这个参数也是可以部分控制的。通过营销活动、客户引导来改变电话呼入的分布。在呼叫中心,我们是为了满足客户的需求,只要λ在我们可预测的范围之内,我们可以不去改变它。

λ在本模型中代表了呼入的分布,在其他条件不变的情况下,λ越大,服务水平就越低。从影响程度上讲,λ对放弃率的影响可以认为是线形的,而对服务水平的影响是二次的。所以在呼叫中心的运营过程中,我们可以发现,当接通率下降1个百分点时,服务水平可能下降5到10个百分点。

2、μ

μ代表客户代表对每一通电话的服务速度,这是我们可控制的,通过对服务流程的改进和对客户代表的培训,可以加快?。在其他条件不变的情况下,μ越大,服务水平就越高。从影响程度上讲,?与λ是基本相同的。

3、c

c代表了排班人员在这半个小时内所安排的上班人数,完全是由排班人员指定的,也是我们最容易控制的。在其他条件不变的情况下,c越大,则服务水平就越高。这个参数对服务水平的影响也是最大的,我们可以发现,有的时候在呼入很大的情况下,也许只多加一个人就可以缓解很大的呼入压力,就是这个道理。

4、服务规则

从理论上讲,改变服务规则也可以对服务水平产生影响。一般来说,各个呼叫中心都使用了先到先服务的服务规则,但是如果把服务规则修改成当一通呼入等待时间超过20秒之后,就把它排在等待的最后一位。这样,在等待的队伍中,等待时间短于20秒的呼入会优先被接听。这样的话,在被接听的电话中,等待时间在20内的比率就会增加。在其他条件不变的情况,服务水平也会有所提高,不过改变服务规则的可行性不大。

那么,在实际的运营工作中,如果通过可行的方法改进服务水平呢?根据排队论模型的分析,我们给出以下建议:

1.做好话务预测工作,掌握呼入的周期性分布,能够准确预测出半小时呼入

量。并且通过对呼入量的分析来合理排班。

2.提高客户代表的工作效率,缩短每通电话的处理时间。

3.缩短震铃时间,就是从客户代表的电话铃响到接听的时间。一般来说,高

效的呼叫中心把这个时间控制在每通电话3秒钟以内。

4.当电话发生排队时(在呼叫中心的看板上显示),需要由现场监督人员加

强现场管理,尽快消除排队现象。

最后,本文中所列出的模型具有普遍性特征。因为电话的进线、排队、接听从根本上就是排队行为,只不过在细节上有所不同。对于其他的呼叫中心,可以根据自己的实际情况,找到呼入的分布,服务效率的分布,通过排队论模型得到相关的速度应答分布,更好的控制服务水平。

μ

()???<≥=-0

00t t e t b t

μμ ()()()t k k e k t k k t b μμμ---=11

基于排队理论的仿真模型

关键词:动态模拟蒙特卡洛模拟排队论 内容摘要:论文根据超市顾客到达的随机性和服务时间的随机性,用蒙特卡洛方法模拟不同的顾客到达和服务水平,在MA TLAB/Simulink上对超市单队列多收银台的服务系统进行了动态模拟仿真,得到不同顾客到达率和不同服务水平下,顾客的排队等待时间,服务器的空闲率等要素。 在超市收银排队系统中,顾客希望排队等待的时间越短越好,这就需要服务机构设置较多的收银台,这样可以减少排队等待时间,但会增加商场的运营成本。而收银台过少,会使服务质量降低,甚至造成顾客流失。如何科学合理地设置收银台的数量,以降低成本和提高效益,是商场管理人员需要解决的一个重要问题。 蒙特卡洛方法简介 蒙特卡洛方法又称随机模拟方法,它以随机模拟和统计试验为手段,从符合某种概率分布的随机变量中,通过随机选择数字的方法,产生一组符合该随机变量概率分布特性的随机数值序列,作为输入变量序列进行特定的模拟试验、求解(杜比,2007)。在应用该方法时,要求产生的随机数序列应符合该随机变量特定的概率分布。应用该方法的基本步骤如下: 步骤1:建立概率模型,即将所研究的问题变为概率问题,构造一个符合其特点的概率模型;步骤2:产生一组符合该随机变量概率分布特性的随机数值序列;步骤3:以随机数值序列作为系统的抽样输入进行大量的数字模拟试验,以得到模拟试验值;步骤4:对模拟试验结果进行统计处理(如计算频率、均值等),进而对研究问题做出解释。 基于排队理论的仿真模型建立 (一)超市服务排队模型(M/M/C) 超市收款台服务是一个随机服务系统(唐应辉,2006),该系统具有如下特征:服务的对象是已经选购好商品的顾客,顾客源是无限的,顾客之间相互独立,顾客相继到达的时间间隔是随机的。系统有多个服务员且对每个顾客的服务时间是相互独立的。服务规则遵从先到后服务(FCFS)的原则。每个收款台前都有排队队列,顾客选择较短的队列排队等候,这样形成单队列多服务员(M/M/C)的排队系统。超市收银台顾客排队系统结构见图1。 (二)产生随机数值序列 由于顾客到达间隔时间和顾客服务的时间服从负指数颁布的随机数。令这个负指数分布的随机数为x,负指数分布密度函数为:,其分布函数为:,F(x)的反函数为。设u为[0,1]区间上的独立、均匀分布的随机变量,则所求随机数为,进而简化得,这样得到负指数分布的随机数(吴飞,2006)。 针对商场顾客到达和服务水平的统计数据,据此可产生两个随机数列:顾客到达时间间隔a (i)和顾客服务时间st(i),以此数值序列进行动态输入仿真。 (三)模型变量设置 at(i):表示第i 个顾客到达时刻; a(i):表示第i个顾客到达的时间间隔;st(i):第i个顾客的服务时间;sst(i): 第i个顾客的开始服务时间;lea(i):第i个顾客离开时间;ls(j):第j个队列中最后一个顾客的离开时间;ls(m):每个队列中最后一个顾客离开时间的最早值;freet(j):第j个

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

排队论模型

排队论模型 随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一、医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1 医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

排队论及其在通信领域中的应用

排队论及其在通信领域中的应用 信息与通信工程学院 2班 姓名:李红豆 学号:10210367 班内序号:26 指导老师:史悦 一、摘要 排队论是为了系统的性态、系统的优化和统计推断,根据资料的合理建立模型,其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。排队是一种司空见惯的现象,因此排队论可以用来解决许多现实问题。利用排队论的知识可以来解决通信服务中的排队论问题。应用排队论一方面可以有效地解决通信服务系统中信道资源的分配问题;另一方面通过系统优化,找出用户和服务系统两者之间的平衡点,既减少排队等待时间,又不浪费信号资源,从而达到最优设计的完成。 二、关键字 排队论、最简单流、排队系统、通信 三、引言 排队论又称随机服务系统, 主要解决与随机到来、排队服务现象有关的应用问题。是研究系统由于随机因素的干扰而出现排队(或拥塞) 现象的规律的一门学科, 排队论的创始人Erlang 是为了解决电话交换机容量的设计问题而提出排队论。它适用于一切服务系统,包括通信系统、计算机系统等。可以说, 凡是出现拥塞现象的系统, 都属于随机服务系统。随着电子计算机的不断发展和更新, 通信网的建立和完善, 信息科学及控制理论的蓬勃发展均涉及到最优设计与最佳服务问题, 从而使排队论理论与应用得到发展。 四、正文 1、排队论概述: 1.1基本概念及有关概率模型简述: 排队论是一个独立的数学分支有时也把它归到运筹学中。排队论是专门研究由于随机因素的影响而产生的拥挤现象(排队、等待)的科学也称为随机服务系统理论或拥塞理论。它专于研究各种排队系统概率规律性的基础上解决有关排队系统的最优设计和最优控制问题。 排队论起源于20世纪初。当时美国贝尔Bell电话公司发明了自动电话以后如何合理配臵电话线路的数量以尽可能地减少用户重复呼叫次数问题出现了。 1909年丹麦工程师爱尔兰发表了具有重要历史地位的论文“概率论和电话交换”从而求解了上述问题。 1917年又提出了有关通信业务的拥塞理论用统计平衡概念分析了通信业务量问题形成了概率论的一个新分支。后经C.Palm等人的发展由近代概率论观点出发进行研究奠定了话务量理论的数学基础。

M M C ∞排队系统模型及其应用实例分析

M M C ∞排队系统模型及其应用实例分析 摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。 关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解 1M/M/C/∞排队系统 1.1排队论的概念及排队系统的组成 上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。 任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。③服务机构描述服务台数目及服务规律。服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。 1.2M/M/C/∞排队模型 ①排队系统模型的表示。目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。他用3个字母组成的符号A/B/C表示排队系统。为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。 ②排队系统的衡量指标。—所有服务设施空闲的概率;—系统中的顾客总数;—队列中的顾客总数;—顾客在系统中的停留时间;—顾客在队列中的等待时间。 ③M/M/C/∞排队模型。排队系统模型大体上可以分为简单排队系统,特殊排队系统,休假排队系统及可修排队系统。纵观所有排队系统的模型,无非是系统的三个组成部分分别为不同情况时,进行的排列组合,并由此导致排队系统的数量指标的计算公式不一致。无论是何种排队系统,其研究实质都是如何平衡等待时间

李春晓毕业论文之排队论模型及其应用

排队论模型及其应用 摘要:排队论是研究系统随机服务系统和随机聚散现象工作过程中的的数学理论和方法,又叫随机服务的系统理论,而且为运筹学的一个分支。又主要称为服务系统,是排队系统模型的基本组成部分。而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。比如:学校超市的排队现象或出行车辆等现象,。排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统计平衡模型,并由此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。 关键词:出行车辆;停放;排队论;随机运筹学 引言:排队论既被广泛的应用于服务排队中,又被广泛的应用于交通物流领域。在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。然而有基于扩展原理又对模糊排队进行了一定的分析。然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为W,而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。 一.排队模型 排队论是运筹学的一个分支,又称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。 一般排队系统有三个基本部分组成]1[: (1)输入过程: 输入过程是对顾客到达系统的一种描述。顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。 (2)排队规则: 排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。排队规则可以分为3种制式: a 损失制系统------顾客到达服务系统时,如果系统中的所有服务窗均被占用,则顾客即时离去,不参与排队,因为这种服务机制会失掉许多顾客,故称损失制系统; b 等待制系统------顾客到达服务系统时,虽然发现服务窗均忙着,但系统设有场地供顾客排队等候之用,于是到达系统的顾客按先后顺序进行排队等候服

基于排队论模型的收费站优化设计

龙源期刊网 https://www.doczj.com/doc/077770020.html, 基于排队论模型的收费站优化设计 作者:刘昕岳丁韩旭杨佳琪 来源:《科学家》2017年第15期 摘要本文从形状、尺寸、组合等因素入手,以减少等待时间与不必要的费用为目的,设计了一个新型高速公路收费站。首先,在系统稳态的基础上,运用排队论模型建立收费站车辆行为模型的基本模型。其次,利用元胞自动机算法模拟了四种不同轮廓下的交通流,并分析了它们对拥塞的抵抗能力。最后,进行了遗传算法优化分析,最大限度地提高了吞吐量,降低了成本,提出一种新型的具有双重停车和互惠共享车道的高速公路收费站方案。 关键词排队论模型;元胞自动机算法;遗传算法;高速公路收费站 中图分类号 TP2 文献标识码 A 文章编号 2095-6363(2017)15-0010-01 随着经济不断发展,人们的日常生活节奏不断加快,需要避免把时间浪费在不必要的事情上,比如等待排队,应该花更多的时间去创造更多的价值。基于这样的社会背景,有必要系统地评估高速公路收费站设计。众所周知,高速公路收费站总是浪费时间。除了司机在等待收费亭的时间浪费,如果车辆迅速增加,更容易造成交通堵塞(瓶颈)。如何合理的设计收费站是一个急需解决的问题。 1 排队论模型建立 排队论模型中,车到达一个单次和连续到达的时间间隔服从负指数分布的参数λ。系统中有s服务站。每个服务站的服务时间是相互独立的,服从参数m的负指数分布。当顾客到达时,如果有免费服务台,第一辆车将立即接受服务,否则汽车将排队等候。且等待的时间是无限的。 下面讨论了这个排队系统的平滑分布。本文认为,在系统达到稳定状态后,队列长度n的概率分布等于(n=1,2,…)。设收费站数目为B。 通过公式推导表明,繁忙收费站平均数目并不取决于收费站数目B。 λn=λ,n=0,1,2,… 相关文献给出了在平衡条件下系统中车辆数为n的概率。当收费广场的车辆数目超过或等于收费站的数目,返回的车辆必须等候。 继续推导得到平均队列长度: LB=平均队列长度+被送达车辆的平均数=Lq+p

数学建模港口问题_排队论

排队模型之港口系统 本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1 M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。好。关键词:问题提出: 一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。 那么,每艘船只在港口的平均时间和最长时间是多少 若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少 卸货设备空闲时间的百分比是多少 船只排队最长的长度是多少 问题分析: | 排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。【1】 M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前//1 面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。 蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神

排队论模型

排队论模型 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方 法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初, 美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论 基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)

都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,

排队论例题

排队论例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

几种典型的排队模型 (1)M/M/1///FCFS 单服务台排队模型 系统的稳态概率n P 01P ρ=-,/1ρλμ=<为服务强度;(1)n n P ρρ=-。 系统运行指标 a.系统中的平均顾客数(队长期望值) 0.s n i L n P λμλ∞=== -∑; b.系统中排队等待服务的平均顾客数(排队长期望值) 0(1).q n i L n P ρλμλ ∞==-= -∑; c.系统中顾客停留时间的期望值 1[]s W E W μλ == -; d.队列中顾客等待时间的期望值 1q s W W ρμμλ=- =-。 (2) M/M/1/N//FCFS 单服务台排队模型 系统的稳态概率n P 011,11N P ρρρ+-= ≠-; 11,1n n N P n N ρρρ +-=<- 系统运行指标 a .系统中的平均顾客数(队长期望值) b .系统中排队等待服务的平均顾客数(排队长期望值) c .系统中顾客停留时间的期望值 d .队列中顾客等待时间的期望值 。1q s W W μ=- (3) M/M/1//m/FCFS (或M/M/1/m/m/FCFS )单服务台排队模型 系统的稳态概率n P 00 1!()()!m i i P m m i λμ==-∑; 0!(),1()!n n m P P n m m n λμ=≤≤- 系统运行指标 a .系统中的平均顾客数(队长期望值) b .系统中排队等待服务的平均顾客数(排队长期望值) c .系统中顾客停留时间的期望值

排队论模型

排队论模型 随机服务系统理论是研究山顾客、服务机构及其排队现象所构成的一种排队系统的理论,乂称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设讣与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。山于病人到达时间的随机性或诊治病人所需时间的随机性,排队儿乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一.医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复朵的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1.输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2.排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗, 在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3.服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的; 服务时间的分布与时间有关或无关。 三、排队模型的分类方法

MMN排队系统建模与仿真

. 《系统仿真与matlab》综合试题....................... 错误!未定义书签。 M/M/N 排队系统的模拟仿真 (1) 摘要 (1) 1. 问题分析 (3) 2. 模型假设 (4) 3. 符号说明 (5) 4. 模型准备 (5) 4.1 排队系统的组成和特征 (5) 4.1.1输入过程 (6) 4.1.2排队规则 (6) 4.1.3服务过程 (7) 4.1.4排队系统的主要指标 (7) 4.2输入过程与服务时间的分布 (8) 4.2.1负指数分布 (8) 4.2.2泊松分布 (8) 4.3生灭过程 (9) 5. 标准M/M/N模型 (11) 5.1多服务台模型准备 (11) 5.2多服务台模型建立 (12) 5.2.1服务利用率 (12) 5.2.2平均排队长 (13) 5.2.3平均队长 (13)

5.2.4平均等待时间 (14) 6. 程序设计 (14) 6.1动画流程图 (14) 6.2 M/M/N流程图 (15) 7. 程序运行实例介绍 (16) 7.1动画实例讲解 (16) 7.2M/M/N排队系统实例讲解 (18) 8. 程序实现难点和模型评价 (21) 8.1程序实现难点 (21) 8.2模型评价 (21) 9. 参考文献 (21) 10. 附录 (22) 10.1动画实现的核心程序 (22) 10.2 M/M/N模型计算主要程序 (32) M/M/N 排队系统的模拟仿真 摘要

排队是在日常生活中经常遇到的事,由于顾客到达和服务时间的随机性,使得排队不可避免。因此,本文建立标准的M/M/N模型,并运用Matlab软件,对M/M/N排队系统就行了仿真,从而更好地深入研究排队问题。 问题一,基于顾客到达时间服从泊松分布和服务时间服从负指数分布,建立了标准的M/M/N模型。运用Matlab软件编程,通过输入服务台数量、泊松分布参数以及负指数分布参数,求解出平均队长、服务利用率、平均等待时间以及平均排队长等重要指标。然后,分析了输入参数与输出结果之间的关系。得出当服务台数增加时,几个参数都会变小的结论。 问题二,为了更加清晰地反映出实际排队过程。本文通过运用Matlab软件编程,制作了M/M/1排队过程的动画仿真,通过输入泊松分布参数以及负指数分布参数来模拟不同情况下的排队过程。通过仿真动画,可以看到明显的等待和排队过程。 问题三,为了清晰地展示程序执行的效果以及程序功能的使用方法。本文特意制作了程序运行指南,并做了程序运行实例分析。通过详细地介绍,使读者能更好地理解M/M/N模型以及如何使用该仿真程序。 最后,对建立的M/M/N模型做了评价,并提出了一些改进的思路。同时,指

MMN排队系统建模与仿真

《系统仿真与matlab》综合试题...................... 错误!未定义书签。 M/M/N 排队系统的模拟仿真 (1) 摘要 (1) 1. 问题分析 (2) 2. 模型假设 (2) 3. 符号说明 (3) 4. 模型准备 (3) 4.1 排队系统的组成和特征 (3) 4.1.1输入过程 (4) 4.1.2排队规则 (4) 4.1.3服务过程 (4) 4.1.4排队系统的主要指标 (5) 4.2输入过程与服务时间的分布 (5) 4.2.1负指数分布 (5) 4.2.2泊松分布 (5) 4.3生灭过程 (6) 5. 标准M/M/N模型 (8) 5.1多服务台模型准备 (8) 5.2多服务台模型建立 (9) 5.2.1服务利用率 (9) 5.2.2平均排队长 (9) 5.2.3平均队长 (10) 5.2.4平均等待时间 (10) 6. 程序设计 (11) 6.1动画流程图 (11) 6.2 M/M/N流程图 (12) 7. 程序运行实例介绍 (13) 7.1动画实例讲解 (13) 7.2M/M/N排队系统实例讲解 (14) 8. 程序实现难点和模型评价 (17) 8.1程序实现难点 (17) 8.2模型评价 (17) 9. 参考文献 (17) 10. 附录 (17) 10.1动画实现的核心程序 (17) 10.2 M/M/N模型计算主要程序 (22)

M/M/N 排队系统的模拟仿真 摘要 排队是在日常生活中经常遇到的事,由于顾客到达和服务时间的随机性,使得排队不可避免。因此,本文建立标准的M/M/N模型,并运用Matlab软件,对M/M/N排队系统就行了仿真,从而更好地深入研究排队问题。 问题一,基于顾客到达时间服从泊松分布和服务时间服从负指数分布,建立了标准的M/M/N模型。运用Matlab软件编程,通过输入服务台数量、泊松分布参数以及负指数分布参数,求解出平均队长、服务利用率、平均等待时间以及平均排队长等重要指标。然后,分析了输入参数与输出结果之间的关系。得出当服务台数增加时,几个参数都会变小的结论。 问题二,为了更加清晰地反映出实际排队过程。本文通过运用Matlab软件编程,制作了M/M/1排队过程的动画仿真,通过输入泊松分布参数以及负指数分布参数来模拟不同情况下的排队过程。通过仿真动画,可以看到明显的等待和排队过程。 问题三,为了清晰地展示程序执行的效果以及程序功能的使用方法。本文特意制作了程序运行指南,并做了程序运行实例分析。通过详细地介绍,使读者能更好地理解M/M/N模型以及如何使用该仿真程序。 最后,对建立的M/M/N模型做了评价,并提出了一些改进的思路。同时,指出了程序实现的难点等问题。 关键词:M/M/N排队系统泊松分布负指数分布动画模拟仿真

相关主题
文本预览
相关文档 最新文档