当前位置:文档之家› 数学的转化思想

数学的转化思想

数学的转化思想
数学的转化思想

中考数学专题复习之三:数学的转化思想

【中考题特点】:

转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。 【范例讲析】:

例1:已知:n m ,满足13,132

2

=-=-n n m m , 求

n

m

m n +的值。

例2:已知:一元二次方程x 2+x+m=0,x 2-(m -1)x+4

1

=0中至少有一个方程有实数根,求m 的取值范围。

例3:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。 求:cos ∠EDF 的值。

A

B

C

D

E

F

例4:已知方程组

kx 2-x -y+

2

1=0 y=k(2x -1) (x 、y 为未知数)

有两个不同的实数解 x=x 1 或 x=x 2 y=y 1 y=y 2 ⑴求实数k 的取值范围;⑵如果3x 1

x 1y y 2

121=++,求实数k 的值。

例5:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。

⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。

【练习】:

1.已知:m, n 是方程x 2-3x+1=0的两根,求代数式2m 2+4n 2-6n+1999的值。 2.已知:ab ≠1,且5a 2+1995a+8=0,8b 2+1995b+5=0。求

b

a

的值。 3.如图,在直角坐标系中,点B 、C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,弧CD =弧AO ,如果AB=10AO>BO ,且AO 、BO 是关于x 的二次方程x 2+kx+48=0的两个根。 ⑴求点D 的坐标;⑵若点P 在直径AC 上,且AC=4AP ,判断点 (-2,-10)是否在过D 、P 两点的直线上,并说明理由。

A

B

C

D E

F

P

专题讲座(数学思想方法与初中数学教学)

专题讲座(数学思想方法与初中数学教学)

数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。 二、几种常见的数学思想方法在初中数学教学中的应用 (一)渗透转化思想,提高学生分析解决问题的能力 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为

易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,

数学的转化思想

中考数学专题复习之三:数学的转化思想 【中考题特点】: 转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。 【范例讲析】: 例1:已知:n m ,满足13,132 2 =-=-n n m m , 求 n m m n +的值。 例2:已知:一元二次方程x 2+x+m=0,x 2-(m -1)x+4 1 =0中至少有一个方程有实数根,求m 的取值范围。 例3:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。 求:cos ∠EDF 的值。 A B C D E F

例4:已知方程组 kx 2-x -y+ 2 1=0 y=k(2x -1) (x 、y 为未知数) 有两个不同的实数解 x=x 1 或 x=x 2 y=y 1 y=y 2 ⑴求实数k 的取值范围;⑵如果3x 1 x 1y y 2 121=++,求实数k 的值。 例5:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【练习】: 1.已知:m, n 是方程x 2-3x+1=0的两根,求代数式2m 2+4n 2-6n+1999的值。 2.已知:ab ≠1,且5a 2+1995a+8=0,8b 2+1995b+5=0。求 b a 的值。 3.如图,在直角坐标系中,点B 、C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,弧CD =弧AO ,如果AB=10AO>BO ,且AO 、BO 是关于x 的二次方程x 2+kx+48=0的两个根。 ⑴求点D 的坐标;⑵若点P 在直径AC 上,且AC=4AP ,判断点 (-2,-10)是否在过D 、P 两点的直线上,并说明理由。 A B C D E F P

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学解题思想方法全部内容

初中数学解题思想方法全部内容 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

初中数学中的“转化思想”

初中数学中的“转化思想” [摘要]:随着课程改革的深入展开,培养学生的能力越来越重要,数学学习更应重视数学思想方法的渗透和培养。本文从几方面论述了转化思想在数学学习中的重要作用:转化思想可以使学生经历探索的学习过程,改变学生的学习方式,转化思想能培养学生创新思维能力及逻辑思维能力,是一种很重要的思维方法;转化思想可以增强学生的数学应用意识,提高解决问题的能力,从而,大大加强学生学习数学的兴趣。 [关键词]:转化思想数学学习逻辑思维应用意识学习兴趣 [引言]:人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,每种数学思想都有它一定的应用范围,但笔者在数学实践中体会到,在学生的数学学习过程中,决不能忽视转化数学思想所起的重要作用,在教学中必须重视转化思想的渗透和培养。 转化是解数学题的一种重要的思维方法,转化思想是分析问题和解决问题的一个重要的基本思想,不少数学思想都是转化思想的体现。就解题的本质而言,解题既意味着转化,既把生疏问题转化为熟习问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题;把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维等,因此学生学会数学转化,有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。 数学转化思想、方法无处不在,它是分析问题、解决问题有效途径,它包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。转化的目的是不断发现问题,分析问题和最终解决问题。在数学中,很多问题能化复杂为简单,化未知为已知,化部分为整体,化一般为特殊,……等等,下面就“转化思想”在初中数学的应用通过举例作个简单归纳。

初中数学常用思想方法专题讲解

初中数学常用思想方法专题讲解 引入语 数学思想方法就是数学基础知识、基本技能的本质体现,就是形成数学能力、数学意识的桥梁,就是灵活应用数学知识与技能的灵魂、正确运用数学思想方法就是在中考数学中取得好成绩的关键、 解中考题时常用的数学思想方法有:整体思想、分类讨论思想、方程思想、转化的思想、数形结合思想、归纳与猜想的思想等、 中考解读 数学思想就是解决数学问题的灵魂,它在学习与运用数学知识的过程中起着关键性的指导作用、数学思想方法就是中考考查的重点内容之一,还因为它就是解决数学问题的根本策略,也就是学生数学素养的重要组成部分、数学思想总就是在解决问题的过程中体现出来,在中考中不会出现单纯的数学思想题目,这就增加了数学思想的掌握与训练的难度,但它也就是有规律的,只要勤于思考与总结,经过适当的训练,相信您一定能够掌握初中数学常用的思想方法、回顾近年全国各地的中考题,不难发现数学思想方法的考查频率越来越高,涉及的知识点也越来越多、预计2009年中考,对数学思想方法的考查可能呈现以下趋势:需要利用数学思想求解的题目稳中有增,涉及的知识点更加分散、其中,函数与方程思想的考查,很可能集中体现在应用题中;数形结合思想的考查以选择与填空为主;分类讨论思想的考查主要在求解函数、不等式、空间与图形、概率等问题中出现;……,总之,数学思想的掌握与训练应引起同学们的重视、 复习策略 由于数学思想总就是渗透在问题中,所以复习中要抓关键类型,突出重点知识与方法,比如方程思想与函数思想的联合复习等;要注意挖掘课本例、习题的潜在功能,以题思法,推敲其中的思想方法,多角度多侧面探讨条件的加强与弱化、结论的开放与变换、蕴含的思想方法、及与其她试题的联系与区别等,提高复习的效率、 题型归类 一、整体的思想 整体思想就是将问题瞧成一个完整的整体,把注意力与着眼点放在问题的整体结构与结构改造上,从整体上把握问题的内容与解题的方向与策略、运用整体思想解题,往往能为许多中考题找到简便的解法、 例1 (苏州市)若2 20x x --=, ( ) 分析:已知条件就是一个一元二次方程,通过求出方程的解再代入计算,当然可以得到结果,但就是显然很繁、注意到,条件可以转化为22x x -=,而且要求值的代数式中的未知部分都就是2 x x -,所以可以整体代入、 解:由条件得:22x x -=, 213、故应选A 、

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

五年级上册数学思想方法的梳理

人教版五年级上册数学思想方法的梳理 一、教材内容与思想方法的梳理: 序号内容页码蕴含数学思想方法 1 小数乘整数、乘小数:P2-5 转化思想、对比思想 2 整数乘法运算定律推广到小数:P12 类比思想、比较思想 3 循环小数:P33 极限思想 4 用字母表示数:P52-54 符号化思想 5 用字母表示数量关系:P52 对应思想、函数思想 6 方程的意义:P62 数形结合思想 7 等式的基本性质:P64 数形结合思想、变中抓不变思想 8 解简易方程:P67 数形结合思想 9 稍复杂的方程:P69 假设思想、整体思想 10 平行四边形的面积:P87 转化思想 11 三角形的面积:P91 转化思想 12 梯形的面积:P95 转化思想 13 数字编码:P134 符号化思想 二、各部分内容思想方法渗透的教学建议: 1.小数乘整数、乘小数:教材创设学生喜欢的”买风筝、放风筝“情景,引入小数乘整数的学习。转化思想的渗透:选择“进率是10的常见量”作为素材引入,利于学生根据熟悉的“元、角、分”之间的进率,将3.5元×3转化为“35角×3”来计算。比较思想的渗透:处理积中小数点的位置问题。教材在例3、例4中,均采用对比的方

法,引导学生分别观察因数和积中小数的位数,找出它们之间的关系,然后利用这一关系,准确找到小数点的位置。 2.整数乘法运算定律推广到小数:类比思想的渗透:在复习整数乘法运算定律的铺垫上,举出P12的例子,看看每组算式两边的结果是不是相等,与之前复习的知识进行类比,你能发现什么规律?从而得出整数的运算定律对于小数也适用。 3.循环小数:这是一个新知识,内容概念较多,比较抽象,是教学中的一个难点。极限思想的渗透:教学时,可以先让学生计算,多除出几位小数,让学生观察竖式看发现了什么。学生会发现商的小数部分总是不断商3,如果继续除下去能不能除尽?使学生注意到因为余数总是重复出现25,所以商就重复3,总也除不尽,体会3是无穷尽的极限思想。 4.用字母表示数:对于小学生来说,是比较抽象的内容。符号化思想的渗透:在教学中,要通过一系列的教学活动,让学生感受字母代数的优点。比如通过用字母表示运算定律,感受到数学的符号语言比文字语言更为简洁明了。 5.用字母表示数量关系:对应思想的渗透:首先引导学生完成个别情况,如小红1岁时,爸爸是1+30=31岁,小红2岁时,爸爸2+30=32岁,依次类推……让学生体会到小红和爸爸的年龄在任何一年都有一一对应的关系。函数思想的渗透:通过前面环节,由个别到一般的归纳得出a+30表示任何一年爸爸的年龄,然后再让学生代入求值,由一般到个别,进一步理解a是一个具体的岁数,a+30也是一

整理初中数学思想方法专题复习教学设计

课 题 数 学 思 想 方 法 专 题 复 习 20 年月日A4打印/ 可编辑

课题:数学思想方法专题复习 数形结合的思想 宜昌市第一中学周继业 一、教学设计 1.教学内容解析 高考《考试说明》在命题指导思想和命题原则中明确指出:“注重通性通法,强调考查数学思想方法”,并明确了“数学思想方法属方法范畴,但更多的带有思想、观点的属性,属于较高层次的提炼与概括”,而且把“数形结合的思想”作为所要考查的七种基本数学思想之一,纳入重点考查对象. 数形结合的思想贯穿整个高中数学的教学.本课是高三学生经过第一轮教材基础知识梳理后,在第二轮复习中关于数学思想方法的专题复习课.授课内容包含建系以数辅形、构造以形助数和转化数形互助三种结合方式,其目的是为了加强学生对数形结合思想的理解和应用,使学生能够通过数学问题的条件和结论的联系分析其代数含义和几何意义,提高学生运用图形、构造图形的能力,增强学生胸中有图、见数想图的意识.考虑到二轮专题复习回归教材的必要性,本课围绕人教版必修2中阅读材料为情景引入,紧扣数形结合思想内涵展开探究,由情景生成新的问题设问推进,层层深入实现思想建构.为系统展示数形结合思想及其应用的普遍性和重要性,改编题主要以线性规划、平面向量、函数、方程、不等式和解析几何等典型问题作为探究点,兼顾课本知识整合. 根据以上分析,本节课的教学重点确定为 教学重点:分析数学问题的代数含义和几何意义,由数思形解决问题;回顾涉及数形结合思想的知识点,完成思想建构. 2、学生学情诊断 本节课为数学思想方法的专题复习,涉及面广,分布零散,问题形式多样且难易兼备,因此学生容易以点盖面,以偏概全.数形结合思想渗透在中小学数学教材的各个章节,学生一向是以感受为主,经验为重,尚未系统整理建构,所以突破学生对数形结合思想理解上的局限性,站在思想方法的高度重新认识数形结合思想,在学生思维中留下一条清晰的认知线索为本节课成功的关键.二轮复习中,学生对线性规划知识和平面向量的坐标法接受起来相对容易,可以顺利实现以数辅形,但在中学数学的主体知识(函数、方程、不等式)中合理构造图形解决代数问题还是较难.在“探究二”中由2012年北京高考题设计了由两个不同初等函数组成的超越方程,让学生自然产生由数到形、以形助数的想法并完成求解,为凸显复习知识的深度和对学生思维训练的强度,设计的不等式问题将成为学生的难点,难在含有量词和逻辑联结词的处理,还有由数到形的等价性问题,此处要通过小组讨论、学生展示、几何画板演示进行突破.为体现“数”与“形”在本质上的相互渗透而设计“探究三”,让学生体会由形到数、由数到形的过程,帮助学生完善对数形结合思想的理解. 根据以上分析,本节课的教学难点确定为 教学难点:根据代数问题的几何含义构造图形,并借助图形特征找出处理问题的充要条件;运用数形结合思想方法时遵循等价性、简单性原则. 3.教学标准设置 (1)通过由情景生成的四个问题探究,让学生体会数形结合的三种途径,培养学生将复杂的数量关系自觉转化为直观的几何图形来解决问题的能力. (2)明确数形结合思想所涉及的知识点,能够胸中有图、见数想图. (3)借助几何画板演示,通过小组合作交流再展示的方式,让学生经历“数”的抽象和“形”的直观相互转化的过程,感受数学活动的探索性、创造性和数学的美感. 4.教学策略分析

在教学中渗透转化与化归数学思想方法的实践意义

在教学中渗透转化与化归数学思想方法的实践意义 开封市第二十五中学杨瑞 【关键词】数学思想方法转化与化归解决问题数学的实践应用【摘要】对于高中学生来说,数学的学习一直都应是一种思维方式的训练,甚至也会是生活态度的学习,因此教师在数学教学中要渗透的就应该是数学思想方法,而不仅仅是知识的传授。 【正文】新课程改革后的人教版教材一直想传达给学生这样一种思想:数学是有用的,数学的学习可以提高能力。一直以来,都有一种数学无用论的声音,很多人觉得生活不需要数学,数学学得好远没有背几首诗词或者读几篇历史故事更能吸引别人的眼光,甚至不如懂得一些物理化学知识来得实用,这已成为数学教师的尴尬,仿佛教学仅仅是为了那张卷子上的一个分数。 实际上,学数学的人都知道在实践中,在理论中,在物质世界中,在精神世界中,数学处处都有。生活处处蕴含着数学的魅力。基本无论大到宇宙星系,小至生物微粒及人类所处事宜都散发着数学的气息。因此高中数学的教学活动中,教师就不能仅仅局限于推导数学公式,掌握公式的使用,教学中渗透思想方法会对学生进行思维方式的训练,甚至也会是生活态度的学习,因为,数学是科学的语言,是思考和解决问题的工具。 在教学中渗透化归与转化这一最重要的数学思想就对学生的思维方式和解决问题的能力有着巨大作用。高中学生要在高中阶段实现由经验型逻辑思维向理论型逻辑思维转化,最终初步形成辩证思维能力。而转化与化归思想的渗透恰恰可以在培养学生逻辑思维能力方面发挥作用。同学们都有这样的经验,解某些数学问题时,如果直接求解较为困难,可通过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将原问题转化为一个新问题,通过对新问题的求解,达到解决原问题的目的,这一思想方法称之为“转化与化归思想”。转化是将数学命题由一种形式向另一种形式的转换过程;化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。这种数学思想方法不仅可以解决数学问题,显然在生

“转化思想”在初中数学中的应用和作用

“转化思想”在初中数学中的应用和作用 □许记花 数学思想方法是数学的灵魂和精髓,是指导我们探索问题、研究问题和解决问题的尚方宝剑,它常常隐含于数学知识的发生、发展过程中。而“转化思想”是数学思想方法中最基本、也是最重要的一种方法,“转化思想”在初中数学中的应用之广,作用之大,是无法用语言形容的,理解并掌握了这种方法,许许多多的数学问题都能迎刃而解。 一、“转化思想”初中代数中的应用和作用 1、进入初中,我们学习了用数轴上的点来表示有理数,因而计算一个数的绝对值就转化为求数轴上的点到原点的距离,这是数与形的转化。 2、两个负数大小的比较,绝对值大的反而小,这是把负数大小的比较通过取绝对值转化为正数大小的比较。这是数与数之间的转化。 3、根据减法法则,减去一个数可以转化为加上这个数的相反数,从而把有理数的减法运算转化为有理数的加法运算。这是运算与运算之间的转化。 4、类似地,除以一个不为0的数可以转化为乘以这个数的倒数,把有理数的除法运算转化为有理数的乘法运算,这是运算与运算之间转化。像这样,把复杂问题转化为简单问题,把陌生的未知问题转化为已知的学过的知识去解决,把新的问题转化为已知的或已解决的问题,这就是我们学习数学解决问题的一种常用的数学思想——转化思想。 5、而解一元一次方程的过程实质也是一种转化,是将复杂的方程逐步转化为最简单的方程。例如: 解方程: 解:去分母,得5(3x+1)-20=(3x-2)-2(2x+3) ① 去括号,得15x+5-20=3x-2-4x-6 …② 移项,得15x-3x+4x=-2-6-5+20 …③

合并同类项,得16x=7 .…④ 系数化为1,得x …⑤ 大家都知道一元一次方程的解的基本表达形式是x=a,它是一元一次方程中形式最简单的方程,而我们研究一元一次方程起点便是从这里开始的.学习了等式的基本性质,我们可以探索形如方程②、③、④形式的解法;学习了去括号法则之后,又可以探索形如方程①形式的解法;最后,学习了含分母的一元一次方程的解法。从此不难发现:我们课本知识是由浅显、简单到较难、较复杂是逐步展开的,而上述解方程的过程正好是我们课本知识展开过程的逆过程,正好符合我们解方程的数学思维过程,即把复杂的问题,逐步转化为简单的问题,把陌生的问题逐步转化为熟悉的问题,从而求得问题的解。 二、“转化思想”在初中几何中的应用和作用 学习几何知识,用几何知识分析问题、探索问题、研究问题和解决更离不开“转化思想”,几何题的解答、几何题的证明、多数定理的证明,公式的推导,也都用到“转化思想”,转化思想在数学中的应用之广,作用之大是无法测量的。例如: 1、如图:求∠A+∠B+∠C+∠D+∠E的度数。 用三角形的一个外角等于和它不相邻的两个内角和,把求∠A+ ∠B+∠C+∠D+∠E五个角的度数转化为一个三角形的内角和等于180°来解决的。这是角与角之间的转化。 2、多边形的内角和公式(n-2)×180°推导:利用添加辅助线的方法把n边形转化为(n-2)个三角形,利用三角形的内角和等于180°。这是图形与图形之间、角与角之间的转化。 3、直线、抛物线、双曲线可以用方程(即解析式)来表示,这是形与式的转化。直线、抛物线、双曲线交点问题,可以用求方程组解来解决,这是形、式、数之间的转化。 4、如图:△ABC中,A、B、C三点的坐标分别为(-2,-1)、(3,-3)、(1,3),求△ABC 的面积。

数学的转化思想方法

数学的转化思想方法 数学的转化思想方法 特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和 方法,进而推广到一般,从而使问题顺利求解。常见情形为:用字 母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。 整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需 要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。用整体思想解题时,是 把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理, 一定要善于把握求值或求解的问题的内在结构、数与形之间的内在 结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把 注意力和着眼点放在问题的整体上。常见的情形为:整体代入;整 式约简;整体求和与求积;整体换元与设元;整体变形与补形;整 体改造与合并;整体构造与操作等。分类讨论的数学思想:也称分 情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时, 我们就需要对这一问题进行必要的分类。将一个数学问题根据题设 分为有限的若干种情况,在每一种情况中分别求解,最后再将各种 情况下得到的答案进行归纳综合。分类讨论是根据问题的不同情况 分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类 的标准。分类讨论的原则是:(1)完全性原则,就是说分类后各子 类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不 能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一 性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。分类的方法是:明确讨论的对象,确定对象

人教版七年级(数学)下册思想方法专题:相交线与平行线中的思想方法

思想方法专题:相交线与平行线中的思想方法——明确解题思想,体会便捷渠道 ◆类型一方程思想 1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为() A.180°B.160°C.140°D.120° 第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________. 3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B的度数. 4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC. (1)若∠DBC=30°,求∠A的度数; (2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由. ◆类型二分类讨论思想

5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126° C.18°或126°D.以上都不对 6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线PA、PB.若PA⊥PB,当∠MPA=40°,则∠NPB的度数是________________. 7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其他所有可能符合条件的度数为________________________________________________________________________. 8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系. ◆类型三(转化思想)利用平移进行转化求图形的周长或面积 9.如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为________. 第9题图 10.(2017·惠山区期中)如图,直径为2cm的圆O1平移3cm到圆O2的位置,则图中阴影部分的面积为________cm2.

浅谈初中数学的数学思想方法

龙源期刊网 https://www.doczj.com/doc/074045493.html, 浅谈初中数学的数学思想方法 作者:赵金玲 来源:《祖国·建设版》2013年第03期 数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中奠基性成分,是学生获得数学能力必不可少的。数学思想方法的训练,是把知识型教学转化为能力型教学的关键,是实话素质教育的重要组成部分。 1 初中数学思想方法教学的重要性 长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程听数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者、特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。 2 初中数学思想方法的主要内容 初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 2.1对应的思想和方法: 在初一代数入门教学中,有代数式求值的计算值,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,有助于培养学生的函数观念。 2.2数形结合的思想和方法 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难人微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。

常见的数学思想方法——转化思想

1 A F E B P C 图甲 D D (1) (2) A B D Q C E A B C D E M 常见的数学思想方法——转化思想 班级 姓名 学号 一、学习目标:了解转化思想的概念,能用转化思想解决有关问题. 二、内容解读: 1、遇到问题时,在作细微观察的基础上,展开联想,以唤起对有关旧知识的回忆,把待解决或未解决的问题,通过某种转化过程归结到已经能解决或比较容易解决的问题中去,最终求得原问题的解决,将这种过程称为化归思想或转化思想. 2、转化思想的三个基本要求:(1)化归对象——把什么元素进行化归;(2)化归目标——化归到何处去;(3)化归途径——化归的方法. 3、转化思想的途径:(1)运用联想类比实现转化;(2)利用“换元”、“添线”进行构造变形实现转化;(3)数形结合实现转化;(4)简化条件实现转化;(5)把实际问题转化为数学问题. (6)、构造基本图形实现转化 三、例题分析: (一)运用联想类比实现转化 例1、三个同学对问题“若方程组?? ?=+=+222111,c y b x a c y b x a 的解是???==,4, 3y x 求方程组???=+=+2 22111523,523c y b x a c y b x a 的 解.”提出各自的想法.甲说:“这个题目好像条件不够”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是____________. 练习:关于x 和y 的方程组???????-=++=---=+-=+9 )210(5108)8(965543y n m x y x m n y x y x 有解,求2 2n m +的值. 例2、如图甲,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F . (1)说明:①AN=BM ; ②△CEF 是等边三角形; (2)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图乙中补出符合要求的图形,并判断第①、②两小题结论是否仍然成立(不要求说明理由). (3)把△ACM 和△CBN 改成等腰直角三角形,其中∠ACM=∠BCN=90°,其余条件不变,还有类似的结 论吗? 练习:(1)如图,四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°,证明:BC+DC=AC . (2)如图,四边形ABCD 中,AB=BC ,∠ABC=60°,P 为四边形ABCD 内一点,且∠APD=120°, 说明:PA+PD+PC ≥BD . (二)利用“换元”、“添线”进行构造变形实现转化 例3、解方程组???? ???=---=-+-01 21221136311 y x y x . 例4、如图,在五边形ABCDE 中,∠B=∠E ,∠C=∠D ,BC=DE ,M 为CD 中点, 说明:AM ⊥CD . 练习(1)、如图,已知:△ABC 中,AB=AC ,在AB 上取一点D ,又在AC 的延长线上取一点E ,使CE=BD , 连结DE 交BC 于Q .试说明:DQ=QE . 练习(2)、如图,在等腰Rt △ABC 中,P 是斜边BC 的中点,以P 为顶点的直角的两边分别与边AB ,AC 交于点E ,F ,连接EF .当∠EPF 绕顶点P 旋转时(点E 不与A ,B 重合),△PEF 也始终是等腰直 角三角形,请你说明理由.

相关主题
文本预览
相关文档 最新文档