当前位置:文档之家› 关于实数完备性相关定理等价性的研究

关于实数完备性相关定理等价性的研究

关于实数完备性相关定理等价性的研究
关于实数完备性相关定理等价性的研究

目录

摘要 (1)

关键词 (1)

Abstract (1)

Key words (1)

引言 (1)

1.1确界存在定理的证明 (1)

1.2 确界存在定理证明单调有界定理 (3)

1.3单调有界定理证明区间套定理 (3)

1.4 区间套定理证明有限覆盖定理 (4)

1.5有限覆盖定理证明聚点定理 (4)

1.6聚点定理证明致密性定理 (5)

1.7致密性定理证明柯西收敛准则 (5)

1.8柯西收敛准则证明确界存在定理 (6)

致谢 (7)

参考文献 (7)

关于实数完备性相关定理等价性的研究

数学与应用数学专业学生xxx

指导教师 xxx

摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础。可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理。与之相关的七个基本定理(确界存在定理、单调有界定理、区间套定理、致密性定理、聚点定理、闭区间有限覆盖定理以及柯西收敛准则)是彼此等价的。本文主要是讨论证明这七个定理的等价性。在这里我们首先论证确界存在定理,然后由此出发依次论证实数系的其它六个基本定理,并最终形成一个完美的论证“环”。

关键词:实数集完备性基本定理等价性证明

Research about the equivalence theorems of completeness of real

numbers

Student majoring in Mathematics and Applied Mathematics .Bing Liu

Tutor Shixia Luan

Abstract: Completeness of the set of real numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, so there are considerable fundamental theorems about it. Fundamental Theorems of seven related about completeness of the set of real numbers,which are existence theorem of supremum, monotone defined management,interval sequence theorem,Bolzano-Weierstrass theorem, convergence point theorem,Heine-Borel theorem and Cauchy convergence rule are Equivalent. This paper is to discuss the proof of the equivalence of the seven theorems. Here we first Prove the existence theorem of supremum, then prove the other correlative theorems based of existence theorem of supremum and form a ideal proof “loop”.

Key words: set of real numbers,completeness,fundamental theorem,equivalence,proof.

引言:

我们知道实数的完备性在理论上有很大的价值,与之相关的七个基本定理从不同的角度描述了实数的基本性质。并且这七个基本定理是相互等价的,在这里我们先证明出实数的确界存在定理,然后以此为基础顺次证明其他的六个定理最后再回到确界存在定理得到一个完美的“环”状结构的证明。本文的论证结构为确界存在定理证明单调有界定理证明区间套定理证明有限覆盖定理证明聚点定理证明致密性定理证明柯西收敛准则证明确界存在定理。

1实数完备性相关定理的论证

1.1确界存在定理的证明

确界存在定理:有上(下)界的非空子集必有上(下)确界。 现证明有上界的非空实数集必有上确界。

证明:任意一个实数x 可以表示成[]()x=x x +,其中[]x 表示x 的整数部分,我们将(x )表示成无限小数形式:()123x 0.,n a a a a = 其中12,,,n a a a 中的每一个数字都是0,1 ,,9,中的某一个,若(x )是有限小数,则在后面接上无限个零。这成为实数的无限小数表示。注意无限小数()123p 0000p a a a a a ≠ 0.与无限小数()1230.1999p a a a a - 0.是相等的,为了保持表示的唯一性,我们约定在(x )的无限小数表示中不出现后者。这样,任何一个实数集合S 就可以由一个确定的无限小数表示:

[](){}0

12301230.|,0.,.n n a

a a a a a x a a a a x x S +==∈

设数集S 有上界,则可令S 中元素的整数部分的最大者为0α,并记

[]{}00S =x |x .x S α∈=并且显然0S 不是空集,并且对于任意x ∈S ,只要0x ?S ,就

有x<α,再考察数集0S 中的元素的无限小数表示中第一位小数的数字,令他们中的最大者为1α,并记{}101S x x S x α=∈并且第一位小数为。显然1S 也不是空集,并且对于任意x S ∈,只要1,x S ?就有010.x αα<+。一般的,考察数集1n S -中的元素的无限小数表示中第n 位小数的数字,令它们中的最大者为n α,并记

{}1n n n S x x S x n α-=∈并且的第位小数为。显然n S 也不为空集,并且对于任意x S ∈,

只要n x S ?,就有0120.n x αααα<+ 。不断的做下去,我们得到一列非空数集

01n S S S S ????? ,和一列数012,,,,,n αααα ,满足

{}0;

0,1,2,,9,k Z k N αα+∈∈∈ 。

令012=+0.,n βαααα 下面我们分两步证明β就是S 的上确界。

(1) 设S ,则或者存在整数00n ≥,使得0n x S ?,或者对任何整数0n ≥有n x S ∈. 若0n x S ?,便有00120.n x ααααβ<+≤ ;

若()n x S n N ∈?∈,由S n 的定义并逐个比较x 与β的整数部分及每一位小数,

即知x β=,所以对任意的x β=,有x β≤,即β是数集S 的上界。

(2)对于任意给定的0ε>,只要将自然数0n 取得充分大,便有

1

10n ε<,取00n x S ∈,则β与0x 的整数部分及前0n 位的小数是相同的,所以001

10

n x βε-≤<,即任何小

于β的数βε-不是数集S 的上界。即β是数集S 的上确界。 同理可证非空有下界的数集必有下确界。 1.2 确界存在定理证明单调有界定理

单调有界定理:间调有界实数列必有极限。

单调有界定理还可描述为:若{}n x ?R 是单调增加的有界数列,则必有极限,且

lim sup{}n n n x x →∞

=。

若{}n x ?R 是单调减少的有界数列,则必有极限,且lim inf{}n n n x x →∞

=。

若{}n x ?R 是一单调增加的无界数列,则规定lim n n x →∞

=+∞,否则若{}n x ?R 是一单

调减少的无界数列,则规定lim n n x →∞

= -∞,

证明:设数列{}n x 是单调增加的,即12n x x x ≤≤≤≤ ,且?M ,使得i x ≤M, i=1,2, 。 {}n x 是非空的有界实数集,由确界存在定理知,{}n x 有上确界,记为α:α=sup{}n n N x +

?。由上确界的等价定义1知,{}i i x x ?∈,i=1,2, ,有i x α≤成

立;并且对0ε?>,?N ,使得N x αε-<,故当n>N 时,由{}n x 的单增性知:

N n x x αε-<≤,∴N n x x αε-<≤ααε≤<+,即n x αε-<,由极限的定义得:

lim n n x α→∞

==sup{}n n N x +

?。

若{}n x 是单调下降的,可用上面类似的方法证明。 1.3单调有界定理证明区间套定理

区间套定理:设[,]n n a b ,n=1,2, 是一列有界闭区间,满足(Ⅰ)n N ??,都有

11n n n n a a b b ++≤<<,即11[,][,]n n n n a b a b ++?;(Ⅱ) lim()0n n n b a →∞

-=,则|ξ?,R ?使得

lim lim n n n n b a ξ→∞

→∞

==,且ξ是一切闭区间的惟一公共点:1

[,]{}n n i a b ξ∞

== 。

证明:由条件(Ⅰ)知:数列{}n a 是单调增加且有上界1b (实际上,i b (i N +∈)都是{}n a 的上界).同理也可知数列{}n b 是单调减小且有下界1a (其实,i b (i N +∈也都是{}n b 的下界)。由上述的单调有界定理得,数列{}n a 与{}n b 都收敛,设

lim n n a ξ→∞

=,由条件(Ⅱ)知lim lim()n n n n n n b b a a →∞

→∞

=-+=lim()lim n n n n n b a a →∞

→∞

-+=0+ξ=ξ,且

有sup {}n a =ξ=inf {}n b ,∴n n a b ξ≤≤,n=1,2, ,即ξ属于所有的闭区间[,]n n a b 。 若ζ?也属于所有的闭区间[,]n n a b ,则同样可得:n n a b ζ≤≤,n=1,2, ,当n →∞时,由极限的夹逼性得,lim lim n n n n b a ζξ→∞

→∞

===,由此即说明了区间套的公共点是惟

一的。

1.4 区间套定理证明有限覆盖定理

有限覆盖定理:设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b 。

证明:(反证法)假设定理的结论不成立,即不能用H 中有限个开区间来覆盖[,]a b ,将[,]a b 等分为两个子区间,则其中至少有一个子区间不能用H 中有限个

开区间来覆盖,记这个子区间为[]11,a b , 则[]11,[,]a b a b ?且()111

2

b a b a -=-.

再将[]11,a b 等分为两个子区间,同样,其中至少有一个子区间不能用H 中有限个

开区间来覆盖,记这个子区间为[]22,a b ,则[]2211,[,]a b a b ?且()222

1

2b a b a -=

-. 重复上述步骤并不断进行下去,则得到一个闭区间列[]{},n n a b ,它满足

[][]11,,,1,2,3,n n n n a b a b n ++?=

02

n n n b a

b a --=

→ ()n →∞ 即[]{},n n a b 是区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖。

由区间套定理,?唯一的一点[],,1,2,3,n n a b n ξ∈= 由于H 是[],a b 的一个开覆盖,故存在开区间(),a b H ∈设(),ξαβ∈于是?n,当n 充分大时,有[](),,n n a b αβ∈,这表明[],n n a b 只须用H 中的一个开区间()βα,就能覆盖,与挑选[],n n a b 时的假设“不能用H 中有限个开区间来覆盖”相矛盾,从而证明必存在属于H 的有限个开区间能覆盖[],n n a b .

1.5有限覆盖定理证明聚点定理

聚点定理:实轴上的任一有界无限点集S 至少有一个聚点

证明: 因S 为有界点集,故存在0M >,使得[],S M M ?-且记

[][]11,,a b M M =-,现将[]11,a b 等分为两个区间,因S 为无限点集,故两个点集中

至少有一个含有S 中无穷多个点,记此子集为[]22,a b ,则[][]2211,,a b a b ?且

()22111

2

b a b a M -=

-=,再将[]22,a b 等分为两个子区间,则其中至少有一个子区间含有S 中无穷多个点,取出这样的一个子区间,记为[]33,a b ,则[][]3322,,a b a b ?且 ()3322122

M b a b a -=

-= 如此下去,得到一区间列[]{},n n a b 且满足

[][]()112

,,1,2,,2n n n n n n n M

a b a b n b a n ++-?=-=

→∞ 其中 即[]{},n n a b 是区间套,且其中每一个区间都含有S 中无穷多个点

又区间套定理?唯一的一点[],1,2,n n a b n ξ∈= 其中,于是有0,0N ε?>?>,

[](),,n n n N a b 当时,有ξε>??,从而对(),ξε?内含有S 中无穷多个点. 所以ξ为S 的一个聚点。 1.6聚点定理证明致密性定理

致密性定理:任何有界数列必有收敛的子序列。 证明:不妨设{}n x 是有界数列,

(1)若{}n x α?∈ ,且α在{}n x 中出现无限次,则由这些项构成的数列就是{}n x 的一个收敛子列,其极限就是α;

(2)若任何一个数在{}n x 中至多出次有限次,于是{}n x 中无穷多个互不相同的项。从而由这无穷多个互不相同的子项构成了子集就是有界无穷点集,由聚点定理知必存在聚点α,由聚点的定义知,其任意邻域内都含有无穷多项,现考察它的 中

的无穷多项,故可在其中下标大于1n 的一项,记作2n x ,当11

(,)

k

n k k x αα∈-+取定之后中,同样由于在1111(,)

k k αα++-+中仍含有n {x }的无穷多项,故可取下标大于k n 的一项,记作1

k n

x +,从而得11,2,k n k x k α-<= ,从而由极限的定义得,

lim k n k x α→∞

=,∴{}

k n x 为{}n x 的收敛子序列。

1.7致密性定理证明柯西收敛准则

柯西收敛准则:{}0,,,.n n m x N N n m N x x 收敛对有εε+??>?∈?>-<

证明:(必要性) 数列{}n x 收敛,不妨设其极限值为a ,即lim n n a x →∞

=,则

由数项极限收敛的定义知,

+0,N ,,,2

2

n m N n m N x a x a ε

ε

ε?>?∈?>-<

-<

对时有,由三角不等式得,

()()2

2

n m n m n m x x x a x a x a x a ε

ε

ε-=---≤-+-<

+

=;

(充分性)0,,N N n N ε+?>?∈?>,有

1n N x x ε+-

其中1,2,N N n ++= .由于{}n x 是有界的,由致密性定理知,必存在收敛的子列

{}k n x ,不妨设l i m

k n k x α→∞

=.则对0,,,N N n k N ε+

?>?∈?>(由子列的定义知k N n k ≥≥),有k n n x x ε-<,即k k n n n x x x εε-<<+,当k →∞时,有

n x αεαε-≤≤+,由极限夹逼定理知lim n n x α→∞

=,从而数列{}n x 是收敛的.

1.8柯西收敛准则证明确界存在定理

确界存在定理:有上(下)界的非空实数子集必有上(下)确界。

对于无上界(或下界)的数集S ,一般规定其上下确界分别为+∞和-∞,即

sup ,inf S S =+∞=-∞.

证明:不妨设1b 是非空实数集S 的一个上界。 实数集S 非空,故任取1a S ∈,有11a b <,现把闭区间[]11,a b 两等分,若区间[]11,a b 的中点

11

2

a b +是S 的上界,则令11212,2a b a a b +==

,否则令11221,2

a b

a b a +==,于是得闭区间[]22,a b ,其中2b 也是S 的上界,且()22111

2

b a b a -=-;用同样的方法对区间[]22,a b 处理,得闭区间[]33,a b ,

其中3b 也是S 的上界,且()221121

2

b a b a -=-,上述过程无限进行下去,于是得一

闭区间列[]{},n n a b ,且满足如下的条件: (1) [][]11,,,1,2;n n n n a b a b n ++?= (2) ()111

,1,2;2

n n n b a b a n -=

-= (3) n N +?∈,n b 是S 的上界且[],n n a b S ≠Φ .

由条件(1)(2)知,当m n >时有()111

1

2m n n m n n n b b b b b a b a --=-<-=

-,由此可见数列{}n b 是基本列,由柯西收敛准则知实数列{}n b 收敛,不妨设lim n x b M →∞

=. 下证M 即是S 的上确界:

()I ,x S n N +?∈?∈,都有n x b ≤,而M 是{}n b 的极限且n b 是单调减少的,x M ∴≤,

即M 是S 的一个上界;

()II 对0ε?>由条件(2) 知()()111

1lim lim 02n n n x x b a b a -→∞→∞

?

?

-=-= ???

,故0n ?,使得00n n b a ε-<,而0M n b ≥,00n n a b M εε∴>-≥-.由条件(3)知00,n n a b ????中有S 的点

(至少0n a S ∈),从而由上确界的等价定义2知,M 是S 的上确界。 同理可证“有下界的非空实数子集必有下确界”。

至此我们已经证明了实数的几个重要定理的等价性,并且得出确界存在定理、单调有界定理、区间套定理、致密性定理、聚点定理、闭区间有限覆盖定理以及柯西收敛准则是等价的。这对论证其他一些定理和结论的证明会有很大的帮助。 致谢

在本论文完成之际,我要向所有帮助过我的老师、同学表示衷心的感谢!我要特别感谢我的指导老师栾世霞老师的热情关怀和悉心指导。在我撰写论文的过程中,栾世霞老师倾注了大量的心血和汗水。从开题报告的修改、论文的架构拟定到最终定稿,她给予了殷切的指导,提出了许多宝贵的意见。无论是在论文的选题、构思和资料的收集方面,还是在论文的研究方法以及成文定稿方面,我都得到了栾世霞老师悉心细致的教诲和无私的帮助,特别是她广博的学识、严谨的治学精神和一丝不苟的工作作风使我受益匪浅,在此表示真诚地感谢和深深的谢意。 参考文献:

[1] 陈纪修,於崇华,金路.数学分析[M].北京:高等教育出版社,2000. [2] 华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001.

[3] 崔宝同. 数学分析的理论与方法[M]. 北京:科学技术文献出版社,1990,94-107. [4] 胡雁军,李育生,邓聚成等.数学分析中的证题方法与难题选解[M].河南大学出版社,1987.8,153-160.

[5] 汪林.数学分析问题研究与评注[M].北京:科学出版社,1995,38-42. [6] 葛显良. 应用泛函分析[M]. 浙江大学出版社,2002.6,11-14.

关于实数完备性相关定理等价性的研究

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1.1确界存在定理的证明 (1) 1.2 确界存在定理证明单调有界定理 (3) 1.3单调有界定理证明区间套定理 (3) 1.4 区间套定理证明有限覆盖定理 (4) 1.5有限覆盖定理证明聚点定理 (4) 1.6聚点定理证明致密性定理 (5) 1.7致密性定理证明柯西收敛准则 (5) 1.8柯西收敛准则证明确界存在定理 (6) 致谢 (7) 参考文献 (7)

关于实数完备性相关定理等价性的研究 数学与应用数学专业学生xxx 指导教师 xxx 摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础。可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理。与之相关的七个基本定理(确界存在定理、单调有界定理、区间套定理、致密性定理、聚点定理、闭区间有限覆盖定理以及柯西收敛准则)是彼此等价的。本文主要是讨论证明这七个定理的等价性。在这里我们首先论证确界存在定理,然后由此出发依次论证实数系的其它六个基本定理,并最终形成一个完美的论证“环”。 关键词:实数集完备性基本定理等价性证明 Research about the equivalence theorems of completeness of real numbers Student majoring in Mathematics and Applied Mathematics .Bing Liu Tutor Shixia Luan Abstract: Completeness of the set of real numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, so there are considerable fundamental theorems about it. Fundamental Theorems of seven related about completeness of the set of real numbers,which are existence theorem of supremum, monotone defined management,interval sequence theorem,Bolzano-Weierstrass theorem, convergence point theorem,Heine-Borel theorem and Cauchy convergence rule are Equivalent. This paper is to discuss the proof of the equivalence of the seven theorems. Here we first Prove the existence theorem of supremum, then prove the other correlative theorems based of existence theorem of supremum and form a ideal proof “loop”. Key words: set of real numbers,completeness,fundamental theorem,equivalence,proof. 引言: 我们知道实数的完备性在理论上有很大的价值,与之相关的七个基本定理从不同的角度描述了实数的基本性质。并且这七个基本定理是相互等价的,在这里我们先证明出实数的确界存在定理,然后以此为基础顺次证明其他的六个定理最后再回到确界存在定理得到一个完美的“环”状结构的证明。本文的论证结构为确界存在定理证明单调有界定理证明区间套定理证明有限覆盖定理证明聚点定理证明致密性定理证明柯西收敛准则证明确界存在定理。 1实数完备性相关定理的论证 1.1确界存在定理的证明

赵晓玉哥德尔不完全性定理的推广形式及其哲学影响2018

赵晓玉:哥德尔不完全性定理的推广形式及其哲学影响(2018) 1930年,哥德尔证明了关于递归可枚举理论的哥德尔不完全性定理,而本文的第一项工作便是将哥德尔不完全性定理推广到非递归可枚举理论上,得到推广的哥德尔不完全性定理。为此,首先详细回顾哥德尔不完全性定理的整个证明,并证明一些相关的推论。 为便于将哥德尔不完全性定理推广到非递归可枚举理论上,首先将哥德尔不完全性定理涉及的一致性、语法完全性、ω-一致性、相对于N的可靠性、相对于N的完全性、可定义性等元理论性质,分别推广成Γ-一致性、Γ-决定性、n-一致性、相对于N的Γ-可靠性、相对于N的Γ-完全性、Γ-可定义性等更一般的形式,并对其基本性质进行深入研究,然后利用推广的元理论性质对哥德尔不完全性定理进行重述。 关于推广的哥德尔第一不完全性定理,首先回顾萨利希和萨拉杰证明的4簇结果:任给n>0,如果T是包含罗宾森算术的、Σn+1-可定义的(Πn-可定义的)、Σn-可靠的(n-一致的)算术理论,那么T 不是Πn+1-决定的;并证明其中的Σn-可靠性或n-一致性不能被相应地强化为Σn?1-可靠性或(n?1)-一致性;期间会就关键定理给出一种更简洁易读的证明。然后额外证明2簇结果:任给n>0,如果T是包含罗宾森算术的、Σn+1-可定义的(Πn-可定义的)、Πn+1-可靠的算术理论,那么T不是Πn+1-决定的;并证明其中的Πn+1-可靠性不能被强化为Πn-可靠性。 关于推广的哥德尔第二不完全性定理,首先将Γ-可靠性形式化,然后证明4簇结果:任给n>0,如果T是包含皮亚诺算术的、Σn+1-可定义的(Πn-可定义的)、Σn-可靠的(Πn+1-可靠的)算术理论,那么T不能证明自身Σn-可靠性(Πn+1-可靠性);并且证明其中的Σn+1-可靠性或Πn+1-可靠性不能被相应地强化为Σn-可靠性或Πn-可靠性;最后通过引入强可证性关系给出这4簇结果的第二种证明方法。 本文的第二项工作是深入讨论非递归可枚举理论与形式化的一致性之间的关系。首先分析非递归可枚举理论与可证性条件的关系,然后据此证明满足一定条件的非递归可枚举理论不能证明自身一致性,即结论涉及一致性的4簇推广的哥德尔第二不完全性定理:任给n>0,如果T是包含皮亚诺算术的、一致的、Σn+1-可定义的(Πn-可定义的)、Σn+1-完全的(Πn-完全的)算术理论,那么T不能证明自身一致性;并且将这些结果作为第一项工作中推广的哥德尔第二不完全性定理的推论从而给出第二种证明方法;最后还会给出2簇能证明自身一致性的理论从而证明其中的Σn+1-完全性或Πn-完全性不能被相应地强化为Σn-完全性或Πn?1-完全性。 本文的第三项工作是基于推广的哥德尔不完全性定理,从对形式化方法局限的反驳、对反机械主义的支持、对数学家地位的辩护等三个方面重新审视哥德尔不完全性定理的哲学影响。 关键词:不完全性,非递归可枚举理论,Γ-可靠性,Γ-可定义性,哲学影响

实数完备性证明

一.七大定理循环证明: 1.单调有界定理→区间套定理 证明:已知n a ≤1+n a (?n ), n a ≤n b ≤1b ,∴由单调有界定理知{n a }存在极限,设∞ →n lim n a = r , 同理可知{n b }存在极限,设∞ →n lim n b =r ' ,由∞ →n lim (n n a b -)=0得r r '-=0 即r r '= ?n ,有n a ≤n b ,令∞→n ,有n a ≤r r '=≤n b ,∴?n ,有n a ≤r ≤n b 。 下面证明唯一性。 用反证法。如果不然。则? 21r r ≠,同时对任意 A a ∈,1r a ≤,2r a ≤ 对任意b 有1r b ≥ 2r b ≥,不妨设21r r <, 令 2 2 1'r r r += 显然 2 '1r r r << ? A r ∈', B r ∈', 这与B A |是R 的一个分划矛盾。 唯一性得证。定理证完。 2.区间套定理→确界定理 证明:由数集A 非空,知?A a ∈,不妨设a 不是A 的上界,另外,知 ?b 是A 的上界,记[1a ,1b ]=[a , b ],用1a ,1b 的中点2 1 1b a +二等分[1 a ,1 b ],如果2 11 b a +是A 的上界, 则取[2a ,2 b ]=[1 a ,2 11 b a +];如果2 11 b a +不是A 的上界,则取[2a ,2b ]=[2 1 1b a +,1 b ];用2 a ,2 b 的中点2 22 b a +二等分[2a ,2 b ]……如此继 续下去,便得区间套[n a ,n b ]。其中n a 不是A 的上界,n b 是A 的上界。由区间套定理可得,?唯一的 ∞ =∈1],[n n n b a r , 使∞ →n l i m n a =∞ →n lim n b = r 。A x ∈?,

实数的完备性

第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:12学时 § 1 关于实数集完备性的基本定理(3学时)教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 . 二.单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 . 三.Cantor闭区间套定理 : 区间套: 设是一闭区间序列. 若满足条件 1.

ⅰ> 对 , 有 , 即 , 亦即后一个闭区间 包含在前一个闭区间中 ; ⅱ> . 即当 时区间长度趋于零. 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列 和 , 其中 递增, 递减. 例如 和 都是区间套. 但 、 和 都不是. 2. Cantor 区间套定理: Th 3 设 是一闭区间套. 则存在唯一的点 ,使对 有 . 简言之, 区间套必有唯一公共点. 四. Cauchy 收敛准则 —— 数列收敛的充要条件 : 1. 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy 列 : ⑴ . ⑵ .

2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明 证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则 确界原理 ; Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ; Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 . 一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 1 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”: 定理 2 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对, 当时, 总有. 推论2 若是区间套确定的公共点, 则有↗, ↘, . 3. 用“区间套定理”证明“Cauchy收敛准则”: 定理 3 数列收敛是Cauchy列.

引理Cauchy列是有界列. ( 证 ) 定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅 读 . 现采用三等分的方法证明, 该证法比较直观. 4.用“Cauchy收敛准则”证明“确界原理”: 定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 . 证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确 界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是 的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则, 收敛; 同理收敛. 易见↘. 设↘.有↗. 下证.用反证法验证的上界性和最小性. 二. “Ⅱ”的证明: 1. 用“区间套定理”证明“致密性定理”: 定理6 ( Weierstrass ) 任一有界数列必有收敛子列. 证(突出子列抽取技巧) 定理7 每一个有界无穷点集必有聚点. 2.用“致密性定理”证明“Cauchy收敛准则”: 定理8 数列收敛是Cauchy列.

实数系基本定理等价性的完全互证[1]

第38卷第24期2008年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 138 N o 124  D ecem.,2008  教学园地 实数系基本定理等价性的完全互证 刘利刚 (浙江大学数学系,浙江杭州 310027) 摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系;连续性;等价;极限 收稿日期:2005206210 实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[122].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从. 我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: 1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界. 2)递增(减)有界数列必有极限(pp .34). 3)闭区间套定理(pp .41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n = …,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞ n =1 I n 必不空且为单点集. 4)Bo lzano 2W eierstrass 定理(pp .44):有界数列必有收敛子列 .5)Cauchy 收敛准则(pp .299):数列{x n }收敛Ζ{x n }是基本数列. 6)有限开覆盖定理(pp .308):若开区间族{O Α}覆盖了有界闭区间[a ,b ],则从{O Α}中必可挑出有限个开区间O Α1,O Α2,…,O Αn 同样覆盖了[a ,b ]:[a ,b ]

哥德尔不完备定理

哥德尔不完备定理 哥德尔不完备定理有两条: 一、任何相容的形式系统,只要蕴涵皮亚诺算术公理,就可以在其中构造在体系中不能被证明的真命题,因此通过推演不能得到所有真命题 二、任何相容的形式系统,只要蕴涵皮亚诺算术公理,它就不能用于证明它本身的相容性 我们只论述第一条定理。 证明思路: ①要证明蕴含皮亚诺算术公理的形式系统不完备,只需要证明皮亚诺算术公理不 完备。 ②要证明皮亚诺算术公理不完备,我们可以选择皮亚诺算数公理的一个模型(也 就是实际意义),最简单的,选择自然数?作为一个模型。那么之后,这个公理系统都是描述自然数的了,公式的变元是自然数,项是自然数等等。 ③将皮亚诺公理系统的所有有效的句子(逻辑学称为公式),映射到自然数的一个 子集。 ④根据皮亚诺算术公理的性质,构造一个命题,使得它可证或不可证都会产生矛 盾。 皮亚诺算术公理如下 1.?x(Sx≠0) 0不是任何数的后继数 2.?x?y(Sx=Sy→x=y) x与y的后继数相等,则x与y相等

3.(φ(0)∧?x(φ(x)→φ(Sx)))→?xφ(x),φ(x)为算术公理的任一公式 这个就是数学归纳法 4.?x(x+0=x∧x?1=x) 存在零元和幺元 5.?x?y(S(x+y)=x+Sy) 加法的定义 6.?x?y(x?Sy=(x?y)+x) 乘法的定义 递归函数 我们可以根据这个公理系统定义“递归函数”,也就是编程一般都会用到的那种函数,其函数值f(a n)依赖于f(f(a n?1))(其中a n=f(a n?1))……在这里我们一般指的是定义域和值域都是自然数的子集的递归函数。 我们可以给出定义: 定义1:原始递归函数为: ①零函数:0(x)=0 ②后继函数:S(x)=Sx ③射影函数:I mn(x1,x2…,x n,…,x m)=x n 原始递归函数为递归函数 定义2:递归函数的复合仍然是递归函数。 也就是f(x),g(x)为递归函数,则f(g(x))也是递归函数。 ?,n!等都是递归函数。 例子:?√n?,?x y 事实上,只要是定义域和值域都是自然数的子集的函数,都是递归函数。

实数完备性

课题:实数完备性问题与确界原理 (一)引入主题 数学分析研究的基本对象是定义在实数集上的函数.为此,先来讨论实数. 我们在中学数学中已经知道实数由有理数与无理数两部分组成,并知道实数有如下一些主要性质: 1.实数集R 对加、减、乘、除 ( 除数不为0 ) 四则运算是封闭的,即任意两个实数的和、差、积、商 ( 除数不为0 ) 仍然是实数. 2.实数集是有序的,即任意两实数 必满足下述三个关系之一: b a ,b a b a b a >=<,,. 3. 实数的大小关系具有传递性,即若 ,则有 . 4.实数具有阿基米德(Archimedes)性,即对任何 c b b a >>,c a >R ∈b a ,,若 ,则存在正整数 ,使得 . 5.实数集0>>a b n b na >R 具有稠密性,即任何两个不相等的实数之间必有另一个实数, 且既有有理数,也有无理数. 6.如果在一直线(通常画成水平直线)上确定一点 O 作为原点,指定一个方向为正向( 通常把向右的方向规定为正向 ),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着1-1对应关系. 提问: 在出现了无理数的情形下,你们对以上性质有什么疑问? ( 要善于提出疑问!请作简短讨论 ) 总结: 至少有三处存疑—— 1) 对于无理数(无限十进不循环小数),如何进行性质1中所说的四则运算? 2)在性质2、3、4中出现了比较大小关系的不等式,然而如何对无理数进行大小比较呢? 3)在性质6中所说的:“数轴上的每一点也都唯一地代表一个实数”,为什么一定是这样? 为什么在数轴上除实数点外不再有别的空隙?( 这就是实数的完备性,是实数与有理数的根本区别.) 这些问题正是我们数学专业的学人必须正视的、不可回避的根本问题, 也就是这一单元教学的主题.( 其中第一个问题这里不去说它,有兴趣的同学可以去细心阅读课本第299-302页上的七、八两段. )

第七章 实数完备性

第七章实数的完备性 §1 关于实数完备性的基本定理 一、问题提出 定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界. 确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6. 定理1.2 (单调有界定理)任何单调有界数列必定收敛. 定理1.3 (区间套定理)设为一区间套: . 则存在唯一一点 定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即 中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成 的一个有限开覆盖. 定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于). 定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.) 这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下: :(1)~(3) 基本要求类 :(4)~(7) 阅读参考类 :(8)~(10) 习题作业类

二、回顾确界原理的证明 我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理 设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或 (,)A ε=-∞,[,)B ε=+∞无其它可能. 1 非空有上界的数集E 必存在上确界. 证明 设}{x E =非空,有上界b : E x ∈?,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界; (2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类 B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划. ο 1 A 、B 不空.首先B b ∈.其次E x ∈?,由于x 不是E 的最大数,所以它不是E 的上界,即 A x ∈.这说明E 中任一元素都属于下类A ; ο 2 A 、B 不漏性由A 、B 定义即可看出; ο 3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈?,使得x a <,而E 内每一元素属于 A ,所以b x a <<. ο 4 由ο 3的证明可见A 无最大数. 所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c . E x ∈?,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.

第七章 实数的完备性

第七章实数的完备性 § 1 关于实数集完备性的基本定理 一区间套定理与柯西收敛准则 定义1 区间套: 设是一闭区间序列. 若满足条件ⅰ)对, 有, 即, 亦即后一个闭区间包含在前一个闭区间中; ⅱ). 即当时区间长度趋于零. 则称该闭区间序列为闭区间套, 简称为区间套 . 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和, 其中递增,递减. 例如和都是区间套. 但、和都不是. 区间套定理 定理7.1(区间套定理) 设是一闭区间套. 则在实数系中存在唯一的点, 使对有 . 简言之, 区间套必有唯一公共点. 二聚点定理与有限覆盖定理

定义设是无穷点集. 若在点(未必属于)的任何邻域内有的无穷多个点, 则称点为的 一个聚点. 数集=有唯一聚点, 但; 开区间的全体聚点之集是闭区间; 设是中全体有理数所成之集, 易见的聚点集是闭区间. 定理 7.2 ( Weierstrass ) 任一有界数列必有收敛子列. 聚点原理 :Weierstrass 聚点原理. 定理7.3 每一个有界无穷点集必有聚点. 列紧性: 亦称为Weierstrass收敛子列定理. 四. Cauchy收敛准则——数列收敛的充要条件 : 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy列 : ⑴. ⑵. 解⑴ ;

对,为使,易见只要. 于是取. ⑵ . 当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 , 又 . 当为奇数时,

. 综上 , 对任何自然数, 有 . …… Cauchy 列的否定: 例2 . 验证数列不是Cauchy列. 证对, 取, 有 . 因此, 取,…… 三 Cauchy收敛原理: 定理数列收敛是Cauchy列. ( 要求学生复习函数极限、函数连续的Cauchy准则,并以Cauchy收敛原理为依据,利用Heine归并原 则给出证明 )

为什么歌德尔的不完全性定理与理解人的心智相关

为什么歌德尔的不完全性定理与理解人的心智相关 哥德尔第一不完全性定理:任意一个包含算术系统在内的形式系统中,都存在一个命题,它在这个系统中既不能被证明也不能被否定。 哥德尔第二不完全性定理:任意一个包含算术系统的形式系统自身不能证明它本身的无矛盾性。 心智这个概念,不同的人有不同的理解,因此对其定义也各有千秋,通过对各种概念的剖析和总结,我觉得心智可以如下定义:指人们对已知事物的沉淀和储存,通过生物反应而实现动因的一种能力总和。它涵盖了“哲学”对已知事物的积累和储存,结合了“生物学”的大脑信息处理,即“生物反应”,运用了为实现某种欲需(动因)而从事的“心理”活动,从而达到为实现动因结果而必须产生的智能力和“潜能”力。 歌德尔定理研究的对象是“形式系统”,理解其与心智的相关性,就要把心智和形式系统联系起来,而在心智中最重要的环节是上述中的“生物反应”,即大脑信息处理。人脑在“运算”时与电脑的基本原理是一样的,只不过电脑使用电子元件的“开.闭”和电信号的传递体现,人脑则是表现为神经原的“冲动.拟制”和化学信号(当然也包括电信号)的传递。这与歌德尔定理的条件没有本质上的差别。而认识过程中的“思维是客观实在的近似反映,语言是思维的近似表达”这点,正是受哥德尔定理限制的结果。就拿语言(指形式上的)来说,完全可以转化为有限

公理和一定规则下的符号逻辑系统,也就是一种符合定理条件的形式公理系统。该定理恰恰说明,这样的系统中不完备,存在不能用该系统证实的命题,对于这个系统来说,就是语言对思维的表达不完全,也就是我们常说的“只可意会,不可言传”。这也与我们经常感觉到的“辞不达意”是相吻合的,任何形式上的语言都不能完全准确的表达我们的思想。还有另一个事实也说明这点,就是翻译。文对文的形式语言翻译虽然不难,可是如实地表达原来语言中的准确蕴义就非常难了,甚至可以说是不可能的事情。上面已经说了人类的思维也可以近似转化为这样的形式公理系统,那人脑也一定受哥德尔定理的限制,即歌德尔定理与理解人的心智有关。 《GEB》这本书中的一些例子也可以说明这一问题。例如它里面讲到“我们自己怎样弄清楚自己是否精神失常”的问题:“一旦你开始探究自己精神的正常性,你可能就会陷入一个极其讨厌的“信之则有”的漩涡之中,尽管这种情况绝非不可避免。每个人都知道,精神失常的人会用他们自己古怪的内部一致性逻辑去解释世界,但如果你只能用自己的逻辑去检查它本身,那你怎样才能弄清你的“逻辑”是否古怪呢?”由这个例子再结合哥德尔第二定理,它说明那种断定自身一致性的形式系统是不一致的。而这也说明了歌德尔定理与理解人的心智有关系。

8实数集完备性的几个等价定理及其论证方法的比较分析-宋莉

实数集完备性的几个等价定理及其证明 宋莉 (包头师范学院数学系) 中文摘要:实数集是一个“优美”的数集,其中之一在于它关于极限运算是完备的.而极限理论是展开微积分的基础,从而微积分建立在严密的基础之上.反映实数集完备性的几个基本定理是实数理论的重要组成部分也是数学分析中的一个难点,本人再次将实数完备性认真的学习了一遍,并查找资料,对其相关的命题、定理加以整理,找出几种七个基本定理的等价性证明. 关键词:实数集完备性基本定理的等价性证明 1 引言 每个人从小都要学数数,从1、2、3开始学习自然数.两个自然数相加,相乘仍然是自然数.此时可称自然数对加法和乘法两种运算完备;学到减法,当遇到“小-大”或除法时,已不是自然数.于是数系先扩充到整数集,再扩充到有理数集,在有理数集内“+”、“-”、“?”、“÷”四则运算封闭.现代人对数的认识和学习是符合数集形成和扩充的历史过程的,有理数集是一个比较完美的数集.它具有以下性质:1)稠密性; 2)对四则运算的封闭性; 3)元素的有序性;任意两数均可比较大小. 这些性质使古希腊人认为有理数集就是所有数的全体,而且设想把它们由小到大,连续无空隙地排列在一条直线上,即把有理数与数轴上的点之间建立一一对应关系.这种设想使古希腊学者毕达哥拉斯喊出他的哲理名言“万物皆有数”(有理数).但是事实并非如此.毕氏学派一学徒希帕索斯发现了正方形的边长与对角线不可公度,即2不是数(有理数),这就引发了数学史上的第一次数学危机,它动摇了古希腊几何理论的基础,也第一次向人们揭示了有理数的缺陷.它表明,虽然有理数密密麻麻地排在数轴上,但并没有铺满整条数轴,数轴上还有许许多多不能用有理数填补的“空隙”.这个问题直到牛顿、莱布尼茨建立微积分时仍未得到解决.一段时间后,关于实数连续性的公理才分别从不同的角度建立起来.

实数完备性定理的证明及应用

实数完备性定理的证明及应用 学生姓名:xxx 学号:072 数学与信息科学学院数学与应用数学专业 指导老师:xxx 职称:副教授 摘要:实数集的完备性是实数集的一个基本特征,他是微积分学的坚实的理论基础,从不同的角度来描述和刻画实数集的完备性,六个完备性定理是对实数完备性基本定理等价性的系统论述,让我们获得对实数集完备性的基本特征的进一步的认识和理解. 并用实数完备性定理证明闭区间上连续函数的若干性质.关键词:完备性;基本定理;等价性 Testification and application about Real Number Completeness Abstract: Completeness of the set of reel numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, To prove the equivalence of the six principle theorem is systematic discussion about it and make us acquire more recognition and understanding. At the same time, the theorem of completeness of real numbers testpfyies the several qualities of the continuous function in closed interval. Key Words: sigmacompleteness; fundamental theorem; equivalence 引言 在数学分析学习中,我们知道,实数完备性定理是极限的理论基础,是数学分析理论的基石,对实数完备性表达通常有六个定理.在此,我们以实数连续性为公理,顺序证明其余六个基本定理,最后达到循环,从而证明等价性,并用实数完备性定理证明闭区间上连续函数的若干性质. 1. 基本定义[1]

证明热力学第三定律的两种表述是等价的

证明热力学第三定律的两种表述是等价的 080311班 赵青 080311044

证明热力学第三定律的两种表述是等价的 一、热力学第三定律 英文名称: Third law of thermodynamics 热力学第三定律是在低温现象的研究中总结出来的一个普通规律。 1906年,德国物理学家能斯特(Nernst ,右图)在研究低 温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,称为能斯特定律,简称能氏定理。这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量被温度除的商)在等温过程中的改变趋于零。”即: 0)(lim 0 =?→T T S 式中T S )(?为可逆等温过程中熵的变化。德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。 德国物理学家普朗克(Max Karl Ernst Ludwig Planck, 1858~ 1947)(右图) 是量子物理学的开创者和奠基人,他早期的研究领域主要是热力学,他的博士论文就是《论热力学的第二定律》。他在能斯特研究的基础上,利用统计理论指出:各种物 质的完美晶体在绝对零度时熵为零。1911年普朗克也提出了对热力学第三定律的表述,即“与任何等温可逆过程相联系的熵变, 随着温度的趋近于零而趋近于零”。 1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。 1940 年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K ,称为0K 不能达到原理。此原理和前面所述及的热力学第三定律的几种表述是相互有联系的。但在化学热力学中,多采用前面的表述形式。 通常认为,能氏定理和绝对零度不能达到原理是热力学的两种表述。

哥德尔不完备性定理

哥德尔不完备性定理 2010-10-28 23:09:32来自: 苏仁(履霜冰至。一心难二用。) 一、哥德尔不完备性定理的基本内容 一个普遍公认的事实是,哥德尔不完备性定理在数理逻辑中占有极其重要的地位,是数学与逻辑发展史中的一个里程碑。 哥德尔关于形式系统的不完备性定理,首次发表在他的论文《论数学原理及有关系统中不可判定命题》中。不完备性定理是关于不可判定命题存在的一般结果,如果仅就算术系统而言,这个定理可以简单地表述为: 定理:如果形式算术系统是ω无矛盾的,则存在着这样一个命题,该命题及其否定在该系统中都不能证明,即它是不完备的。 罗塞尔(Rosser)对上面的定理进行了如下改进: 定理:如果形式算术系统是无矛盾的,则它是不完备的。具体说就是—— 定理:如果一个含有自然数论的形式系统S是无矛盾的,则S中存在一个逻辑公式A,使得在S中A是不能证明的,同时 ̄|A( ̄| 为否定连接词——笔者注)也是不能证明的。 作为不完备性定理证明思想的一个关键之处在于映射原理的应用,哥德尔是通过一种十分新颖的映射形式来构造他的命题的。映射是数学研究中极为重要的一种研究方法,其基本思想就是借助一一对应使得某一领域内的对象之间的某种关系得以在另一领域内的对象之间的关系得到表现。哥德尔的方法是:把算术系统(记为N)中的符号、表达式和表达式的序列都映射为数——通过引进“哥德尔数”而实现了对象的数化手续。这样处理的结果,对于数理逻辑和其他有关分支来说,在研究方法上就提供了一种数字化工具,能够方便地把一些讨论对象(如符号、公式)转换为自然数或自然数的函数,能够用自然数的理论来讨论有关问题。其次,哥德尔又通过“递归函数”的引进证明了所有元理论中关于表达式的结构性质命题,都可以在算术系统中得到表达。映射原理的应用和递归函数的引进,使元理论中的命题都映射为了算术系统中的命题,算术系统也因此获得了元数学的意义。 哥德尔在阐述自己的证明思想时说过:“我们可以注意到一个形式系统的公式在形式上都表现为基本符号(变量、逻辑常项、括号或中断号)的一个有限序列,而且人们容易精确地去指明基本符号的那些有限序列是有意义的公式和那些不是有意义的公式。类似地,从形式的观点看,所谓证明实际上就是公式的一个有限序列。对于元数学来说,究竟用什么东西来作为基本符号当然是没有关系的。我们不妨就用自然数来作为基本符号,如此,一个公式就是一个自然数的有限序列,而证明便是一个有限的自然数序列的有限序列。据此,元数学的概念(命题)也就变成了关于自然数或他们的序列的基本概念(命题),从而就可以(至少是部分地)在(对象)系统本身的符号中得到表示,特别是人们可以证明…公式?、…证明?、…可证公式?等都可在对象系统中加以定义。” 哥德尔按照上述的证明思想,为不完备性定理的证明在对象系统内构造了这样一个命题G,使

数学边界:被证明无法证明定理

今天我在这里看到了一个神奇地数列以及关于它地两个惊人地结论.这是由Goodstein发现地,这个名字让我不禁想到了1984里那个恰好同名地人. Goodstein数列是这样地:首先选取一个正整数m1, 比如设m1= 18 . 然后对它进行这样一个操作:把它写成2地次幂之和地形式( 18 = 2^4+ 2^1) , 再把幂数也写成2地次幂地形式: 我们把这种写法叫以2为底地遗传记法.这个词是我翻译地,可能不准确,原文叫hereditar y base 2 notation.文档来源网络及个人整理,勿用作商业用途 m2是这样生成地:把m1地这种写法中所有地2都换成3,再减1.对于我们地例子, 注意到这是个非常大地数,约等于7.63×1012. 现在把m2写成以3为底地遗传记法,再把所有地3都换成4,再减1,就成为了m3.以此类推,m n+1就是把m n写成以n+1为底地遗传记法,再把所有地(n+1)换成(n+2),再减1.对于m1= 18 ,前几项是这样:文档来源网络及个人整理,勿用作商业用途 看到了前5个数,我们一定会认为这个数列以极快地速度发散到无穷,甚至比指数级或阶乘级还快得多.那么植根于这个数列地Goodstein定理想必就是论证数列地发散速度地.但是,真相大出我地意料:文档来源网络及个人整理,勿用作商业用途 Goodstein定理:对于任何一个初始数,数列总会在有限步内变为0. 虽然我们都知道仅看一个数列地前几项就猜测它地收敛性是不可取地,虽然我们也知道像调和级数(1+1/2+1/3+1/4+……)这种增加超级慢地级数也发散,虽然我们知道数学中一个又一个地大反例(比如欧拉方阵),但这还是太过出人意料了.文档来源网络及个人整理,勿用作商业用途 这个定理有没有证明?当然有,要不怎么叫定理呢.它地证明其实也不难,用到了序数地知识.大概意思是这样: 构造另一个数列称为平行数列(不妨设为P n),使它地每一项都不小于给定Goodstein数列地对应项,然后再证明这个平行数列最后等于0.具体地方法是对于一个Goodstein数列{m n} , 把它地第n项写成以n+1为底地遗传记法,再把每个n+1替换成最小地无限序数ω.注意到有这两个事实: 第一,P n肯定不小于m n,比如 .

数学分析之实数的完备性

数学分析之实数的完备性 《数学分析》教案 第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:14学时 ? 1 关于实数集完备性的基本定理(4学时) 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一(确界存在定理:回顾确界概念( Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 . 二. 单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 . - 1 - 《数学分析》教案 三. Cantor闭区间套定理 : 1. 区间套: 设是一闭区间序列. 若满足条件

?> 对, 有 , 即 , 亦即后 一个闭区间包含在前一个闭区间中 ; ?> . 即当时区间长度趋于零. 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个“闭、缩、套” 区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和 , 其中递增, 递减. 例如和都是区间套. 但、 和都不是. 2. Cantor区间套定理: Th 3 设是一闭区间套. 则存在唯一的点,使对有 . 简言之, 区间套必有唯一公共点. 四( Cauchy收敛准则——数列收敛的充要条件 : - 2 - 《数学分析》教案

哥德尔不完备性定理浅释

哥德尔不完备性定理浅释 【数学故事】哥德尔不完备性定理浅释 哥德尔不完备定理的本质与自然数的性质紧密相连,如果计算机使用离散形式的算法(也就是图林机),则计算机的任何复杂、高妙的算法,比如并行运算,都超不过图林机操作的范畴,也就跑不脱自然数的性质,因此也就不能解决不可计算问题。 要理解哥德尔定理,先得理解集的概念。 (一) 集合 "集合"或集的描述:集这个概念,是不可以精确定义的数学基本概念之一,故只能作描述:凡具有某种特殊性质对象的汇集,其总合被称为集。 例:一组数(可能是无限的),一群人,一栏鸡蛋。 在作数学上具体研究时,组成集的个体,被称为"元"的其他特殊属性,如鸡的特性,人的特性,数的特性,都不再考虑。于是,一个集合就被抽象成A,它的元被抽象成x。我们有:x 属于 A 我们也归定:A 不能属于 A 即A不能是A自己的一元,这个规定不是不合理的,例如,所有的书所组成的集不是书!所以所有书的集合不能是这个集合的一元。 A 的某一部份B也可自行构造出一集,被称为A之"子集"。 我们有:B 含于 A 特殊情况:B可以等于A,B也可以没有元素,被称为"空集",我们称这样两种情况叫A的"平凡"子集。 定义:对等设A,B分别为两个集,如果A和B之间能建立1-1的对应关系,则我们称:A 对等于 B。反之亦然。 对等是集与集之间最基本的关系。若A和B都含有限个元,则两集之间要对等,当且仅当二者的元的数目相等。 如果A和B都是无限的,则也能/不能建立对等关系,如两个无限数列A和B: A:1,2,3,。。。 B:2,4,6,。。。 就能建立1-1对应,故 A 对等于 B 可以证明,任何两个无限数列的集合都能对等。 但是,有些无限集之间却不能对等。 例:设实数轴0到1之间的所有有理数所组成的集为R,又设0到1之间所有的无理数所组成的集为I,则可证明(略): 1。R和I之间不对等; 2。R对等于I中的一个非平凡子集,在这样的情况下,综合1。,我们说 R 小于 I 3。R 对等于一个自然数序列 数目在无限大时候的推广。我们称上述A有"势"为可数势,意味着,A的元数目可以一个一个地数下去,虽然不一定能数完。于是,自然数序列集具有可数势,任何有限集合也有可数势,而且,由上面的3。可知有理数集也有可数势。 再从1。的结论可知,无理数的集有大于可数势的势,我们称这个势为"不可数势"! (二) "康脱悖论" 设M是一个集,这个集的元是由集合X所组成,其中,X 不属于 X。

相关主题
文本预览
相关文档 最新文档