当前位置:文档之家› 纳滤技术的特点及其应用

纳滤技术的特点及其应用

纳滤技术的特点及其应用
纳滤技术的特点及其应用

纳滤技术的特点及其应用

摘要:纳滤是介于反渗透和超滤之间的一种膜分离技术。文章综述了纳滤膜的特性,分离机理,影响纳滤膜分离特性的因素及其在水处理、制药业、食品及染料等行业过程中的应用,并对其更广泛的发展前景进行展望。

关键词: 纳滤; 纳滤膜; 膜分离; 应用

20 世纪80 年代初期发展起来纳滤(NF)与反渗透和超滤一样均属于压力驱动的膜分离过程。它通过膜的渗透作用,借助外界能量或化学位差的推动,对两组分或多组分混合气体或液体进行分离、分级、提纯和富集。作为一种新型的分离技术,纳滤膜在分离过程中表现以下两个显著特征:一个是因为纳滤膜表面分离层由聚电解质所构成,对离子有静电相互作用,所以对无机盐有一定的截留率;

2000,介于反渗透膜和超滤膜之间[1]。纳滤膜的表另一个是其截留分子量为200

~

层孔径处于纳米级范围,在渗透过程中截留率大于90%的最小分子约为1nm,因而称为纳滤[2]。

1.纳滤膜的分离机理

纳滤膜分离机理的研究自纳滤膜产生以来一直是热点问题。尽管纳滤膜的应用越来越广泛,其迁移机理还没能确切地弄清楚。传统理论认为纳滤膜传质机理与反渗透膜相似,是通过溶解扩散传递。随着对纳滤膜应用和研究的深入,发现这种理论不能很好解释纳滤膜在分离中表现出来的特征。就目前提出的纳滤膜机理来看,表述膜的结构与性能之间关系数学模型有电荷模型、道南-立体细孔模型、静电位阻模型。

电荷模型根据对膜内电荷及电势分布情形的不同假设,分为空间电荷模型(the SpaceCharge Model)和固定电荷模型(the Fixed-Charge Model)。空间电荷模型[3]最早由Osterle 等提出,该模型的基本方程由Poisson-Boltzmann 方程、Nernst-P1anck 方程和Navier-Stokes 方程等来描述。运用空间电荷模型,不仅可以描述诸如膜的浓差电位、流动电位、表面Zeta 电位和膜内离子电导率、电气粘度等动电现象,还可以表示荷电膜内电解质离子的传递情形。固定电荷模型[4]最早由Teorell、Meyer 和Sievers 提出,因而通常又被人们称为

Teorell-Meyer-Sievers(TMS)模型。固定电荷模型假设膜为一个凝胶相,其电荷分布均匀、贡献相同;离子浓度和电位在传递方向具有一定梯度;主要描述膜浓差电位、溶剂和电解质在膜内渗透速率及其截留性。

道南-立体细孔模型[1, 5](Donnan-steric Pore Model)建立在Nernst-planck 扩展方程基础上,用于表征两组分及三组分的电解质溶液的传递现象,假定膜是由均相同质,电荷均布的细孔构成,分离离子时,离子与膜面电荷之间存在静电

作用,相同电荷排斥而相反电荷间相互吸引,当离子在极细微的膜孔隙中的扩散和对流传递过程中会受到立体阻碍作用的影响。

近来,Wang 等[6]建立了静电排斥和立体阻碍模型(the E1ectrostatic and Steric-hindranceMode1)又可简称为静电位阻模型。静电位阻模型假定膜分离层由孔径均一、表面电荷分布均匀的微孔构成,其结构参数包括孔径r p、开孔率A k、孔道长度即膜分离层厚度Δx。电荷特性参数则表示为膜的体积电荷密度X(或膜的孔壁表面电荷密度为q)。根据上述膜的结构参数和电荷特性参数,对于已知的分离体系,就可以运用静电位阻模型预测各种溶质(中性分子、离子)通过膜的传递分离特性(如膜的特征参数)。

2. 纳滤膜的特性

2.1 纳滤膜的荷电性[7,8]

纳滤膜的荷电性是纳滤膜最重要特征之一,这种影响1911年被发现并首先用于解释离子交换膜的原理。荷电性与膜材料以及制造工艺等相关联,荷电与否、荷电种类、材料及荷电的强度对膜性能影响较大,荷电对纳滤膜抗污染性能也有一定的影响。

新型纳滤膜大多具有一定的电荷(往往带负电),导致纳滤膜的截留机理不同于传统的软化纳滤膜的机械筛分机理,其加入了膜与无机物阳离子,膜与有机物的电性作用。

2.2 纳滤膜对无机物的分离特性

纳滤膜对无机离子的去除介于反渗透膜和超滤膜之间,它对不同的无机离子有不同的分离特性[7,9,11],这是纳滤膜与反渗透膜分离性能的主要差别。

Kristina等[10]指出NaCl的截留率与溶液的浓度有很大关系,当溶液浓度由0.05mol/L增至1mol/L时,NaCl的截留率由45%降至7%。在用纳滤膜处理含大量金属离子的溶液时发现Cd、Zn、Pb、Cr等离子的截留率大于90%,而K、Na等离子的截留率则小于10%。

2.3 纳滤膜对有机物的分离特性[8,9]

纳滤膜一般对分子量在200以上的有机物具有较好的分离效果,去除率大于90%,基于此提出纳滤膜截留分子量为200-500,但有些文献[9]认为纳滤膜截留分子量的范围可为200-1000,甚至200-2000。在同样的操作条件下,纳滤膜对憎水性的有机物去除效果最好(97.5%以上),而亲水性的有机物一般为小分子有机物,可以较顺利地与水分子一起透过纳滤膜,从而说明纳滤膜对有机物去除的选择性。

3. 影响纳滤膜分离特性的因素[7,12,13]

3.1 共离子

纳滤膜对离子的截留率受到共离子的强烈影响,对同一种膜而言,在分离同种离子并在该离子浓度恒定条件下,共离子价数相等,共离子半径越小,膜对该离子的截留率越小,共离子价数越高,膜对该离子的截留率越高。纳滤膜对二价离子的截留率较一价离子截留率高得多,主要是由于离子半径和静电斥力作用影响造成的。

3.2 操作条件

操作条件对纳滤膜的分离性能有直接影响,操作压力的提高可提高水通量和脱盐率,回收率的提高可降低水通量和脱盐率,料液速率的提高可提高水通量和脱盐率。纳滤膜的耐压密性好,水通量和截留率随操作时间延长基本不变,对分子量数百的有机小分子和高价离子有较高的脱除率。

3.3 其它条件

由于道南离子效应的影响,物料的荷电性,离子价数,离子浓度,溶液pH 值等对纳滤膜的分离效率有一定的影响。

4. 纳滤膜分离技术的应用

4.1 纳滤膜分离技术在食品工业中的应用

4.1.1 低聚糖的分离和精制[14,15]

低聚糖是两个以上单糖组成的碳水化合物,分子量数百至几千,主要应用于食品工业,可改善人体内的微生态环境,提高人体免疫功能,降低血脂,抗衰老、抗癌,具有很好的保健功能,因而得到越来越广泛的应用。低聚糖与蔗糖的分子量相差很小,分离很困难,通常采用高效液相色谱法分离。但此法不仅处理量小,耗资大,并且需要大量的水稀释,因而后面浓缩需要的能耗也很高。采用纳滤膜技术来处理可以达到高效液相分离法同样的效果,甚至在很高的浓度区域实现三糖以上的低聚糖同葡萄糖、蔗糖的分离和精制,而且大大降低了操作成本。

Matsubara 等[15]从大豆废水中提取低聚糖,用超滤分离有效去除残留蛋白后,反渗透除盐,纳滤精制分离低聚糖。采用分批操作,可将废液浓度从10%浓缩到22%。经过纳滤,浓缩液中的总糖含量达8.27%,再经活性炭脱色、离子交换脱盐及真空浓缩,即可得透明状大豆低聚糖浆。

4.1.2 果汁的浓缩

果汁的浓缩传统上是用蒸馏法或冷冻法浓缩,不仅能耗大,且导致果汁风味和芳香成分的散失。Nabetani[16]用反渗透膜和纳滤膜串联起来进行果汁浓缩,以获得更高浓度的浓缩果汁。应用这个技术进行各种果汁浓缩,可以保证果汁的色、香、味不变,也可节省大量能源,提高经济效益。将反渗透与纳滤连用,可得到40%的果汁浓缩液所需的能耗仅为通常蒸馏法的八分之一或冷冻法的五分之。

纳滤技术的特点及其应用

纳滤技术的特点及其应用 摘要:纳滤是介于反渗透和超滤之间的一种膜分离技术。文章综述了纳滤膜的特性,分离机理,影响纳滤膜分离特性的因素及其在水处理、制药业、食品及染料等行业过程中的应用,并对其更广泛的发展前景进行展望。 关键词: 纳滤; 纳滤膜; 膜分离; 应用 20 世纪80 年代初期发展起来纳滤(NF)与反渗透和超滤一样均属于压力驱动的膜分离过程。它通过膜的渗透作用,借助外界能量或化学位差的推动,对两组分或多组分混合气体或液体进行分离、分级、提纯和富集。作为一种新型的分离技术,纳滤膜在分离过程中表现以下两个显著特征:一个是因为纳滤膜表面分离层由聚电解质所构成,对离子有静电相互作用,所以对无机盐有一定的截留率; 2000,介于反渗透膜和超滤膜之间[1]。纳滤膜的表另一个是其截留分子量为200 ~ 层孔径处于纳米级范围,在渗透过程中截留率大于90%的最小分子约为1nm,因而称为纳滤[2]。 1.纳滤膜的分离机理 纳滤膜分离机理的研究自纳滤膜产生以来一直是热点问题。尽管纳滤膜的应用越来越广泛,其迁移机理还没能确切地弄清楚。传统理论认为纳滤膜传质机理与反渗透膜相似,是通过溶解扩散传递。随着对纳滤膜应用和研究的深入,发现这种理论不能很好解释纳滤膜在分离中表现出来的特征。就目前提出的纳滤膜机理来看,表述膜的结构与性能之间关系数学模型有电荷模型、道南-立体细孔模型、静电位阻模型。 电荷模型根据对膜内电荷及电势分布情形的不同假设,分为空间电荷模型(the SpaceCharge Model)和固定电荷模型(the Fixed-Charge Model)。空间电荷模型[3]最早由Osterle 等提出,该模型的基本方程由Poisson-Boltzmann 方程、Nernst-P1anck 方程和Navier-Stokes 方程等来描述。运用空间电荷模型,不仅可以描述诸如膜的浓差电位、流动电位、表面Zeta 电位和膜内离子电导率、电气粘度等动电现象,还可以表示荷电膜内电解质离子的传递情形。固定电荷模型[4]最早由Teorell、Meyer 和Sievers 提出,因而通常又被人们称为 Teorell-Meyer-Sievers(TMS)模型。固定电荷模型假设膜为一个凝胶相,其电荷分布均匀、贡献相同;离子浓度和电位在传递方向具有一定梯度;主要描述膜浓差电位、溶剂和电解质在膜内渗透速率及其截留性。 道南-立体细孔模型[1, 5](Donnan-steric Pore Model)建立在Nernst-planck 扩展方程基础上,用于表征两组分及三组分的电解质溶液的传递现象,假定膜是由均相同质,电荷均布的细孔构成,分离离子时,离子与膜面电荷之间存在静电

纳滤膜的工作原理及特点

纳滤膜的工作原理及特点 纳滤(NF)是20世纪80年代后期发展起来的一种介于反渗透和超滤之间的新型膜分离技术,早期称为“低压反渗透”或“疏松反渗透”,是为了适应工业软化水的需求及降低成本而发展起来的一种新型的压力驱动型膜过程。 工作原理: 纳滤是在压力差推动力作用下,盐及小分子物质透过纳滤膜,而截留大分子物质的一种液液分离方法,又称低压反渗透。纳滤膜截留分子量范围为200-1000MWCO,介于超滤和反渗透之间,主要应用于溶液中大分子物质的浓缩和纯化。

1、料液具有足够的流速可将被膜截留的物质从膜表面剥离,连续不断的剥离降低了膜的污染程度,因而可在较长的时间内维持较高的膜渗透通量。 2、纳滤系统多采用错流过滤的方式。错流方式避免了在死端过滤过程中产生的堵塞现象:料液流经膜的表面,在压力的作用下液体及小分子物质透过纳滤膜,而不溶性物质和大分子物质则被截留。 3、错流过程同时避免了在死端过滤(如板框压滤机、鼓式真空过滤机)过程中依靠滤饼层进行过滤的情况,分离发生在膜表面而不是滤饼层中,因而滤液质量在整个过程中是均一而稳定的。滤液的质量取决于膜本身,使生产过程完全处于有效的控制之中。 纳滤膜的特点 1、纳滤膜的电荷效应 荷电效应是指离子与膜所带电荷的静电相互作用。大多数纳滤膜的表面带有负电荷,他们通过静电相互作用,阻碍多价离子的渗透,这是纳滤膜在较低压力下仍具有较高脱盐性能的重要原因。 2、对不同价态的离职截留效果不同 对二价和高价离子的截留率明显高于单价离子。对阴离子的截留率按下列顺序递增:NO3-、CI-、OH-、SO42-、CO32-;对阳离子的截留率按下列顺序递增:H+、Na+、K+、Mg2+、Ca2+、Cu2+。

纳滤系统操作规程

纳滤系统操作规程 1、系统图 图1:纳滤系统流程图 2、操作规程 2.1 原水调节 测定原水(超滤产水)pH值,碱度,硬度,余氯,电导,含盐量。按照余氯值(摩尔数)的3倍量加入NaHSO3,再加H2SO4调节pH至4~6,试验加酸量。计算碳酸钙饱和指数(L.S.I),得到极限浓缩倍率。准备药品:5%的HCl和NaHSO3,计量泵流量调节到预定值。 2.2 设备启动 开启纳滤系统电源,开启V1,给水泵旋钮位于停止位置;开启给水泵(清水泵)供水,调节流量为2T/h,调节加药开始加药,直到中间水箱水位超过低水位警戒线。 开启V3,打开循环水泵的排气阀,排气后关闭,再开启V4,打开保安过滤器排气阀,排气后关闭,开启阀门V6,V7和V9,关闭V5,V12,V8,V13,V10,V11。再将原水泵旋钮打到手动位置,启动原水泵,打开高压泵排气阀,排气后关闭,将系统冲洗10~15min。 关闭V6,开启V10,将原水泵旋钮打到自动位置,系统自动同时启动原水泵和高压泵,渐渐开启V6,直到高压泵运行正常,浓水流量达到预定值2T/h,渐渐关闭V7,直到进水压力上升为0.6MPa,或产水到达5L/min。注意产水箱排水。 2.3 参数调节 根据碳酸钙极限浓度,设置安全系数为1.2,同时调节V8和V9,以调节纳滤膜平均回收率,约为70~80%。同时根据流量平衡需要调节进水流量和加药流量。密切关注系统压力和流量变化。 2.4 设备停运、膜组件保护 设备停运时,关闭清水泵和进水阀,关闭加药装置。缓慢开启V9和V7,关闭V8和V10,将电源旋钮调到停止位。再开启V3,将电源旋钮调到手动位,开始清洗15~30min。 保护液灌注,先用原水冲洗干净,在循环水箱中配一定量的保护液(亚硫酸钠溶液或福尔马林溶液),开启V3,将电源旋钮调到手动位,循环1min后关闭进出口阀门和原水泵。

纳滤膜的结构以及原理

一纳滤膜原理及现代工业应用 纳滤膜的定义 透过物大小在1-10nm,膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。 纳滤膜工作原理 纳滤是在压力差推动力作用下,盐及小分子物质透过纳滤膜,而截留大分子物质的一种液液分离方法,又称低压反渗透。纳滤膜截留分子量范围为200-1000MWCO,介于超滤和反渗透之间,主要应用于溶液中大分子物质的浓缩和纯化。 纳滤膜概述 1. 纳滤系统多采用错流过滤的方式。错流方式避免

了在死端过滤过程中产生的堵塞现象:料液流经膜的表面,在压力的作用下液体及小分子物质透过纳滤膜,而不溶性物质和大分子物质则被截留; 2. 料液具有足够的流速可将被膜截留的物质从膜表面剥离,连续不断的剥离降低了膜的污染程度,因而可在较长的时间内维持较高的膜渗透通量。 3. 错流过滤是最有效、最可靠、最可以创造经济效益的膜分离手段。 4. 错流过程同时避免了在死端过滤(如板框压滤机、鼓式真空过滤机)过程中依靠滤饼层进行过滤的情况,分离发生在膜表面而不是滤饼层中,因而滤液质量在整个过程中是均一而稳定的。滤液的质量取决于膜本身,使生产过程完全处于有效的控制之中。 卷式纳滤膜的结构 卷式纳滤膜组件设计简单,填充密度大,内部结构为多个“膜袋”卷在一多孔中心管外形成,膜袋三边粘封,另一边粘封于多孔中心管上,膜袋内以多孔支撑材料形成透过物流道。膜袋与膜袋间以网状材料形成料液流道,料液平行于中心收集管流动,进入膜袋内的透过物,旋转着流向中心收集管,并由中心收集管流出。 二、系统操作规程

A. 系统启动前的准备工作 检查物料的供应是否正常。 检查所有的电器设备连接和接地是否完好。 检查所有的仪表是否完好。 检查所有的管道、阀门是否完好。 检查所有的泵的润滑。 进料前保证系统内充满水。 启动系统电源,点动所有的泵,检查泵的旋转方向是否正确。 B. 系统运行程序 1、打开系统进料管路阀门:进料罐底阀,保安泵进出口阀,过滤器进出口阀,输送泵泵进出口阀; 打开纳滤系统内相关阀门:循环泵出料阀,膜设备进料阀,膜设备出料阀,膜设备滤出液阀,打开浓缩液出口阀; 膜运行模式切换成恒流量模式; 启动保安泵泵,使系统保持相应压力,用料液充满膜系统。 打开输送泵进出阀,启动输送泵。 启动循环泵(依次1#,2#,3#,且待前一组到达相应流量再启动下一组泵),缓慢调节浓缩液出口阀,以达到需要的压力以及浓缩倍数。

纳滤运行管理手册

纳滤系统操作规程 一、多介质过滤装置的操作 一)、启动前的检查 1、设备启动前要先看值班记录,了解设备的状况,记录启动设备的指令来源,操作人员签字。 2、向生产管理系统的上游和下游人员联系,确认具备启动条件。只有中水的质量指标合格时才能启动深加工系统,否则会损坏超滤和纳滤设备。 3、检查阀门是不是处于正确的开关状态,检查电气设备是不是处于安全状态。 二)、设备启动程序 1、打开过滤器进水及排气阀。 2、打开原水增压泵对应进口阀。 3、逐台开启原水增压泵,慢慢开启原水增压泵对应出口阀门. 4、看到排气阀出水后,逐一关闭排气阀。 5、打开排空阀等到出水清澈后,关闭上述4个阀门。 三)、设备停止运行程序 1、关闭原水增压泵对应出口阀。 2、停止原水增压泵。 3、关闭原水增压泵进水阀。 四)、多介质过滤器反冲洗操作程序 1、打开过滤器的排气阀反冲洗进水。

2、开启反冲洗水泵,慢慢开启反冲洗水泵出口阀门,排气阀有水出现时,关闭排气阀,打开排水阀进行反冲洗操作,同时观察出水浊度及悬浮物含量多少,如果出水浊度及悬浮物含量高时请延长反冲洗时间直至出水浊度及悬浮物含量较少。 3、在此过程中若排气阀出水后请关闭排气阀,反冲洗结束后,停止反冲洗水泵,关闭反冲洗水泵出口阀门。 五)、反冲洗注意事项: 1、反冲洗水泵和原水增压泵不能同时开启,即反冲洗和正洗必须分开单独运行,且反冲洗水泵只能作为反冲洗用,原水增压泵只能作为正洗或正常运行用。 2、由于一台原水增压泵可供两台多介质过滤用,所以正洗时原水增压泵出口阀门可调节到半开状态即可。不可全部打开。 二、精密过滤装置的操作要求 1、设备启动前,精密过滤器上的排气阀处于开启状态。 2、打开精密过滤器进出口阀。 3、当有水从排气阀流出时关闭排气阀 4、保证精密过滤器工作时进出口压差不大于0.02MPa。 注意事项:由于超滤膜的运行压力在0.18MPa~0.20MPa范围内,所以精密过滤装置的进水压力要控制在0.20MPa~0.22MPa范围内。 三、超滤滤装置的操作程序 1、打开排水电动阀排水调节阀和排气阀。 2、待排气阀出水后关闭排气阀。

DR投照技术特点及应用分析

DR投照技术特点及应用分析 发表时间:2016-05-03T15:31:55.980Z 来源:《医药前沿》2015年11月第32期作者:袁立 [导读] (重庆市开县妇幼保健院放射科重庆开县 405400) DR投照技术作为一种全新的技术,功能多,易操作,值得在广大基层医院的放射学科普及。 袁立 (重庆市开县妇幼保健院放射科重庆开县 405400) 【摘要】目的:探究DR投照技术的特点及应用分析。方法:通过查阅相关文献对DR投照技术的特点进行归纳总结,通过在我院骨科进行股骨头坏死治疗的300例患者进行DR投照技术和传统的X线投照,并结合诊断过程和最终结果,对比检出率。结果:DR投照技术的特点是图像分辨率高、成像速度快、动态范围广并能够后期处理;通过对股骨头坏死治疗的患者进行两种技术投照,其中DR投照技术诊断出292例,诊断率97.33%;传统X线投照技术诊断出249例,诊断率83.00%,DR投照技术诊断率高于传统X线投照技术诊断率。结论:DR投照技术作为一种全新的技术,功能多,易操作,值得在广大基层医院的放射学科普及。 【关键词】DR投照技术;特点;应用 【中图分类号】R444 【文献标识码】A 【文章编号】2095-1752(2015)32-0054-02 随着社会快速的发展,信息数字化技术也在突飞猛进的发展,在放射学科上,CR正在逐步被替换成DR,因为DR是一种高智能的设备,可以在保证医学影响的质量情况下操作简单易懂。DR投照技术是一种用计算机数字图像处理技术和X射线放射技术完美结合的产物,它在原有X射线直接胶片成像基础上进行A/D或D/A的转换,把图像数字化,便于存档和后期处理。 1.资料与方法 1.1 一般资料 将2012年6月至2014年8月在我院骨科进行股骨头坏死治疗的300例患者作为研究对象,其中男性患者180例,女性患者120例,年龄18~82岁,平均年龄61.9±9.4岁。所有患者在临床上表现为股骨头处疼痛难忍,表面皮肤肿胀,生活几乎不能自理,300例患者中179例受过外伤,59例有酗酒习惯,39例过敏,其余病因暂且不明。 1.2 方法 所有患者均同时接受DR投照技术和传统X线投照。X光拍片机是德国西门子MULTIX Compact K型号,数字化X光拍片机是德国西门子AXIOM Aristos VX Plus型号。诊断中要对患者的股骨头坏死处拍摄3张X片,分别取患者双侧髋关节前后,双侧髋关节蛙式和双侧髋关节后前三个位置。拍摄髋关节前后位患者要处于仰卧位,且髋关节处于台面中线位置;拍摄髋关节侧位患者要处于侧卧位,且检测部位靠在台面上,下肢自然伸直,大腿外侧紧靠台面确保股骨长轴在暗盒中线位置;拍摄测髋关节时,设备的中心线向患者头部倾斜25~30°,使显示器显示股骨头部位即可。 1.3 统计学方法 采用SPSS17.0软件进行统计学分析,P<0.05为有统计学意义。 2.结果 对比两种技术拍摄的片子,DR投照技术拍摄片子显示患者股骨头正常,持重面以下部位都出现有多处高密度点状式或条纹式影像,存在有线形低密度影像,中晚期患者的影像学片子呈现股骨头凹陷不平整状,在局部股骨头密度增加,出现变形症状,但是关节之间间隙未出现异常;传统X 线投照获得片子显示患者股骨头坏死病患的股骨头承载系统中的骨小梁结构排列紊乱、断裂,出现股骨头边缘毛糙,严重患者的股骨头内部会出现小的囊变影,囊变区周围的环区密度不均,骨小梁结构紊乱、稀疏或模糊。通过表1,两种技术的诊断率结果显示DR投照技术诊断出292例,诊断率97.33%;传统X线投照技术诊断出249例,诊断率83.00%,DR投照技术诊断率高于传统X线投照技术诊断率(P<0.05)。 3.讨论 DR投照技术是平板探测器将X线转化为可见光再由光电转换,最终将电信号传递到中央处理系统变成数字信号,这有别于传统X线投照技术用扫描仪激光读取信息成像板实现成像。DR投照技术的最大优点是图像分辨率高,传统的X线投照技术的密度分辨率最高为26灰阶,而DR投照技术可以达到210~12灰阶,灰阶的差异越大,对比度就越高,分辨率也就越高,图像也就越清楚且覆盖的动态范围也就越大[1-3]。同时与传统X线投照技术比较,DR投照技术还有成像速度快、动态范围广和强大的后期处理能力等一系列优点[4]。 通过在我院骨科进行股骨头坏死治疗的300例患者进行DR投照技术和传统的X线投照,其中DR投照技术的诊断率为97.33%,而传统X 线投照技术诊断率为83.00%,经过统计学比较后,DR投照技术的诊断率高于传统X线投照技术诊断率(P<0.05)。医生同时根据患者的DR片,可以直观对患者股骨头密度、性状和持重面来确诊患者的病情严重,并且这项技术与传统X投照技术相比价格便宜,照射剂量小,可信度高。 综上所述,DR投照技术作为一种全新的技术,功能多,易操作,值得在广大基层医院的放射学科普及和推广。 【参考文献】 [1] 董慧娟.DR投照技术的图像特征及临床应用分析[J].中国继续医学教育,2015,7(02):146-147. [2] Shelbourne KD,Brue kmann RRRsh-pin fiXation of supracondy lar and in tercondy lar fractures of the femur. J Bone Joint

纳滤膜技术处理高盐化工废水

高盐化工废水通常具有较高的机污染物浓度和悬浮固体浓度,不仅处理成本高、处理难度大,且存在潜在的环境风险。相比其它传统的水处理技术,纳滤膜技术不仅对高盐化工废水的处理效果好,同时可以对污水中的有用物质进行资源回收,因此其在高盐化工废水处理的应用中具有独特的优势。本文综述了纳滤膜分离技术在印染、制药、农药等化工领域高盐废水处理中的研究现状,旨在进一步推动纳滤膜技术在高盐化工废水处理领域中的应用。 印染、农药、医药生产过程中会产生大量的含盐量高于1%(质量分数)的高盐废水,这些废水通常含有多种污染物质(有机物、盐、油、重金属和放射性物质等)。随着工业化生产水平不断提高,水资源也变得越来越宝贵,高盐化工废水产生的水资源污染现象日趋严重,同时也会给环境造成很大的压力和破坏。 高盐化工废水若不进行必要的处理,将会对后续废水生化处理工艺造成很多不利影响,严重时甚至会使得整个生化系统的瘫痪,所以高盐化工废水的治理迫在眉睫。高盐化工废水常见的处理方法有石灰中和法、生物法和蒸发浓缩法。 然而这些方法不仅无法将高盐废水处理达标排放,而且也存在能耗高且副产品销售困难的问题。如蒸发浓缩法中,企业废盐多与蒸发形成有机物残液一起作为固废处理,处理成本高且资源循环利用率低。 与其他处理技术相比,膜技术具有高效节能、无相变、设备紧凑、易与其他技术集成等优点,近年来在水处理和回用方面取得了广泛的应用。目前主要的膜分离工艺包括反渗透、纳滤、超滤和微滤。纳滤膜技术作为一种介于反渗透和超滤之间的膜过滤技术,可以有效的截留水中的有机污染物和高价盐。 同时由于对水相中的单价盐截留率相对较低,纳滤膜技术可以较好的分离单价和多价离子,所以纳滤膜技术在高盐化工废水的处理和对废水中有用物质回收利用等方面具有其独特的优势,值得进一步应用和推广。 本文从纳滤膜技术的机理、影响因素,再到纳滤膜技术在印染、农药、医药等化工工业领域高盐废水中的研究进展,探讨其在高盐废水处理及资源回收利用等方面的应用价值,旨在进一步推动纳滤膜技术处理化工高盐废水处理中的应用。 1纳滤分离机理 纳滤膜的传质机理与超滤膜和反渗透膜不完全相同,其孔径介于两者之间,而且大部分纳滤膜带有电荷,所以传质机理更为复杂。 1.1荷正(负)电纳滤膜 荷正(负)电纳滤膜对电中性分子的截留主要是通过膜微孔的筛分作用。其传质模型包括扩散-细孔流模型、溶解-扩散模型、空间位阻-孔道模型和摩擦模型等。分子特性、浓度、操作压力和被截留分子的粒径都会影响截留率。

纳滤装置分离技术原理及应用范围阐述

纳滤膜装置是一种介于反渗透和超滤之间的压力驱动膜分离过程,纳滤装置的膜组器于80年代中期商品化。纳滤膜大多从反渗透膜衍化而来,如CA、CTA 膜、芳族聚酰胺复合膜和磺化聚醚砜膜等。但与反渗透相比,纳滤装置的操作压力更低,因此纳滤设备又被称作低压反渗透或疏松反渗透。 一、世韩纳滤膜产品技术介绍 世韩纳滤膜孔径介于超滤膜和反渗透膜之间,并对无机盐有一定的截留率,对有机物截留分子量从100~1000道尔顿不等,由于其分离物质在 1纳米左右而得名。纳滤膜的主要特点是对二价离子、功能性糖类、小分子色素、多肽等物质的截留性能高于98%,而对于一些单价离子、小分子酸碱、醇等有30—80%的透过性能,常被应用于溶质的分级、溶液中低分子物质的洗脱和离子组份的调整、溶剂体系浓缩等物质的分离、精制、浓缩工艺过程中。 二、纳滤膜分离装置特点: 纳滤膜分离装置通过选用不同规格卷式膜芯,可实现超滤和纳滤和反渗透操作。装置应用于生物发酵、生物制药、食品等行业,主要用于物料液(发酵液,提取液等)中有效成份的分离、浓缩、脱盐,纯化等。 1、系统动力装置选用进口品牌物料专用高压泵,压力输送平稳,噪音小; 2、膜芯选用欧美进口抗污染物料专用膜芯,具有抗污染,精度高,寿命长等特性; 3、设备装置按客户要求量身定做; 4、压力及流量、温度等仪表配置齐全,数据真实可靠, 可为大规模生产系统的设计直接提供放大依据。 三、主要应用领域: 生化制药(抗生素树脂解析液的脱盐浓缩,维生素浓缩); 染料(脱盐浓缩,取代盐析、酸析); 氨基酸等有机酸(脱色除杂、浓缩、脱盐); 食品(低聚糖、淀粉糖分离纯化,脱盐); 水处理(印染废水处理,中水回用); 酸、碱回收(制药行业洗柱酸、碱废液,化纤行业废酸、碱)。 纳滤装置与超滤装置或反渗透设备相比,纳滤过程对单价离子和分子量低于200的有机物截留较差,而对二价或多价离子及分子量介于200~500之间的有

反渗透系统操作规程

反渗透系统操作规程 (一)、反渗透基础: 一、反渗透原理: 反渗透,英文为Reverse Osmosis,它所描绘得就是一个自然界中水分自然渗透过程得反向过程.早在1950年美国科学家DR、S、Sourirajan 有一回无意中发现海鸥在海上飞行时从海面啜起一大口海水,隔了几秒后吐出一小口得海水。她由此而产生疑问:陆地上由肺呼吸得动物就是绝对无法饮用高盐份得海水,那为什么海鸥就可以饮用海水呢?这位科学家把海鸥带回了实验室,经过解剖发现在海鸥囔嗉位置有一层薄膜,该薄膜构造非常精密.海鸥正就是利用了这薄膜把海水过滤为可饮用得淡水,而含有杂质及高浓缩盐份得海水则吐出嘴外。这就就是以后逆渗透法(ReverseOsmosis 简称R、O)得基本理论架构. 对透过得物质具有选择性得薄膜成为半透膜。一般将只能透过溶剂而不能透过溶质得薄膜视为理想得半透膜。当把相同体积得稀溶液(如淡水)与浓液(如海水或盐水)分别置于一容器得两侧,中间用半透膜阻隔,稀溶液中得溶剂将自然得穿过半透膜,向浓溶液侧流动,浓溶液侧得液面会比稀溶液得液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压。渗透压得大小决定于浓液得种类,浓度与温度与半透膜得性质无关。若在浓溶液侧施加一个大于渗透压得压力时,浓溶液中得溶剂会向稀溶液流动,此种溶剂得流动方向与原来渗透得方向相反,这一过程称为反渗透。即在进水(浓溶液)侧施加操作压力以克服自然渗透压,当高于自然渗透压得操作压力施加于浓溶液侧时,水分子自然渗透得流动方向就会逆转,进水(浓溶液)中得水分子部分通过膜成为稀溶液侧得净化产水(请参见下图)。

二、反渗透过程 根据反渗透原理可知,渗透与反渗透必须与具有允许溶剂(水分子)透过得半透膜(反渗透膜或纳滤膜)联系在一起才有意义,才会出现渗透现象与反渗透操作. 反渗透膜:允许溶剂分子透过而不允许溶质分子透过得一种功能性得半透膜称为反渗透膜; 膜元件:将反渗透膜膜片与进水流道网格、产水流道材料、产水中心管与抗应力器等用胶粘剂等组装在一起,能实现进水与产水分开得反渗透过程得最小单元称为膜元件; 膜组件:膜元件安装在受压力得压力容器外壳内构成膜组件; 膜装置:由膜组件、仪表、管道、阀门、高压泵、精密过滤器、就地控制柜与机架组成得可独立运行得成套单元膜设备称为膜装置,反渗透过程通过该膜装置来实现; 膜系统:针对特定水源条件与产水要求设计得,由预处理、加药装置、增压泵、水箱、膜装置与电气仪表连锁控制得完整膜法水处理工艺过程称为系统。 待处理得进水经过高压泵被连续升压后入膜装置内,在膜元件内进水被分成浓度低得或更纯得产水,称为透过液与浓度高得浓水。浓水调节阀控制成为产水与浓水得比例即装置回收率。

纳滤安全操作规程

编号:SM-ZD-62380 纳滤安全操作规程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

纳滤安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、编制依据 产品随机使用说明书 2、适用范围 24T/H纳滤主机 3、启动前准备工作 3.1、检查纳滤进水条件:纳滤主机应在以下原水条件下运行,检查原水是否在规定限度内。纳滤进水条件不符合标准将会导致膜组元件的永久性不可恢复的污染和损坏。 最小原水压力:40PSI(2.8KG/cm2) 水温:4℃-45℃ PH范围:4-9 硬度:300mg/l(CaCO3计) 浊度:SDT<5 总溶解性固体含量:TDS<1000mg/L

游离氯:不得检出 锰:<0.05mg/L 有机物:<1mg/L 自来水水源 自来水水源在NF前必须通过过滤器以去除水中的余氯。 原水硬度必须在300mg/Lc以内 原水水温及产水量 设备的额定产水量是在温度为25℃的情况下设定的。逆渗透系统的产水量随原水水量降低而下降。一般情况,水温每降低1℃,产水量下降3%。 3.2、主机部件要求 3.2.1保安过滤器及滤芯 保安过滤器是在原水进入膜之前最后一道过滤装置,去除前处理系统未去除干净的大于5um的物质,载流住由前处理系统未过滤的杂质,如活性炭粉末等,滤芯要经常冲洗,经冲洗无法达到正常使用条件时就更换。 3.2.2高压泵 使用中应保证不得空转,不得长期超负荷运行,经常按

软件技术特点

本系统分为BS和CS两部分 一、BS采用J2EE+WEBLogic+ SQLServer模式编写。 (一)J2EE的特点: J2EE是专门为WEB应用开发而诞生的一种语言, J2EE以“一次编译,处处运行”的神奇魅力和强大的安全技术支持,很快成为WEB 信息系统开发的首选语言。目前J2EE的应用大部份都是多层结构的, 良好的分层可以带来很多好处,例如可以使得代码结构清晰,可以快速适应应用的新需求。同时,J2EE还提供了强大的安全技术(例如:JCA、HTTPS、JSSA等)。对于电子商务系统而言,系统平台的安全性和效率是其中的核心问题,而这些正好是J2EE及其相关技术的强项。因为J2EE在服务器应用,特别是电子商务、企业应用领域具有更广泛的应用,其稳定与可靠也被市场所证明,并且具有跨平台的优势。 JSP是BS结构程序开发的一个利器。由于他的脚本语言是J2EE,所以继承了J2EE诸多优点。运行速度、跨平台性、扩展性、安全性、稳定性、函数支持、厂商支持、对XML的支持等等,JSP都是WEB 编程语言中最好的。COM组件的复杂性实编程实现有一定的难度。而JavaBeans和J2EE的结合却是天衣无缝的。 (二)JSP的特点: 1.JSP的脚本语言J2EE也是面向对象的、分布式的、解释的语 言。 2.JSP有一项全新的技术――Servlet(服务器端程序)很好的节 约了服务器资源。

3.再有就是J2EE的JDBC数据库连接技术。 4.JSP能定制标签库,所以对XML同样有十分广泛的支持。 5.安全性上因为JSP用J2EE语言作服务器语言, J2EE最大优点 之一就是安全, J2EE也把这种特点带到JSP上。 6.JSP跨平台的可重用性。 (三)SQLServer的特点: 1.Internet 集成。SQLServer数据库引擎提供完整的XML 支持。它还具有构成最大的Web 站点的数据存储组件所需的可伸缩性、可用性和安全功能。SQL Server程序设计模型与Windows DNA 构架集成,用以开发Web 应用程序,并且SQL Server支持English Query 和Microsoft 搜索服务等功能,在Web 应用程序中包含了用户友好的查询和强大的搜索功能。 2. 可伸缩性和可用性。同一个数据库引擎可以在不同的平台上使用,从运行Microsoft Windows® 98 的便携式电脑,到运行Microsoft Windows 2000 数据中心版的大型多处理器服务器。SQL Server企业版支持联合服务器、索引视图和大型内存支持等功能,使其得以升级到最大Web 站点所需的性能级别。 3.企业级数据库功能。SQLServer关系数据库引擎支持当今苛刻的数据处理环境所需的功能。数据库引擎充分保护数据完整性,同时将管理上千个并发修改数据库的用户的开销减到最小。SQLServer分布式查询使您得以引用来自不同数据源的

纳滤膜的发展概况

纳滤膜的发展概况Last revision on 21 December 2020

第四章纳滤 第一节概述 一、纳滤膜的发展概况 纳滤(NF)是20世纪80年代后期发展起来的一种介于反渗透和超滤之间的新型膜分离技术,早期称为“低压反渗透”或“疏松反渗透”。纳滤技术是为了适应工业软化水的需求及降低成本而发展起来的一种新型的压力驱动膜过程。纳滤膜的截留分子量在200-2000之间,膜孔径约为1nm左右,适宜分离大小约为l nm的溶解组分,故称为“纳滤”。纳滤膜分离在常温下进行,无相变,无化学反应,不破坏生物活性,能有效的截留二价及高价离子、分子量高于200的有机小分子,而使大部分一价无机盐透过,可分离同类氨基酸和蛋白质,实现高分于量和低分子量有机物的分离,且成本比传统工艺还要低。因而被广泛应用于超纯水制备、食品、化工、医药、生化、环保、冶金等领域的各种浓缩和分离过程。 近年来,纳滤膜的研究与发展非常迅猛。从美国专利看:最早有关纳滤技术的专利出现于20世纪80年代末,到1990年,只有9项专利,而在以后的5年中(1991~1995),出现了69项专利,到目前为止,有关纳滤膜及其应用的专利已超过330项,其应用涉及石油化工、海洋化工、水处理、生物、生化、制药、制糖、食品、环保、冶金等众多领域。 我国从20世纪80年代后期就开始了纳滤膜的研制,在实验室中相继开发了CA-CTA纳滤膜,S-PES涂层纳滤膜和芳香聚酰胺复合纳滤膜,并对其性能的表征及污染机理等方面进行了试验研究,取得了一些初步的成果。但与国外相比,我国纳滤膜的研制技术和应用开发都还处于起步阶段。 二、纳滤膜的特点 由于纳滤膜特殊的孔径范围和制备时的特殊处理(如复合化、荷电化),使其具有较特殊的分离性能。纳滤膜的一个很大特征是膜表面或膜中存在带电基团,因此纳滤膜分离具有两个特性,即筛分效应和电荷效应。分子量大于膜的截留分子量的物质,将被膜截留,反之则透过,这就是膜的筛分效应;膜的电荷效应又称为Donnan效应,是指离子与膜所带电荷的静电相互作用。对不带电荷的分子的过滤主要是靠位阻效应即筛分效应,利用筛分效应可以将不同分子量的物质分离;而对带有电荷的物质的过滤主要是靠荷电效应,纳滤膜表面分离层可以由聚电解质构成,膜表面带有一定的电荷,大多数纳滤膜的表面带有负电荷,它们通过静电相互作用,阻碍多价离子的渗透,这是纳滤膜在较低压力下仍具有较高脱盐性能的重要原因。 图4-1 纳滤膜的分离特性 纳滤膜的特点如下: 1.对不同价态的离子截留效果不同,对二价和高价离子的截留率明显高于单价离子。对阴离子的截留率按下列顺序递增:NO3-,Cl-,OH-,SO42-,CO32-;对阳离子的截留率按下列顺序递增:H+,Na+,K+,Mg2+,Ca2+,Cu2+。 2. 对离子截留受离子半径的影响。在分离同种离子时,离子价数相等,离子半径越小,膜对该离子的截留率越小;离子价数越大,膜对该离子的截留率越高。 3.截留分子量在200~1000之间,适用于分子大小为1nm的溶解组分的分离。 对疏水型胶体油、蛋白质和其它有机物具有较强的抗污染性,与反渗透膜相

纳滤安全操作规程示范文本

纳滤安全操作规程示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

纳滤安全操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、编制依据 产品随机使用说明书 2、适用范围 24T/H纳滤主机 3、启动前准备工作 3.1、检查纳滤进水条件:纳滤主机应在以下原水条件 下运行,检查原水是否在规定限度内。纳滤进水条件不符 合标准将会导致膜组元件的永久性不可恢复的污染和损 坏。 最小原水压力:40PSI(2.8KG/cm2) 水温:4℃-45℃ PH范围:4-9

硬度:300mg/l(CaCO3计) 浊度:SDT<5 总溶解性固体含量:TDS<1000mg/L 游离氯:不得检出 锰:<0.05mg/L 有机物:<1mg/L 自来水水源 自来水水源在NF前必须通过过滤器以去除水中的余氯。 原水硬度必须在300mg/Lc以内 原水水温及产水量 设备的额定产水量是在温度为25℃的情况下设定的。逆渗透系统的产水量随原水水量降低而下降。一般情况,水温每降低1℃,产水量下降3%。 3.2、主机部件要求

技术特点及功能描述

软件技术特点: ?自动检测:采用系统、网络、应用程序三级检测技术可快速地检测到服务器的实时状态,利用网线或RS232串口相互检测到对方的运行状态。 ?自动接管:当检测系统、网络、应用程序任何一种,pluswell HA立即执行自动切换功能,在极短时间内,备用服务器主动接管所有应用。 ?自动报警:当服务器出现故障切换时,pluswell HA 可能过声音、邮件、短信等方式通知系统管理员,让管理员最快的时间了解到服务器的运行 状态,以便及时做出处理。 ?自动切回:当用户二台服务器配置存在差异,主服务器配置较高时,可以设置为自动切回服务。主服务器出现故障发生切换后,只要主服务投入 正常使用,双机软件会自动切回,保证主服务器为客户端提供持续服 务。 ?快速切换:系统切换时间短,平均切换时间小于10秒,最大程度减少业务中断的影响。 ?快速恢复:某台主机由于各种原因重装系统时,不必重新一步步配置双机系统,可通过原来备份的配置文件还原,快速恢复双机系统。 ?权限管理:通过来宾、用户、管理员三级用户,做到合理授权,减少对服务器的误操作。 ?支持GPT格式:数据量的急剧增大,单块硬盘容量的增强,使得用户单个分区的超过2T。Pluswell v8支持超大容量磁盘格式(GPT),便于 用户更好的管理数据。 ?接口扩展: 除了能监控已在NT服务中的程序外,通过添加应用程序和自定义脚本方式,实现对更多应用的扩展. ?多介质心跳冗余:为了减少由于潜在的通讯错误所引起的不必要的系统切换,可使用不同介质的多条通信路径来增加冗余。 ?兼容性强:能布署在win2000,win2003,win2008和Redhat AS3,AS4,AS5以及红旗linux、中标linux等系统下,支持MS_SQL, ORACLE,DB2, SYBASE, MYSQL,LOTUS等数据库。 ?配置灵活: 可根据硬件系统和用户需求,采用Active/Standby或Active/Active,灵活配置,最大限度的利用资源,节省用户软硬件投 资。

纳滤膜在净水机中的应用范围

纳滤膜在净水机中的应用范围纳滤膜:是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。 1.咸水除盐沿海地区的自来水往往带有咸味。如:上海市南汇区就是如此。其盐分不高,约几百~2千mg/l,但常饮此水易患高血压,冠心病,此水泡茶不香,烹调无味。需进行深度处理。 2.井水脱硬许多地区的自来水,以深井水为水源,故水的硬度较高。烧开水时壶面、壶低常有白,灰等色结垢或沉淀。人们常饮此水易得心脏病,脑血管合肾结石等疾病。好茶叶品不出美味,变得淡而苦涩。有时井水还出现有毒金属汞、镉、砷等,自来水厂工艺亦无法解决,需进行深度处理。 3.除微生物在河水中有许多病菌、隐球菌属孢子,氯气消毒不能完全杀死。在美国为此曾发生事故造成40万人感染痢疾病,所以美国以此事故为契机,开始采用过滤膜技术。在我国农村,小镇水厂中,往往管理不严,往往容易造成出水带菌,也须深度处理。 4.提高水质我国自来水厂的水源,常常受工业废水,生活污水和农药、化肥污染,水厂出水水质不能保证,需进行深度处理

纳滤膜处理流程图 使用纳滤膜注意事项: 膜手册表中所列的膜的产水量为平均值,单根膜元件产水量误差在±15%之内。 测试条件并非最佳使用条件。 膜元件进水应逐渐升压,升压到正常运行状态的时间应不少于60秒。 初装新膜应低压冲洗两小时以上,RO纯水排放掉。 注意避免在产品水侧产生背压. 文章相关关键词:北京世韩RO膜,世韩CSM纳滤膜,陶氏DOW 纳滤膜

纳滤膜处理系统操作手册

纳滤膜处理系统操作手册 开机运行流程: 1.阀门控制: 1#阀(全开)-11#阀(2圈)-12#阀(全开)-9#阀(1圈)-10#阀(全开) 2.电控柜控制: 接通电源选择自动运行模试,电控柜上指示灯: 增压泵-计量泵(阻垢剂加药箱) -循环泵-高压泵。(在选择自动运行模试后对过滤器、增压泵、高压泵、循环泵进行排气)4.浓水和产水排放流量控制: 等到所有泵都打开运行后调节浓水排放阀及调节电控柜上高压泵变频器旋钮(每调节一点停留10秒观测流量),让浓水排放流量达到1.5m3/h,产水排放流量达到4.5m3/h。 注:如高压泵变频器旋钮频率调节到100时,产水流量还没有达到4.5m3/h,则要开大11#阀(每次一圈),开大11#阀之前把高压泵变频器旋钮频率调节到50以下。 系统每次停机及停机后冲洗流程: 1.电控开关调到停 等待四台泵指示灯全灭,灯灭顺序: 高压泵-循环泵-增压泵-计量泵(阻垢剂加药箱) 2.关闭原水箱进水阀门,打开产水箱进水阀(二个),浓水直排阀,浓水手动排放阀。 3.电控开关调节到手动,增压泵开关调节到手机。 4.冲洗10-15(分钟)或者产水箱内水剩2-3格。 5.关闭增压泵后立即关闭所有阀门。 6.关闭电源 清洗(化学)及化学药剂残留冲洗: 清洗时用NaOH及HCI各一次 1.打开2#阀、4#阀、6#阀、7#阀、13#阀,运行模试选择手动,手动打开增压泵,循环10-20分钟。 2.清洗浸泡循环:手动关闭增压泵,立即关上2#阀、6#阀

7#阀,浸泡1小时后。打开2#阀、6#阀7#阀,手动打开增压泵循环。共循环浸泡二次。 3.化学药剂残留清洗: 关闭4#阀,打开2#阀、3#阀、5#阀、6#阀,从产水箱清洗(产水或自来水都可),手动打开增压泵。清洗标准达到取样口出水PH值达和产水箱水样的PH值。 4.清洗完毕后立即关闭所有阀门。 长时间停机保护: 如果长时间停机保护需给纳滤系统注入保护液,注入方法可用化学清洗中的循环步骤来实现。 纳滤处理系统使用注意事项: 1.在开泵前检查进水口阀门和出水口阀门是否有被打开。2.在运行过程中,一定时间后产水流量下降,首先调节电控柜旋钮,在调节到100时还是没有达到产水4.5m3/h明,先将旋钮调节到50以下,然后调节11号阀门,开大1圈左右,然后再调节旋钮,逐渐开大旋钮,看流量是否达到要求,如果还没有达到再执行以下操作,将11号阀门开大一点。 3.进水的PH值一定要为弱酸性,进膜前必须杀菌。 4.在运行时,注意泵和过滤器的排气。 5.运行期间记录一些数据: 1.进水PH值,电导率,COD,温度(进水为MBR出水) 2.产水电导率,COD,温度(其中,进水PH,产水电导率,COD,温度可以由设备上的表读出) 3.进水压力,浓水压力,产水流量,浓水流量(早中晚读数三次)(再调节后也要读数一次并记录) 6.冬天停机前必须作防冻操作,所有阀门必须是闭合状态(纳滤处理系统注入保护液),水箱里的水必须放空。 7.长期停机后第一次开机必须有冲洗操作(可用自来水)。8.原水箱无水停机后电控柜必须进行重启操作,就是将全部按钮打到关闭状态,(变频按钮可以不动),开机按开机操作即可。

遥感技术的特性及应用

遥感技术的特性及应用 姓名:XX 单位:XXXXXXXXX 【摘要】:文章通过介绍遥感技术的基本理论和特性,着重介绍了遥感技术在国民经济各方面的应用,以及对人类生活的影响。 【关键词】:遥感技术;特性;应用 [abstract] : this article through the introduction of the remote sensing technology in the basic theory and characteristics are introduced, and the remote sensing technology in national economic aspects of application, and the influence of human life. [key words] : remote sensing technology, Character; application 前言 随着人类生存环境的变化和国际竞争的日益激烈,对自然资源、地理资源和太空资源的开发和争夺已经成为影响人类和民族发展进程的重要因素。遥感正是为了满足这样的需求所产生的一门综合性应用技术, 它是以航空摄影技术为基础,在本世纪60年代初发展起来的一门新兴技术。经过几十年的发展,遥感技术已经从航空时代进入航天时代。由于遥感技术能够全面、立体、快速有效地探明地上和地下资源的分布情况,其效率之高是以前各种技术无法企及的。因此,遥感技术已成为一门实用的,先进的空间探测技术。伴随遥感技术在国民经济中发挥着越来越重要的作用,由此带来了新一轮遥感应用的热潮。现在,卫星应用覆盖了减灾、健康、环境监测、能源调查等,影响了人类生活的方方面面。因此,在许多领域,遥感对地观测技术有着无限光明的应用前景。 1. 遥感技术的涵义 遥感是利用遥感器从空中来探测地面物体性质的,它根据不同物体对波谱产生不同响应的原理,识别地面上各类地物,具有遥远感知事物的意思。也就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,并从中获取信息,经记录、传送、分析和判读来识别地物。 当前遥感形成了一个从地面到空中,乃至空间,从信息数据收集、处理到判读分析和应用,对全球进行探测和监测的多层次、多视角、多领域的观测体系,成为获取地球资源与环境信息的重要手段。 2. 遥感技术主要特点 2.1 可获取大范围数据资料。 遥感用航摄飞机飞行高度为10km左右,陆地卫星的卫星轨道高度达910km左右,从而,可及时获取大范围的信息。例如,一张陆地卫星图像,其覆盖面积可达3万多km2。这种展示宏观景象的图像,对地球资源和环境分析极为重要。 2.2 获取信息的速度快,周期短。 由于卫星围绕地球运转,从而能及时获取所经地区的各种自然现象的最新资料,以便更新原有资料,或根据新旧资料变化进行动态监测,这是人工实地测量和航空摄影测量无法比拟的。例如,陆地卫星4、5,每16天可覆盖地球一遍,NOAA气象卫星每天能收到两次图像。Meteosat每30分钟获得同一地区的图像。 2.3 获取信息受条件限制少。 在地球上有很多地方,自然条件极为恶劣,人类难以到达,如沙漠、沼泽、高山峻岭等。采用不受地面条件限制的遥感技术,特别是航天遥感可方便及时地获取各种宝贵资料。 2.4 获取信息的手段多,信息量大。 根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。例如,地面深层、水的下层,冰层下的水体,沙漠下面的地物特性等,微波波段还可以全天候的工作。 3. 遥感技术的实际应用 3.1 遥感技术在地质灾害中的应用 遥感技术应用于大面积的地质灾害调查, 可达到及时、详细、准确且经济的目的。在不同地质地貌背景下能监测出地质灾害隐患区段, 还能对突发性地质灾害进行实时或准实时的灾情调查、动态监测和损失评估。为此,我国设立了专门的“地质灾害遥感综合调查”课题, 经过近20年的实践,已摸索

相关主题
文本预览
相关文档 最新文档