当前位置:文档之家› 硅超大规模集成电路工艺技术 5光刻

硅超大规模集成电路工艺技术 5光刻

硅集成电路复习提纲(最终版)

集成电路工艺基础复习 绪论 1、Moore law:芯片上所集成的晶体管的数目,每隔18个月翻一番。 2、特征尺寸:集成电路中半导体器件能够加工的最小尺寸。 3、提拉法(CZ法,切克劳斯基法)和区熔法制备硅片:答:区熔法制备的硅片质量更高,因为含氧量低。目前8英寸以上的硅片,经常选择选择CZ法制备,因为晶圆直径大。 4、MOS器件中常使用什么晶面方向的硅片,双极型器件呢?答:MOS器件:<100> Si/SiO2界面态密度低;双极器件:<111>的原子密度大,生长速度快,成本低。 氧化 1、sio2的特性二氧化硅对硅的粘附性好,化学性质比较稳定,绝缘性好 2、sio2的结构,分为结晶形与不定形二氧化硅 3、什么是桥键氧和非桥键氧连接两个Si-o四面体的氧称为桥键氧;只与一个硅连接的氧称为非桥键 氧。 4、在无定形的sio2中,si、o那个运动能力强,为什么?氧的运动同硅相比更容易些;因为硅要运动 就必须打破四个si-o键,但对氧来说,只需打破两个si-o键,对非桥键氧只需打破一个si-o键。5、热氧化法生长sio2过程中,氧化生长的方向是什么?在热氧化法制备sio2的过程中,是氧或水汽 等氧化剂穿过sio2层,到达si-sio2界面,与硅反应生成sio2,而不是硅向sio2外表面运动,在表面与氧化剂反应生成sio2 6、Sio2只与什么酸、碱发生反应?只与氢氟酸、强碱溶液发生反应 7、杂质在sio2中的存在形式,分别给与描述解释,各自对sio2网络的影响 能替代si-o四面体中心的硅,并能与氧形成网络的杂志,称为网络形成者;存在于sio2网络间隙中的杂志称为网络改变者。 8、水汽对sio2网络的影响水汽能以分子态形式进入sio2网络中,并能和桥键氧反应生成非桥键氢氧 基,本反应减少了网络中桥键氧的数目,网络强度减弱和疏松,使杂志的扩散能力增强。 9、为什么选用sio2作为掩蔽的原因,是否可以作为任何杂质的掩蔽材料为什么? 10、制备sio2有哪几种方法?热分解淀积法,溅射法,真空蒸发法,阳极氧化法,化学气相淀积法,热氧化法等。 11、热生长sio2的特点:硅的热氧化法是指硅与氧气或水汽等氧化剂,在高温下经化学反应生成sio2【热生长:在高温环境里,通过外部供给高纯氧气使之与硅衬底反应,得到一层热生长的SiO2 ;淀积:通过外部供给的氧气和硅源,使它们在腔体中方应,从而在硅片表面形成一层薄膜。】 12、生长一个单位厚度的sio2需要消耗0.44个单位的si 14、实际生产中选用哪种生长方法制备较厚的sio2层?采用干氧-湿氧-干氧相结合的氧化方式 15、由公式2.24,2.25分析两种极限情况,给出解释其一是当氧化剂在sio2中的扩散系数D sio2很小时(D sio2《k s x0,则的C i→0,C0→C*,在这种情况下,sio2的生长速率主要由氧化剂在sio2中的扩散速度所决定,称这种极限情况为扩散控制;其二,如果扩散系数D sio2很大,则C1=C0=C*/(1+k s/h),sio2生长速率由si表面的化学反应速度控制,称这种极限情况为反应控制。 17、sio2生长厚度与时间的关系,分别解释x02+Ax0=B(t+τ),当氧化时间很长,即t》τ和t》A2/4B 时,则x02=B(t+τ),这种情况下的氧化规律称抛物型规律,B为抛物型速率常数,sio2的生长速率主要由氧化剂在sio2中的扩散快慢决定;当氧化时间很短,即(t+τ)《A2/4B,则x0=B(t+τ)/A,这种极限情况下的氧化规律称线性规律,B/A为线性速率常数,具体表达式B/A=-k s hc*/(k s+h)N1。 18、氧化速度与氧化剂分压、温度成正比?

硅集成电路复习资料

硅集成电路工艺基础考试复习题,,完全更新版。。。 来源:陈萌的日志 集成电路工艺基础复习提纲 氧化 1、sio2的特性二氧化硅对硅的粘附性好,化学性质比较稳定,绝缘性好 2、sio2的结构,分为哪两种结晶形与不定形二氧化硅 3、什么是桥键氧和非桥键氧连接两个Si-o四面体的氧称为桥键氧;只与一个硅连接的氧称为非桥键氧。 4、在无定形的sio2中,si、o那个运动能力强,为什么?氧的运动同硅相比更容易些;因为硅要运动就必须打破四个si-o键,但对氧来说,只需打破两个si-o键,对非桥键氧只需打破一个si-o键。 5、热氧化法生长sio2过程中,氧化生长的方向是什么?在热氧化法制备sio2的过程中,是氧或水汽等氧化剂穿过sio2层,到达si-sio2界面,与硅反应生成sio2,而不是硅向sio2外表面运动,在表面与氧化剂反应生成sio2 6、Sio2只与什么酸、碱发生反应?只与氢氟酸、强碱溶液发生反应 7、杂质在sio2中的存在形式,分别给与描述解释,各自对sio2网络的影响能替代si-o四面体中心的硅,并能与氧形成网络的杂志,称为网络形成者;存在于sio2网络间隙中的杂志称为网络改变者。 8、水汽对sio2网络的影响水汽能以分子态形式进入sio2网络中,并能和桥键氧反应生成非桥键氢氧基,本反应减少了网络中桥键氧的数目,网络强度减弱和疏松,使杂志的扩散能力增强。 9、为什么选用sio2作为掩蔽的原因,是否可以作为任何杂质的掩蔽材料为什么? 10、制备sio2有哪几种方法?热分解淀积法,溅射法,真空蒸发法,阳极氧化法,化学气相淀积法,热氧化法等。 11、热生长sio2的特点硅的热氧化法是指硅与氧气或水汽等氧化剂,在高温下经化学反应生成sio2 12、生长一个单位厚度的sio2需要消耗0.44个单位的si 13、热氧化分为哪几种方法?各自的特点是什么?干氧氧化是指在高温下,氧气与硅反应生成sio2。水汽氧化是指在高温下,硅与高纯水长生的蒸汽反应生成sio2。湿氧氧化的氧化剂是通过高纯水的氧气,高纯水一般被加热到95摄氏度左右。 14、实际生产中选用哪种生长方法制备较厚的sio2层?采用干氧-湿氧-干氧相结合的氧化方式 15、由公式2.24,2.25分析两种极限情况,给出解释其一是当氧化剂在sio2中的扩散系数 D sio2很小时(D sio2《k s x0,则的C i→0,C0→C*,在这种情况下,sio2的生长速率主要由氧化剂在sio2中的扩散速度所决定,称这种极限情况为扩散控制;其二,如果扩散系数D sio2很大,则C1=C0=C*/(1+k s/h),sio2生长速率由si表面的化学反应速度控制,称这种极限情况为反应控制。 16、热氧化速率受氧化剂在sio2的扩散系数和与si的反应速度中较快还是较慢的影响?较慢的一个因素决定 17、sio2生长厚度与时间的关系,分别解释x02+Ax0=B(t+τ),当氧化时间很长,即t》τ和t》A2/4B时,则x02=B(t+τ),这种情况下的氧化规律称抛物型规律,B为抛物型速率常数,sio2的生长速率主要由氧化剂在sio2中的扩散快慢决定;当氧化时间很短,即(t+τ)《A2/4B,则x0=B(t+τ)/A,这种极限情况下的氧化规律称线性规律,B/A为线性速率常数,具体表达式B/A=-k s hc*/(k s+h)N1。

集成电路工艺复习

1.特征尺寸(C r i t i c a l D i m e n s i o n,C D)的概念 特征尺寸是芯片上的最小物理尺寸,是衡量工艺难度的标志,代表集成电路的工艺水平。①在CMOS技术中,特征尺寸通常指MOS管的沟道长度,也指多晶硅栅的线宽。②在双极技术中,特征尺寸通常指接触孔的尺寸。 2.集成电路制造步骤: ①Wafer preparation(硅片准备) ②Wafer fabrication (硅片制造) ③Wafer test/sort (硅片测试和拣选) ④Assembly and packaging (装配和封装) ⑤Final test(终测) 3.单晶硅生长:直拉法(CZ法)和区熔法(FZ法)。区熔法(FZ法)的特点使用掺杂好的多晶硅棒;优点是纯度高、含氧量低;缺点是硅片直径比直拉的小。 4.不同晶向的硅片,它的化学、电学、和机械性质都不同,这会影响最终的器件性能。例如迁移率,界面态等。MOS集成电路通常用(100)晶面或<100>晶向;双极集成电路通常用(111)晶面或<111>晶向。 5.硅热氧化的概念、氧化的工艺目的、氧化方式及其化学反应式。 氧化的概念:硅热氧化是氧分子或水分子在高温下与硅发生化学反应,并在硅片表面生长氧化硅的过程。 氧化的工艺目的:在硅片上生长一层二氧化硅层以保护硅片表面、器件隔离、屏蔽掺杂、形成电介质层等。 氧化方式及其化学反应式:①干氧氧化:Si+O2 →SiO2 ②湿氧氧化:Si + H2O +O2 → SiO2+H2 ③水汽氧化:Si + H2O → SiO2 + H2 硅的氧化温度:750 ℃~1100℃ 6.硅热氧化过程的分为两个阶段: 第一阶段:反应速度决定氧化速度,主要因为氧分子、水分子充足,硅原子不足。 第二阶段:扩散速度决定氧化速度,主要因为氧分子、水分子不足,硅原子充足

硅集成电路工艺基础复习

硅 集 成 电 路 工 艺 基 绪论: 单项工艺的分类: 1、 图形转换:光刻、刻蚀 2、 掺杂:扩散、离子注入 3、 制膜:氧化、化学气相淀积、物理气相淀积 第2章氧化 SiO 2的作用: 1、 在MOS 电路中作为 MOS 器件的绝缘栅介质,作为器件的组成部分 2、 作为集成电路的隔离介质材料 3、 作为电容器的绝缘介质材料 4、 作为多层金属互连层之间的介质材料 5、 作为对器件和电路进行钝化的钝化层材料 6、 扩散时的掩蔽层,离子注入的 (有时与光刻胶、Si 3N 4层一起使用#阻挡层 热氧化方法制备的 SiO 2 是无 定形 制备二氧化硅的方法:热分解淀积法、溅射法、真空蒸发法、阳极氧化法、化学气相淀积法、热 氧化法; 热氧化法制备的 SiO 2具有很高的重复性和化学稳定性,其物理性质和化学性质不太受湿度和中 等热处理温度的影响。 SiO 2的主要性质: 密度:表征致密程度 折射率:表征光学性质 密度较大的SiO 2具有较大的折射率 、 波长为5500A 左右时,SiO 2的折射率约为1.46 电阻率:与制备方法及所含杂质数量等因素有关,高温干氧氧化制备的电阻率达 1016 Q 介电强度:单位厚度的绝缘材料所能承受的击穿电压 大小与致密程度、均匀性、杂质含量有关一般为 106?10?V/cm (10 1 ?1V/nm ) S 介电常数:表征电容性能 C 二;SQ — ( SiO 2的相对介电常数为 3.9) 2 d 腐蚀:化学性质非常稳定,只与氢氟酸发生反应 SiO 2 4HF > SiF 4 2出0 SiF 4 2HF > H 2(SiF 6)… 六氟硅酸 还可与强碱缓慢反应 SiO 2 6HF > 出儕6)2出。 薄膜应力为压应力 晶体和无定形的区别:桥键氧和非桥键氧 桥联氧:与两个相邻的 Si-O 四面体中心的硅原子形成共价键的氧 非桥联氧:只与一个 Si-O 四面体中心的硅原子形成共价键的氧 非桥联氧越多,无定型的程度越大,无序程度越大,密度越小,折射率越小 无定形SiO 2的强度:桥键氧数目与非桥键氧数目之比的函数 结晶态和无定形态区分一一非桥联氧是否存在 cm

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

集成电路基本工艺

集成电路基本工艺 发表时间:2011-07-29T10:01:47.187Z 来源:《魅力中国》2011年6月上供稿作者:朱德纪李茜刘丹彤 [导读] 在此,我们重点是讨论集成电路芯片加工过程中的一些关键手艺。 朱德纪李茜刘丹彤中国矿业大学,江苏徐州 221000 中图分类号:TN47 文献标识码:A 文章编号:1673-0992(2011)06-0000-01 摘要:当今社会已进入信息技术时代,集成电路已经被广泛应用于各个领域,典型的集成电路制造过程可表示如下: 在此,我们重点是讨论集成电路芯片加工过程中的一些关键手艺。 集成电路基本工艺包括基片外延生长、掩模制造、曝光技术、刻蚀、氧化、扩散、离子注入、多晶硅淀积、金属层形成。 关键词:外延、掩膜、光刻、刻蚀、氧化、扩散、离子注入、淀积、金属层 集成电路芯片加工工艺,虽然在进行IC设计时不需要直接参与集成电路的工艺流程,了解工艺的每一个细节,但了解IC制造工艺的基本原理和过程,对IC设计是大有帮助的。 集成电路基本工艺包括基片外延生长掩模制造、曝光技术、刻蚀、氧化、扩散、离子注入、多晶硅淀积、金属层形成。 下面我们分别对这些关键工艺做一些简单的介绍。 一、外延工艺 外延工艺是60年代初发展起来的一种非常重要的技术,尽管有些器件和IC可以直接做在未外延的基片上,但是未经过外延生长的基片通常不具有制作期间和电路所需的性能。外延生长的目的是用同质材料形成具有不同掺杂种类及浓度而具有不同性能的晶体层。常用的外延技术主要包括气相、液相金属有机物气相和分子束外延等。其中,气相外延层是利用硅的气态化合物或液态化合物的蒸汽在衬底表面进行化学反应生成单晶硅,即CUD单晶硅;液相外延则是由液相直接在衬底表面生长外延层的方法;金属有机物气相外延则是针对Ⅲ?Ⅴ族材料,将所需要生长的Ⅲ?Ⅴ族元素的源材料以气体混合物的形式进入反应器中加热的生长区,在那里进行热分解与沉淀反映,而分子束外延则是在超高真空条件下,由一种或几种原子或分子束蒸发到衬底表面形成外延层的方法。 二、掩模板的制造 掩模板可分成整版及单片版两种,整版按统一的放大率印制,因此称为1×掩模,在一次曝光中,对应着一个芯片陈列的所有电路的图形都被映射到基片的光刻胶上。单片版通常八九、实际电路放大5或10倍,故称作5×或10×掩模,其图案仅对应着基片上芯片陈列中的单元。 早期掩模制作的方法:①首先进行初缩,把版图分层画在纸上,用照相机拍照,而后缩小为原来的10%~%20的精细底片;②将初缩版装入步进重复照相机,进一步缩小,一步一幅印到铬片上,形成一个阵列。 制作掩模常用的方法还包括:图案发生器方法、x射线制版、电子束扫描法。 其中x射线、电子束扫描都可以用来制作分辨率较高的掩模版。 三、光刻技术 光刻是集成电路工艺中的一种重要加工技术,在光刻过程中用到的主要材料为光刻胶。光刻胶又称为光致抗蚀剂,有正胶、负胶之分。其中,正胶曝光前不溶而曝光后可溶,负胶曝光前可溶而曝光后不可溶。 光刻的步骤:①晶圆涂光刻胶;②曝光;③显影;④烘干 常见的光刻方法:①接触式光刻;②接近式光刻;③投影式光刻 其中,接触式光刻可得到比较高的分辨率,但容易损伤掩模版和光刻胶膜;接近式光刻,则大大减少了对掩模版的损伤,但分辨率降低;投影式光刻,减少掩模版的磨损也有效提高光刻的分辨率。 四、刻蚀技术 经过光刻后在光刻胶上得到的图形并不是器件的最终组成部分,光刻只是在光刻胶上形成临时图形,为了得到集成电路真正需要的图形,必须将光刻胶上的图形转移到硅胶上,完成这种图形转换的方法之一就是将未被光刻胶掩蔽的部分通过选择性腐蚀去掉。 常用的刻蚀方法有:湿法腐蚀、干法腐蚀。 湿法腐蚀:首先要用适当的溶液浸润刻蚀面,溶液中包含有可以分解表面薄层的反应物,其主要优点是选择性好、重复性好、生产效率高、设备简单、成本低。存在的问题有钻蚀严重、对图形的控制性较差、被分解的材料在反应区不能有效清除。 干法刻蚀:使用等离子体对薄膜线条进行刻蚀的一种新技术,按反应机理可分为等离子刻蚀、反应离子刻蚀、磁增强反应例子刻蚀和高密度等离子刻蚀等类型,是大规模和超大规模集成电路工艺中不可缺少的工艺设备。干法刻蚀具有良好的方向性。 五、氧化 在集成电路工艺中常用的制备氧化层的方法有:①干氧氧化;②水蒸气氧化;③湿氧氧化。 干氧氧化:高温下氧与硅反应生成sio2的氧化方法; 水蒸气氧化:高温下水蒸气与硅发生反应的氧化方法; 湿氧氧化:氧化首先通过盛有95%c左右去离子睡的石英瓶,将水汽带入氧化炉内,再在高温下与硅反映的氧化方法。 影响硅表面氧化速率的三个关键因素:温度、氧化剂的有效性、硅层的表面势。 六、扩散与离子注入 扩散工艺通常包括两个步骤:即在恒定表面浓度条件下的预淀积和在杂志总量不变的情况下的再分布。预淀积只是将一定数量的杂质

集成电路新工艺设计

集成电路新工艺简述 学号: 3 班级:电科0902班 姓名:晓彬

集成电路工艺(integrated circuit technique )是把电路所需要的晶体管、二极管、电阻器和电容器等元件用一定工艺方式制作在一小块硅89片、玻璃或瓷衬底上,再用适当的工艺进行互连,然后封装在一个管壳,使整个电路的体积大大缩小,引出线和焊接点的数目也大为减少。集成电路的制造是以硅晶圆为基础的,然后经过一系列的生产工艺,最终在晶圆上制造出所需要的集成电路。其中,硅晶圆是指硅半导体电路制作所用的硅晶片,由于其形状为圆形,故称晶圆。 一块硅晶圆从其生产到最后加工成带有芯片的硅片,需要经过一系列的工艺流程,主要包括硅单晶片的制造、外延层的生长、硅的氧化、掩模板的制备、光刻、掺杂、多晶硅的积淀、金属层的形成等等。 (1).硅单晶的制造 硅单晶片实际上是从圆柱形的单晶硅锭上切割下来的,单晶硅的生长方法主要有两种。第一种是直拉式,这是一种直接从熔融的硅溶液中拉出单晶硅的方法,熔体置柑塌中,籽晶固定于可以旋转和升降的提拉杆上。降低提拉杆,将籽晶插入熔体,调节温度使籽晶生长,然后再旋转的同时缓慢的将其从硅的熔融液中提升出来,使晶体一面生长,一面被慢慢地拉出来,最后形成圆柱形的单晶棒;另一种方法是悬浮区熔法,在悬浮区熔法中,使圆柱形硅棒固定于垂直方向,用高频感应线圈在氩气气氛中加热,使棒的底部和在其下部靠近的同轴固定的单晶籽晶间形成熔滴,这两个棒朝相反方向旋转。然后将在多晶棒与籽晶间只靠表面

力形成的熔区沿棒长逐步向上移动,将其转换成单晶。前一种方法在工业上的应用称为CZ法,CZ法生长出的单晶硅,用在生产低功率的集成电路元件;后一种方法在工业上的应用称为FZ法,FZ法生长出的单晶硅则主要用在高功率的电子元件。CZ法比FZ法更普遍被半导体工业采用,原因在于其制出的硅含氧量高,另外一个原因是CZ法比FZ法更容易生产出大尺寸的单晶硅棒。生成的单晶硅经过物理性能测试和电气参数测试后对其进行切割,形成单晶硅片,然后再对单晶硅片进行研磨、倒角、抛光,最后得到需要的单晶硅片。 (2)浸入式光刻技术有了长足的进步 集成电路在制造过程中经历了材料制备、掩膜、光刻、清洗、刻蚀、渗杂、化学机械抛光等多个工序,其中尤以光刻工艺最为关键,决定着制造工艺的先进程度。随着集成电路由微米级向钠米级发展,光刻采用的光波波长也从近紫外(NUV)区间的436nm、365nm波长进入到深紫外(DUV)区间的248nm、193nm波长。目前大部分芯片制造工艺采用了248nm和193nm光刻技术。其中248nm光刻采用的是KrF准分子激光,首先用于0.25μm制造工艺,后来Nikon公司推出NSR-S204B 又将其扩展到了0.15μm制造工艺,ASML公司也推出了PAS.5500/750E,它提高到可以解决0.13μm制造工艺。193nm光可采用的是ArF激光,目前主要用于0.11um、0.10um,以及90nm的制造工艺上。 1999年版的ITRS曾经预计在0.10um制造工艺中将需要采用157nm的光刻技术,但是目前已经被大大延后了。这主要归功于分辨率提高技术的广泛使用,其中尤以浸入式光刻技术最受关注。浸入式光刻是指在投影镜头与硅片之间用液体充

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

光刻工艺的研究

毕业设计(论文)报告题目光刻工艺的研究 系别尚德光伏学院 专业微电子技术(液晶显示技术与应用) 班级0902 学生姓名赵俊 学号090425 指导教师丁兰 2012年4月

光刻工艺的研究 摘要:光刻工艺是半导体制造中最为重要的工艺步骤之一。最重要的光刻工艺是在晶圆便面建立图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。最后的步骤则是光刻胶的显影到最终检验。本文主要介绍了传统光刻技术和高级光刻工艺。开始介绍了光刻工艺的概述,以及光刻蚀工艺的概况。系统介绍了关于光刻蚀和光刻胶的内容,包括光刻胶的组成及正负胶的比较。然后以传统的十步法分类解析其内容,系统的介绍了这十步流程,然后介绍了光刻质量的分析方法。最后为了展望未来光刻工艺的前景,本文又介绍了高级光刻工艺技术,先是提出集成电路中存在的问题,然后介绍了两种新型的光刻工艺技术,进一步深化我们对于光刻工艺的新技术、新工艺的认识。 关键词:光刻胶、曝光、最终检验、前景

Semiconductor Lithography Technology Abstract:Lithography is one of the most important process in semiconductor manufacturing steps.Photolithography process is the most important established copy the graphic to the silicon wafer surface,ready for etching or ion implantation process to be done https://www.doczj.com/doc/066763880.html,st step is photoresist developer to the ultimate test.This article primarily describes traditional lithography and advanced Photolithography process. Start the overview of lithography,etching and lithography profiles.Corrosion system introduced on the lithography and photoresists,including composition of the photoresist and positive and negative comparison of rubber.And then the traditional ten-step classification analysis of their content,describes the ten steps of system processes and describes quality analysis method of lithography.Finally in order to look to the future prospects of lithography,this article also describes advanced lithography technology,first raised problems in the integrated circuit,and then introduced the two new lithography technology,further deepening our awareness of new technology and new process of Photolithography process. Key Words:Photoresist、Exposure、Final testing、Prospects

集成电路制造工艺_百度文库(精)

从电路设计到芯片完成离不开集成电路的制备工艺,本章主要介绍硅衬底上的CMOS 集成电路制造的工艺过程。有些CMOS 集成电路涉及到高压MOS 器件(例如平板显示驱动芯片、智能功率CMOS 集成电路等),因此高低压电路的兼容性就显得十分重要,在本章最后将重点说明高低压兼 容的CMOS 工艺流程。 1.1 基本的制备工艺过程 CMOS 集成电路的制备工艺是一个非常复杂而又精密的过程,它由若干单项制备工艺组合而成。下面将分别简要介绍这些单项制备工艺。 1.1.1 衬底材料的制备 任何集成电路的制造都离不开衬底材料——单晶硅。制备单晶硅有两种方法:悬浮区熔法和直拉法,这两种方法制成的单晶硅具有不同的性质和不同的集成电路用途。 1 悬浮区熔法 悬浮区熔法是在20世纪50年代提出并很快被应用到晶体制备技术中。在悬浮区熔法中,使圆柱形硅棒固定于垂直方向,用高频感应线圈在氩气气氛中加热,使棒的底部和在其下部靠近的同轴固定的单晶籽晶间形成熔滴,这两个棒朝相反方向旋转。然后将在多晶棒与籽晶间只靠表面张力形成的熔区沿棒长逐步向上移动,将其转换成单晶。 悬浮区熔法制备的单晶硅氧含量和杂质含量很低,经过多次区熔提炼,可得到低氧高阻的单晶硅。如果把这种单晶硅放入核反应堆,由中子嬗变掺杂法对这种单晶硅进行掺杂,那么杂质将分布得非常均匀。这种方法制备的单晶硅的电阻率非常高,特别适合制作电力电子器件。目前悬浮区熔法制备的单晶硅仅占有很小市场份额。 2 直拉法

随着超大规模集成电路的不断发展,不但要求单晶硅的尺寸不断增加,而且要求所有的杂质浓度能得到精密控制,而悬浮区熔法无法满足这些要求,因此直拉法制备的单晶越来越多地被人们所采用,目前市场上的单晶硅绝大部分采用直拉法制备得到的。 拉晶过程:首先将预处理好的多晶硅装入炉内石英坩埚中,抽真空或通入惰性气体后进行熔硅处理。熔硅阶段坩埚位置的调节很重要。开始阶段,坩埚位置很高,待下部多晶硅熔化后,坩埚逐渐下降至正常拉晶位置。熔硅时间不宜过长,否则掺入熔融硅中的会挥发,而且坩埚容易被熔蚀。待熔硅稳定后即可拉制单晶。所用掺杂剂可在拉制前一次性加入,也可在拉制过程中分批加入。拉制气氛由所要求的单晶性质及掺杂剂性质等因素确定。拉晶时,籽晶轴以一定速度绕轴旋转,同时坩埚反方向旋转,大直径单晶的收颈是为了抑制位错大量地从籽晶向颈部以下单晶延伸。收颈是靠增大提拉速度来实现的。在单晶生长过程中应保持熔硅液面在温度场中的位置不变,因此,坩埚必须自动跟踪熔硅液面下降而上升。同时,拉晶速度也应自动调节以保持等直生长。所有自动调节过程均由计算机控制系统或电子系统自动完成。 1.1.2 光刻 光刻是集成电路制造过程中最复杂和关键的工艺之一。光刻工艺利用光敏的抗蚀涂层(光刻胶)发生光化学反应,结合刻蚀的方法把掩模版图形复制到圆硅片上,为后序的掺杂、薄膜等工艺做好准备。在芯片的制造过程中,会多次反复使用光刻工艺。现在,为了制造电子器件要采用多达24次光刻和多于250次的单独工艺步骤,使得芯片生产时间长达一个月之久。目前光刻已占到总的制造成本的1/3以上,并且还在继续提高。 光刻的主要工艺步骤包括:光刻胶的涂覆,掩模与曝光,光刻胶显影,腐蚀和胶剥离。下面分别进行简要的介绍: 1 光刻胶涂覆

硅集成电路基本工艺流程简介

硅集成电路基本工艺流程简介 近年来,日新月异的硅集成电路工艺技术迅猛发展,一些新技术、新工艺也在不断地产生,然而,无论怎样,硅集成电路制造的基本工艺还是不变的。以下是关于这些基本工艺的简单介绍。 IC制造工艺的基本原理和过程 IC基本制造工艺包括:基片外延生长、掩模制造、曝光、氧化、刻蚀、扩散、离子注入及金属层形成。 一、硅片制备(切、磨、抛) 1、晶体的生长(单晶硅材料的制备): 1) 粗硅制备: SiO2+2H2=Si+2H2O99% 经过提纯:>99.999999% 2) 提拉法 基本原理是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体.

2、晶体切片:切成厚度约几百微米的薄片 二、晶圆处理制程 主要工作为在硅晶圆上制作电路与电子元件,是整个集成电路制造过程中所需技术最复杂、资金投入最多的过程。 功能设计à模块设计à电路设计à版图设计à制作光罩 其工艺流程如下: 1、表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2、初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化Si(固) + O2 àSiO2(固) 湿法氧化Si(固) +2H2O àSiO2(固) + 2H2 3、CVD法沉积一层Si3N4。 CVD法通常分为常压CVD、低压CVD 、热CVD、电浆增强CVD及外延生长法(LPE)。 着重介绍外延生长法(LPE):该法可以在平面或非平面衬底上生长出十分完善的和单晶衬底的原子排列同样的单晶薄膜的结构。在外延工艺中,可根据需要控制外延层的导电类型、电阻率、厚度,而且这些参数不依赖于衬底情况。 4、图形转换(光刻与刻蚀) 光刻是将设计在掩模版上的图形转移到半导体晶片上,是整个集成电路制造流程中的关键工序,着重介绍如下: 1)目的:按照平面晶体管和集成电路的设计要求,在SiO2或金属蒸发层上面刻蚀出与掩模板完全对应的几何图形,以实现选择性扩散和金属膜布线。 2)原理:光刻是一种复印图像与化学腐蚀相结合的综合性技术,它先采用照相复印的方法,将光刻掩模板上的图形精确地复印在涂有光致抗蚀剂的SiO2层或金属蒸发层上,在适当波长光的照射下,光致抗蚀剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂融解。然后利用光致抗蚀剂的保护作用,对SiO2层或金属蒸发层进行选择性化学腐蚀,然后在SiO2层或金属蒸发层得到与掩模板(用石英玻璃做成的均匀平坦的薄片,表面上涂一层600 800nm厚的Cr层,使其表面光洁度更高)相对应的图形。 3)现主要采有紫外线(包括远紫外线)为光源的光刻技术,步骤如下:涂胶、前烘、曝光、显影、坚模、腐蚀、去胶。 4)光刻和刻蚀是两个不同的加工工艺,但因为这两个工艺只有连续进行,才能完成真正意义上的图形转移。在工艺线上,这两个工艺是放在同一工序,因此,有时也将这两个工艺步骤统称为光刻。 湿法刻蚀:利用液态化学试剂或溶液通过化学反应进行刻蚀的方法。 干法刻蚀:主要指利用低压放电产生的等离子体中的离子或游离基(处于激发态的分子、原子及各种原子基团等)与材料发生化学反应或通过轰击等物理作用而达到刻蚀的目的。 5) 掺杂工艺(扩散、离子注入与退火) 掺杂是根据设计的需要,将需要的杂质掺入特定的半导体区域中,以达到改变半导体电学性质,形成PN结、电阻欧姆接触,通过掺杂可以在硅衬底上形成不同类型的半导体区域,构成各种器件结构。掺杂工艺的基本思想就是通过某种技术措施,将一定浓度的三价元素,如硼,或五价元素,如磷、砷等掺入半导体衬底,掺杂方法有两种:

IC集成电路设计工艺流程(精)

集成电路设计工艺流程 晶体的生长 晶体切片成 wafer 晶圆制作 功能设计à模块设计à电路设计à版图设计à制作光罩 工艺流程 1 表面清洗 晶圆表面附着一层大约 2um 的 Al2O3 和甘油混合液保护之 , 在制作前必须进行化学刻蚀和表面清洗。 2 初次氧化 有热氧化法生成 SiO2 缓冲层,用来减小后续中 Si3N4 对晶圆的应力 氧化技术 干法氧化 Si( 固 + O2 à SiO2( 固 湿法氧化 Si( 固 +2H2O à SiO2( 固 + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当 SiO2 膜较薄时,膜厚与时间成正比。 SiO2 膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的 SiO2 膜,需要较长的氧化时间。 SiO2 膜形成的速度取决于经扩散穿过 SiO2 膜到达硅表面的 O2 及 OH 基等氧化剂的数量的多少。湿法氧化时,因在于 OH 基在 SiO2 膜中的扩散系数比 O2 的大。氧化反应, Si 表面向深层移动,距离为 SiO2 膜厚的 0.44 倍。因此,不同厚度的 SiO2 膜,去除后的

Si 表面的深度也不同。 SiO2 膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为 200nm ,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如 知道其折射率,也可用公式计算出 (d SiO2 / (d ox = (n ox / (n SiO2 。 SiO2 膜很薄时,看不到干涉色,但可利用 Si 的疏水性和 SiO2 的亲水性来判断 SiO2 膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2 和 Si 界面能级密度和固定电荷密度可由 MOS 二极管的电容特性求得。(100 面的 Si 的界面能级密度最低,约为 10E+10 -- 10E+11/cm – 2 .e V -1 数量级。(100 面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3 CVD(Chemical Vapor deposition 法沉积一层 Si3N4(Hot CVD 或 LPCVD 。 1 常压 CVD (Normal Pressure CVD NPCVD 为最简单的 CVD 法,使用于各种领域中。其一般装置是由 (1 输送反应气体至反应炉的载气体精密装置; (2 使反应气体原料气化的反应气体气化室; (3 反应炉; (4 反应后的气体回收装置等所构成。其中中心部分为反应炉,炉的形式可分为四个种类,这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。当为水平时,则基板倾斜;当为纵型时,着反应气体由中心吹出, 且使基板夹具回转。而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时,在基板的上游加有混和气体使成乱流的装置。 2 低压 CVD (Low Pressure CVD 此方法是以常压 CVD 为基本,欲改善膜厚与相对阻抗值及生产所创出的方法。主要特征: (1 由于反应室内压力减少至 10-1000Pa 而反应气体,载气体的平均自由行程及扩散常数变大,因此,基板上的膜厚及相对阻抗分布可大为改善。反应气体的消耗亦可减少;

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

集成电路实用工艺复习资料

1.特征尺寸(Critical Dimension,CD)的概念 特征尺寸是芯片上的最小物理尺寸,是衡量工艺难度的标志,代表集成电路的工艺水平。①在CMOS技术中,特征尺寸通常指MOS管的沟道长度,也指多晶硅栅的线宽。②在双极技术中,特征尺寸通常指接触孔的尺寸。 2.集成电路制造步骤: ①Wafer preparation(硅片准备) ②Wafer fabrication (硅片制造) ③Wafer test/sort (硅片测试和拣选) ④Assembly and packaging (装配和封装) ⑤Final test(终测) 3.单晶硅生长:直拉法(CZ法)和区熔法(FZ法)。区熔法(FZ法)的特点使用掺杂好的多晶硅棒;优点是纯度高、含氧量低;缺点是硅片直径比直拉的小。 4.不同晶向的硅片,它的化学、电学、和机械性质都不同,这会影响最终的器件性能。例如迁移率,界面态等。MOS集成电路通常用(100)晶面或<100>晶向;双极集成电路通常用(111)晶面或<111>晶向。 5.硅热氧化的概念、氧化的工艺目的、氧化方式及其化学反应式。 氧化的概念:硅热氧化是氧分子或水分子在高温下与硅发生化学反应,并在硅片表面生长氧化硅的过程。 氧化的工艺目的:在硅片上生长一层二氧化硅层以保护硅片表面、器件隔离、屏蔽掺杂、形成电介质层等。 氧化方式及其化学反应式:①干氧氧化:Si+O2 →SiO2 ②湿氧氧化:Si +H2O +O2 →SiO2+H2 ③水汽氧化:Si +H2O →SiO2 +H2 硅的氧化温度:750 ℃~1100℃ 6.硅热氧化过程的分为两个阶段: 第一阶段:反应速度决定氧化速度,主要因为氧分子、水分子充足,硅原子不足。 第二阶段:扩散速度决定氧化速度,主要因为氧分子、水分子不足,硅原子充足

芯片制作工艺流程

芯片制作工艺流程 工艺流程 1) 表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反

相关主题
文本预览
相关文档 最新文档