当前位置:文档之家› 转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收的比较分析
转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收对比分析

一、转轮热回收和乙二醇热回收工作原理

转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。

乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。

二、关键部件外形图

转轮热回收转轮:乙二醇热回收换热器

三、关键部件材质

转轮热回收转轮:

可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。

其特点如下:

1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式

分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。

2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。

3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。

乙二醇热回收换热器:

排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。

四、与空调系统配套情况

转轮热回收:

由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。

乙二醇热回收:

由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。

五、换热效率

转轮热回收:

中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达90%(焓换效率)。

乙二醇热回收:

间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。

下面就本工程单台机组冬季运行时作经济分析:

转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

另外北京地区冬季室外空调计算干球温度-12℃,相对湿度45%,相对应的焓值为-10.68 kJ/kg ;冬季室内空调设计干球温度按30℃,相对湿度60%,焓值71.79kJ/kg 。

空气处理过程如下:

本机为组合式空调机组,型号为ZK100,按功能段组合,上层顺气流方向(从右向左)依次:回风段、挡水段、板式活性炭过滤段、旁通(中间)段、转轮热回收段、排风机段;下层顺气流方向(从左向右)依次:新风进风段、板式初效过滤段、袋式中效过滤段、中间段、转轮热回收段、混合段、送风机段、均流段、加热段、加湿段、顶出风段。其功能段布置如下图所示。

转轮热回收:

计算公式:

焓换效率

100?--=

RA

OA SA OA i i i i i η 式中:i η:焓换效率(%); OA i :新风进风空气焓值[kJ/kg(干)];

SA i :新风送风空气焓值[kJ/kg(干)];

RA i :排风进风空气焓值[kJ/kg(干)]。

暂且RA i 为冬季室内空调设计状态点焓值为71.79kJ/kg ,G 为新风量100000m3/h ,

OA i =-10.68 kJ/kg ,RA i =71.79kJ/kg ,

i η=70%,则SA i =i η*(RA i -OA i )+OA i =70%*(71.79-(-10.68))+(-10.68)=57.73-10.68=47.05 kJ/kg

则热回收的热量为:G*1.2*(SA i -OA i )/3600=100000*1.2*(57.73-(-10.68))/3600=1568.3KW 。

其中:热回收了部分水份,回收的水份为:(湿度交换效率按50%)

湿度交换效率

100?--=

RA OA SA OA x x x x x η

式中:x η:湿度交换效率(%); OA x :新风进风绝对湿度[g/kg(干)];

SA x :新风送风绝对湿度[g/kg(干)];

RA x :排风进风绝对湿度[g/kg(干)]。

暂且RA x 为冬季室内空调设计状态点绝对湿度16.23 g/kg(干)(相对湿度60%),G 为新风量100000m3/h ,OA x =0.58 g/kg(干)(相对湿度45%),RA x =16.23 g/kg(干)(相对湿度60%),x η=50%则SA x =x η*(RA x -OA x )+OA

i =50%*(16.23-0.58)+0.58=7.82+0.58=8.4 g/kg(干) 则热回收的水份为:G*1.2*( SA x -OA x )/1000=100000*1.2*(8.4-0.58)/1000=260 kg/h 如果转轮段改为乙二醇热回收段:

计算公式:

温度交换效率

1001?--=

RA OA SA OA t t t t η

式中:1η:温度交换效率(%); OA t :新风进风干球温度(℃);

SA t :新风出风干球温度(℃);

RA t :排风进风干球温度(℃)。

暂且RA t 为冬季室内空调设计状态点温度为30℃,G 为新风量100000m3/h , OA t =-12℃,RA t =30℃,1η=40%,则SA t =1η*(RA t -OA t )+OA t =40%*(30-(-12))+(-12)=16.8-12=4.8℃

则热回收的热量为:c*m*△t =1.01*(100000*1.2/3600)*(4.8-(-12))=565.6KW

根据以上数据最终计算结果为:转轮热回收的热量为1568.3KW ,而乙二醇热回收的热量为565.6KW ,二者相差为1568.3-565.6=1002.7KW ,乙二醇热回收实际热回收效率相当于转轮的565.6/1568.3*100%=36%,同时转轮热回收了部分水份,约为260 kg/h 。

再简单的从100000m3/h 新风量的热回收经济上分析,二者相差1002.7KW ,根据实际工作情况,空调随时启用,可认为24小时不间断运行,空调供暖风时间为11月15日到次年3月15日,约120天,则120*24*1002.7=2887776KW.H ;260 kg/h 水份转化成260 kg/h 蒸汽,则260*24*120=748800kg/h 。

以上再按转化成电热水功率(热效率按95%),则耗电为:2887776/95%=3039764 KW.H ,748800*0.7/95%=551747 KW.H ,则全部按照北京民用电费计算(0.48元/ KW.H ),则一个冬季运行费用节约:(3039764+551747)*0.48=1723925元

以上为本工程单台机组(新风量100000m3/h ,室内参数30℃,相对湿度60%)数据分析,可见转轮热回收比乙二醇热回收单台机组每个冬季节约1723925元运行费用,乙二醇热回收只是转轮热回收的36%。

六、维修方便程度

转轮热回收:

从结构和工作原理上看维修、维护非常方便。

乙二醇热回收:从结构和工作原理上看,维护、维修均比较困难,维护费用高,易存在隐患。 七、结论

从以上两种热回收的工作原理、结构、材质、换热效率及维修定性定量上分析可知:在此项目热回收上转轮热回收明显优于乙二醇热回收(乙二醇热回收比较适用于送排风须完全隔离的远距离末端处理的送排风系统)。

转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收对比分析 一、转轮热回收和乙二醇热回收工作原理 转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。 乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。 二、关键部件外形图 转轮热回收转轮:乙二醇热回收换热器 三、关键部件材质 转轮热回收转轮: 可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。 其特点如下: 1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式

分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。 2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。 3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。 乙二醇热回收换热器: 排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。 四、与空调系统配套情况 转轮热回收: 由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。 乙二醇热回收: 由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。 五、换热效率 转轮热回收: 中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达90%(焓换效率)。 乙二醇热回收: 间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。 下面就本工程单台机组冬季运行时作经济分析: 转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

乙二醇脱水方法及脱水装置

延长干燥塔再沸器结焦周期的乙二醇脱水方法及脱水装置延长干燥塔再沸器结焦周期的乙二醇脱水装置 1、从聚对苯二甲酸乙二醇酯废品中回收对苯二甲酸和乙二醇的方法 2、从聚酯废料中分离和回收对苯二甲酸二甲酯和乙二醇的方法 3、从乙二醇制程水中去除甲酸、乙酸的方法和装置 4、从酯化废水中回收乙二醇的方法 5、高纯度单乙二醇的制备方法 6、环氧乙烷催化水合制备乙二醇的方法 7、环氧乙烷均相催化水合制乙二醇的方法 8、环氧乙烷水合生产乙二醇的固体酸催化剂 9、环氧乙烷水合制备乙二醇的催化剂及过程 10、环氧乙烷水合制备乙二醇的固体酸催化剂 11、环氧乙烷水合制乙二醇的方法 12、回收浓缩乙二醇的方法 13、聚酯废料制造对苯二甲酸二酯和乙二醇的方法 14、聚酯直纺短纤维联合装置乙二醇脱水塔顶蒸汽回收工艺 15、生产乙二醇的方法 16、生产乙二醇的方法2 17、生物净化污水去除乙二醇的方法 18、受污染的乙二醇的处理方法和缩聚设备 19、酸性水合成乙二醇的方法 20、同时制备乙二醇和碳酸酯的方法 21、延长干燥塔再沸器结焦周期的乙二醇脱水方法及脱水装置 22、延长干燥塔再沸器结焦周期的乙二醇脱水装置 23、一种乙二醇的精制提纯方法 24、一种乙二醇喷射真空泵 25、一种制备乙二醇的固体酸催化剂 26、一种制备乙二醇锑催化剂的工艺流程 27、乙二醇锑的制备方法 28、乙二醇制备方法 29、用于环氧乙烷催化水合制备乙二醇的方法 30、用于环氧乙烷水合生产乙二醇的固体酸催化剂 31、用于环氧乙烷水合制备乙二醇的固体酸催化剂 32、用于环氧乙烷水合制乙二醇的均相催化剂 33、由环氧乙烷水合制备乙二醇的固体酸催化剂 34、制备高纯度单乙二醇的方法 35、制备乙二醇和(或)丙二醇的方法

飞机除冰液废液乙二醇回收和再生系统共10页文档

Welcome to Inland Technologies Inland是为机场提供飞机除冰液废液(乙二醇)回收和再生系统的专业制造商. 生产基地分别位于加拿大和美国. 通过使用我们的系统, 飞机除冰液废液(乙二醇)被迅速收集, 经过浓缩和再生, 再次应用于飞机除冰, 最终排放到环境中的乙二醇含量可小于85 mg/l, 符合并超过北美和欧洲对机场排放废水中乙二醇含量的最严格要求. 我们的系统应用在北美的二十多个军用和民用机场, 以及位于英国伦敦的希思罗机场. 回收飞机除冰液(乙二醇)超过700,000,000升. 我们提供具有自己专利的: Glyvac?乙二醇回收车 Glycol Recovery Vehicle [Glyva c?] 乙二醇浓缩器 Glycol Concentrator The Starcevic Distillation System? 乙二醇蒸馏系统 The Starcevic Distillation System? GlycolGuard? 乙二醇排水阻塞系统 GlycolGuard? Drain Block 膜处理系统 Membrane treatment system 交钥匙乙二醇回收和再生系统 Turnkey glycol recycling system Glyvac?乙二醇回收车 Glyco l Recovery Vehicle [Glyvac?] 减小飞机除冰液废液(乙二醇)对周围环境影响的一个关键点是快速清除机场停机坪上的废液. 由于我们是制造商, 因此能很好地满足客户的时限要求. 与其它回收车辆相比, Glyvac?拥有许多可以改善运行效率的特点. 收集效率 Glyvac? 具有一个三阶流体分离系统, 能清除气流中99.9% 的乙二醇. 快速卸载 Glyvac? 使用一个机载泵, 该泵能在10分内卸载6800升(满载)的废液, 改善回收和劳动效率。Glyvac? 还拥有一个较大的容量水箱,可减少卸载频率. 安全 所有回收操作都可在驾驶舱管理, 所以工作人员无需离开便可开启收集系统. 这避免了受冷,并减少可滑倒的危险. 维护 第 1 页

乙二醇的回收

从稀溶液中回收乙二醇 摘要 本文讨论了从稀溶液中回收乙二醇实验的可行性,如聚对苯二甲酸乙二醇酯废液。根据工艺过程的要求水溶液种乙二醇的质量分数为1.3%,乙二醇先经过一个初步蒸发阶段,然后由一个反渗透蒸馏处理。本研究的目的是找出各个操作单元的操作条件,从而确保乙二醇的浓度达到相关工艺所要求的浓度,并尽可能多的回收乙二醇,减少乙二醇的浪费。 关键词:乙二醇回收聚酯废水废物减少蒸发反渗透 绪论 工业上采用乙二醇与对苯二甲酸直接酯化反应,或对苯二甲酸二甲酯(DMT)与乙二醇酯交换法聚生产聚对苯二甲酸乙二醇酯。直接酯化是新建工厂生产采用的首选方法,是因为直接酯化反应具有较高的反应速率;在催化剂作用下,可以获得更高的分子聚合度;对苯二甲酸比对苯二甲酸二甲酯轻,减少了存储费用。 乙二醇与对苯二甲酸在缩聚反应器中反应,温度控制在220-260℃。乙二醇过剩,通常可以获得较高的反应速率。乙二醇与对苯二甲酸的比例大于2时,可以抑制一缩二乙二醇的形成。直接酯化,由催化剂加速其反应,其次是逐步四方的压力达到1mbar。反应产物中过剩的试剂,用连续蒸馏的方法除去。根据酯交换生产方案,酯化废水溶液主要含有乙二醇。对于此废水,资料显示总有机碳(TOC)在5000-11,00mg/L之间,TOC的含量取决于工厂的生产情况。 乙二醇是化学工业的主要产品之一,全世界的生产为6.7 ×10 6t/a。乙二醇可以降低水的冰点,其作为一种完美的防冻剂处理起来也很方便。商业上乙二醇用于发动机制冷,太阳能设备,热水及工业冷却系统以及作为飞机的防冻剂。乙二醇也是一种具有用于生产聚酯纤维的重要商业价值的原料,主要是聚对苯二甲酸乙二醇酯。其他少量用途是作为保湿剂,增塑剂,柔软剂,液压油和溶剂。 由于其大量使用,乙二醇已被列为10种环境污染物之一。在土壤中容易渗透,污染地下水,而其从地表水释放是微不足道的。因此有必要在乙二醇污染环境之前对其进行处理。需氧或厌氧生物治疗对于处理乙二醇废水具有重要作用,并应用PET废水处理。好氧工艺已成功被证明可以处理化学需氧量(COD)不高于1000-1500mg/L的废水。但是这些工艺不能很好地处理PET废水,由于PET

EOEG(乙二醇)装置工艺技术特点及基本原理

E O E G(乙二醇)装置工艺技 术特点及基本原理 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

工艺技术特点及基本原理 基本原理 乙烯氧化生成环氧乙烷的反应机理 乙烯氧化过程按氧化程度可分为选择性氧化(部分氧化)和深度氧化(完全氧化)两种情况。乙烯分子中的碳—碳双键(C=C)具有突出的反应活性,在一定氧化 条件下可实现碳—碳双键的选择氧化而生成环氧乙烷,但在通常氧化条件下,乙烯分子骨架很容易被破坏,发生深度氧化而生成二氧化碳和水。目前工业上乙烯直接氧化生成环氧乙烷的最佳催化剂是银催化剂。 (1)主反应 乙烯氧化生成环氧乙烷是放热反应,在250℃时,每生成一摩尔环氧乙烷要释放出25.19千卡的反应热。 (2)副反应 乙烯氧化时除生成产物环氧乙烷外,还发生其它反应: 在工业生产中,反应产物里实际主要是环氧乙烷、二氧化碳和水,而甲醛量远小于1%,乙醛量则更小。 反应(2)是主要副反应,也是放热反应,250℃时,每反应掉1摩尔乙烯要放出315.9千卡反应热,如果反应温度过高或其它条件影响会产生反应(3),其反应也是强放热反应,每反应掉1摩尔环氧乙烷要放出314.4千卡的热量,副反应(2)和(3)与主反应(1)的反应进行比较,便可看出副反应的反应热是主反应热的卡几倍,因此必须严格控制工艺条件,以防副反应增加。不然,副反应加剧,势必引起操作条件恶化,造成恶性循环,甚至发生催化剂床层"飞温"(由于催化剂床层大量积聚热量造成催化剂层温度突然飞速上升的现象)而使正常生产遭到破坏。 近代对乙烯在银催化剂条件下的选择性氧化机理做了大量的研究,比较统一的看法是: A.氧被银表现吸附的形态 初始时,在各种不同温度下氧被高速度吸附,此时活化能很低,约为3千卡/克分子,这个过程发生在四个邻近的清洁的银原子上氧分子的解离吸附(非活化解离吸附)。

空调系统热回收技术简介

空调系统热回收技术简介 陈振乾施明恒 (东南大学能源与环境学院南京210096) 摘要:中央空调系统的热回收技术在建筑节能中具有重大的意义。本文分析了中央空调热回收技术原理和建筑中央空调排风及空气处理中的能量回收系统。 Brief Introduction to Heat Recovery in Air Conditioning System Chen Zhenqian and Shi Mingheng (School of Energy and Environment, Southeast University, Nanjing 210096) Abstract: Heat recovery technology in central air conditioning system is very important in building energy saving. The principle of heat recovery technology in central air conditioning system is analyzed. The energy recovery in exhaust air and air handling of building is introduced. 一、前言 随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%;在我国也达到20%左右,而且在迅速增加。高级民用建筑的中央空调耗能占建筑总耗能的30%~60%。能源的高消耗对我国发展造成了很大的压力,根据发改委能源组提供的材料,从1980年到1985年我们国家GDP的年增长率是10.7%,能源消费的增长率是10.9%,1986—1990年GDP年增长是7.9%,能源消费的增长率9.2%。1991—1995年GDP的年增长率是12%,能源消费的增长率是5.9%。1995—2000 年,GDP开始时8.3%,后来调整为8.6%,能源消费增长率是0.6%。2001—2005年GDP年增长率是9.47%,能源的消费增长是9.93%。其中2003年GDP的增长率是10%,能源是15.3%,2004年GDP是10.1%,能源增长率是16.1%。从这个数字可以看出,我们国家从1980—2005年GDP的增长一直在7.8—12%之前,基本上是这个范围内波动,而能源消耗的波动很大,特别是2003、2004年,能源的消费增长远远高于GDP的增长。和发展国家相比我国每平方米的能耗是他们的3倍,这说明在能源的高消费上必须要引起全社会的重视。目前中国每年竣工建筑面积约为20亿m2,其中公共建筑约有4亿m2。在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明。而在空调采暖这部分能耗中,大约20%~50%由外围护结构传热所消耗(夏热冬暖地区大约20%,夏热冬冷地区大约35%,寒冷地区大约40%,严寒地区大约50%)。从目前情况分析,这些建筑在围护结构、采暖空调系统,以及照明方面,共有节约能源50%的潜力。采暖空调节能潜力最大,在暖通空调设计方面加以控制就能够有效的节能能源。而新风带来的潜热负荷可以占到空调总负荷的20%-40%,开发节能的新风系统是建筑节能领域的一项重大课题。因此降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。本文主要对空调系统的热回收技术原理进行分析介绍。 二、空调冷水机组余热回收 中央空调的冷水机组在夏天制冷时,一般机组的排热是通过冷却塔将热量排出。在夏天,利用热回收技术,将该排出的低品位热量有效地利用起来,结合蓄能技术,为用户提供生活热水,达到节约能源的目的。目前,酒店、医院、办公大楼的主要能耗是中央空调系统的耗电及热水锅炉的耗油消耗。利用中央空调的余热回收装置全部或部分取代锅炉供应热水,将会使中央空调系统能源得到全面的综合利用,从而使用户的能耗大幅下降。通常,该热回收一般有部分热回收和全部热回收。 1、部分热回收 部分热回收将中央空调在冷凝(水冷或风冷)时排放到大气中的热量,采用一套高效的热交换装置对热量进行回收,制成热水供需要使用热水的地方使用,如图1所示。由于回收的热量较大,它可以完全替

乙二醇生产装置的工艺设计

乙二醇生产装置的工艺设计前言 乙二醇在国民经济中有着极其重要的地位,是大宗有机化工产品。广泛用于生产聚酯纤维、薄膜、容器瓶类等聚酯系列产品和汽车防冻剂,还可用于除冰剂、表面涂料、表面活性剂、增塑剂、不饱和聚酯树脂以及合成乙二醇醚、乙二醛、乙二酸等化工产品的原料,虽然乙二醇产品用途极广,但国内乙二醇的产量一直无法满足国内市场的强劲需求,乙二醇自给率不足50%,有相当大的部分需要进口,易受国际市场供求关系的影响。因此,发展和技术改造乙二醇工艺设计对我国经济发展有着重要的意义。 随着我国市场经济的发展,以前那种单纯*增大原料和能源的消耗来提高产量的做法已逐渐被淘汰,继续这种做法的企业已经濒临破产倒闭;现在只有依*科技的力量,通过技术的改造来降低能源的消耗,同时使各种生产资料得到优化的配置,才是摆脱困境最有效的方法。 乙二醇工艺设计中,乙二醇的精制是整个工艺流程的核心部分,关系着乙二醇产品的质量和产量。因此,本设计以乙二醇精制为中心和重点,经过严密的计算和论证,得到了肯定的结果。 该技术具有世界共同发展趋向的节能性,是生产乙二醇工艺的重大突破。 第1章文献综述 1.1 乙二醇工业的发展[1][2] 乙二醇是最简单和最重要的脂肪族二元醇,它在有机化工生产中是一种重要的基本原料,尤其广泛用于聚酯纤维、聚酯塑料的生产。在汽车、航空、仪表工业的冷却系统中,它是抗冻剂的重要成分。在溶剂、润滑剂、软化剂,增塑剂和炸药的生产中也有多种用途。 乙二醇是由Wurtz于1859年首次用氢氧化钾水解乙二醇二乙酸酯制得的。第一次世界大战期间,人们利用乙二醇的二硝酸酯能降低甘油凝固点的特性来代替甘油生产炸药。本世纪20年代,随着汽车工业的发展,抗冻剂的需求猛增,导致了乙二醇供不应求。当时是采用氯乙醇皂化法生产乙二醇。50年代中期,聚酯树脂的开发成功和投入生产,再度刺激了乙二醇工业的发展,由石油化工基本原料乙烯或环氧乙烷的氧化、水解制乙二醇的方法开始占据主导地位。70年

乙二醇回收事故预案

乙二醇回收事故预案 目录 一、可能产生的事故类型 1、停电、停水 2、负压压力不够 3、回收乙二醇中会含量过高 4、刮膜蒸发器搅拌电机损坏 5、刮膜蒸发器内温度波动大 6、刮膜蒸发器搅拌十字板脱落 7、乙二醇的泄露引起的人员中毒、着火、爆炸和环境污染 二、危险物质危险特性 三、装置危险源及造成的危险程度(造成的后果) 四、处理方法 五、预防措施 1、日常操作与巡检 2、现场静电防护 3、静电防护 4、安全操作 5、职业健康

一、可能产生的事故类型 乙二醇回收事故类型主要有: 1、停电、停水 2、负压压力不够 3、回收乙二醇中会含量过高 4、刮膜蒸发器搅拌电机损坏 5、刮膜蒸发器内温度波动大 6、刮膜蒸发器搅拌十字板脱落 7、乙二醇的泄露引起的人员中毒、着火、爆炸和环境污染 二、装置危险物质危险特性 1、乙二醇理化常数 乙二醇别名甘醇熔点 -13.2℃沸点:197.5℃外观与性状无色、无臭、有甜味、粘稠液体蒸汽压 6.21kPa/20℃闪点:110℃ 健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入中毒表现为反复发作性昏厥,并可有眼球震颤,淋巴细胞增多。口服后急性中毒分三个阶段:第一阶段主要为中枢神经系统症状,轻者似乙醇中毒表现,重者迅速产生昏迷抽搐,最后死亡;第二阶段,心肺症状明显,严重病例可有肺水肿,支气管肺炎,心力衰竭;第三阶段主要表现为不同程度肾功能衰竭。人的本品一次口服致死量估计为1.4ml/kg(1.56g/kg)。 急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸,并迅速取就医。 食入:饮足量温水,催吐。洗胃,导泄。就医。 毒理学资料及环境行为 毒性:属低毒类。 急性毒性: 亚急性和慢性毒性:人吸入40%乙二醇混合物9/28人出现短暂昏厥;人吸入40%

转轮热回收原理及应用

转轮热回收原理及应用 ?https://www.doczj.com/doc/049964495.html, ?https://www.doczj.com/doc/049964495.html,/EEB/heat_recovery.html 转轮式全热交换器的心脏是一个以10转/分钟的速度不断转动的蜂窝状转轮.转 芯用特殊金属箔作载体,将无毒、无味、环保型蓄热、吸湿材料,用高科技方法合成,制作成具有蓄热吸湿等性能的蜂窝状转轮,装配在一个左右或上下分隔区的金属箔箱体内由传动装置通过皮带驱动轮子转动。冬季运动时,室内排风经过过滤后再通过热回收转轮处理时,转芯温度升高,水分含量增加,当转芯转过清洗扇后与室外新鲜空气接触,转轮向低温的新鲜空气放出热量和水分,使新鲜空气升温增湿。夏季与之相反,降低新风温湿度。通过换热从而使空调系统达到节能的目的。 这种蜂窝式转轮的设计构成了一个吸湿、蓄热、传质、传热的巨大接触面积,蕴藏了超级能量,具备了回收显热和潜热的优异特性。 在空调系统中,为了人员舒适和通风顺畅,必须考虑引入外界新鲜空气,同时排出部分室内浑浊空气。由于新风为高温高湿状态,因此冷负荷大部分要被新风负荷所占有,能耗惊人。 工作原理 转轮式能量回收换热器有两种型式,即全热回收和显热回收。 转轮作为蓄热芯体,新风通过轮转的一个半圆,而同时排风逆向通过转轮的另一个半圆,新风和排风以这种方式交替逆向通过转轮。 在冬季,转轮蓄热芯体吸收排风中的热(湿)量,当转到新风侧时,由于存在温(湿)差的原因,蓄热芯体就会释放其中的热(湿)量,当再转到排风侧时,又继续吸收排风中的热(湿)量。如此往复循环实现能量的回收,其工作原理如图。 在夏季则是一个相反的处理过程。

结构特点 高热回收效率:蜂窝状的蓄热芯体设计,构成了一个蓄热、吸湿、传热、传质的巨大接触面积具备了回收显热和潜热的优异特性。 自清洁功能:通过转轮的气流方向不断的交替改变以及设置双清洁扇面,保证了自清洁能达到最佳的效果。 低运行费用:转轮的结构特点,决定了其运行费用较低。 便于控制:可以根据室内外温湿度变化控制转轮转速,以达到最佳运行效果。 热回收效率 寿命周期成本 标准的转轮能量回收换热器装有双清洁扇面,其工作原理如图。这种结构不仅防止了气体、细菌、灰尘颗粒等在转轮中从排风混流到新风中,也确保了气流的充分分开和气流的交叉污染,这在某些场合显的优为重要。

热管、转轮、板式换热器热回收的比较

热管、转轮、板式换热器热回收的比较 随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交换器是空气调节和余热回收的关键装置。 一、各类热交换器的性能与利用分析 目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示: 下面介绍几种常用的热交换器。 1. 转轮式全热换热器 转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。为加大换热面积,轮子缓慢旋转(10~12转/分)。轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。

换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min 的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。所以,既能回收显热,又能回收潜热。 1)转轮换热器的功能与适用范围 2)转轮换热器的主要优缺点: 3) 影响转轮换热器效率的因素: a. 空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率则高,推荐风速2~4m/s。 b. 转轮两侧气流入口处,需要加装空气过滤器。 c. 设计时,必须计算校核转轮上是否会出现结霜、结冰现象;必要时应在新风管上设空气预热器,或在热回收器后设温度自控装置,当温度达霜点,就发出信号关闭新风阀门或开启预热器。

乙二醇回收

前言 乙二醇回收及加注。60%乙二醇由集中处理站加压计量后(加药泵与加药点一一对应),经管线输至站外集气阀组计量汇管、部分井口和部分生产汇管加注,集中处理站分别在节流、换冷前加注。凝析气处理及稳定部分的三相分离器分出的乙二醇水溶液进入乙二醇回收系统,经再生塔加热分馏,脱除部分水后循环使用。 乙二醇再生。自石炭系低温分离器分出75%(重量百分数)的乙二醇富液,经贫富液换热罐换热后进入乙二醇再生塔,再生后85%(重量百分数)的乙二醇贫液经贫富液换热罐冷却后进入乙二醇储罐储存,再经过乙二醇加注泵加注至石炭系凝析气。 在凝析气田生产、处理、集输过程中极易产生水化物,为了避免水化物对气矿安全生产造成影响,气矿在生产过程中采用向流程中易产生水化物部位注入乙二醇的方法来防止水化物的生成。 主体 乙二醇体积分数达不到80%以上的要求,循环再注入流程中将不能有效预防水化物的生成,可能在生产处理和海底管线集输过程中生成水化物,从而形成冻堵,对气矿安全生产造成严重威胁;同时大量的乙二醇在回收过程中被耗损,给气矿经济效益和环保管理带来巨大压力。 1、乙二醇再生装置 再生装置核心设备是重沸器,它主要由换热器、填料段、折流段、换热段4部分组成。 乙二醇再生装置是利用乙二醇和水的沸点差对溶解在水中的乙二醇进行蒸发提浓,从而达到回收乙二醇的目的。 在正常工作流程中,热介质油通过加热段盘管将罐内流体加热到130℃,高温蒸汽上升到加热填料鲍尔环,使其温度达到130℃左右。经过预热的乙二醇富液从精馏柱填料段顶部进入,穿过高温填料鲍尔环后蒸发掉大部分的水,乙二醇贫液靠自身重力落入重沸器。水蒸气经过折流段缓冲,再进换热段初步冷却后经顶部进入冷凝器冷却到常温后排出,达到乙二醇回收的目的。 常压再生条件下,贫液中乙二醇浓度就决定于重沸器温度。由于乙二醇的热分解温度为206℃,因而重沸器操作温度一般在190℃左右,最高不超过204℃,

飞机除冰液(乙二醇)回收再利用系统

Inland Inland Technologies Inland Inland Inland Inland Inland Inland 2012 11 12 700,000,000 100,000,000 50% DuraGly Inland Inland Glyvac Starcevic GlycolGuard DuraGly Glyvacs Starcevic Distillation

Glyvac Glyvac Inland Glyvac Glyvac Glyvac 99.9% Glyvac 10 6800 Glyvac Inland Glyvac 725 si 325 173 30 45% Inland Glyvac 2012 11

Inland 60% 000 g 100 g 650,000,000 2012 11 17000 l d 4500 g 1% 25% 50% 60% 100 g 6.1 1.83 2.5 + 6.7 + 22 t

The Starcevic The Starcevic 50% 99.8% SDS Inland DuraGly 99.8% 8.5m Momcilo Starcevic 2010 12 Momo Inland Starcevic 2012 11 7000 lpd 50%-85%85%-99.8% 8.5 m 1000 mg/L 20%

GlycolGuard GlycolGuard Inland GlycolGuard GlycolGuard GlycolGuard 60 cm [24 ] GlycolGuard Inland 2012 11

乙二醇回收和再生系统

乙二醇回收和再生系统 MEG (Monoethylene Glycol) Regeneration Inland technologies是乙二醇回收和再生系统的专业制造商. 生产基地分别位于加拿大和美国. 多年来, 我们管理, 回收, 再生来自很多行业的乙二醇废液, 包括汽车冷却剂, 飞机除冰液, 陆海石油和天然气管道和设备脱水. 到现在, 我们已经管理, 回收, 再生了12亿升的乙二醇废液. Monoethylene Glycol (MEG) 乙二醇一般被应用在陆海石油和天然气管道和设备中防止水合物的形成和堵塞. 为了降低成本和减少乙二醇废液的排放数量, 乙二醇通常被回收和再生. 水合物经常产生在低温和高压的条件下, 因为水合物的形成, 从而使海底管道特别容易损坏( 海床温度经常处于4-10°C之间). 这时就需要不间断的注入乙二醇. 乙二醇被注入钻井平台和海岸上, 乙二醇被浓缩和再生, 再次应用于海底管道. 多年前, Inland 就已经研发和制造出一种二选一可交替回收和再生系统: a. 乙二醇浓缩器(MEG Concentrator) b. The Starcevic Dist illation System?乙二醇蒸馏系统(The Starcevic Distillation System?) 乙二醇浓缩器(MEG Concentrator), 应用于陆海石油和天然气行业. 是低资金投入, 低操作成本的系统, 可以把浓度1%-20%的乙二醇溶液浓缩到浓度50%-60%. The Starcevic Distillation System?乙二醇蒸馏系统(The Starcevic Distillation System?), 是乙二醇浓缩器(MEG Concentrator)生产的浓度50%-60%乙二醇溶液的再浓缩系统, 可以把浓度50%-60%的乙二醇溶液浓缩到浓度98+%. Inland的新型The Starcevic Distillation System?乙二醇蒸馏系统(The Starcevic Distillation System?), 是一个两阶乙二醇再生系统, 可以把浓度50%-60%的乙二醇溶液浓缩并得到到浓度98+%的纯级乙二醇. 它比其它可比系统节省20%的能耗, 并且每天可以生产7000升的产品, 这个产量是用于大多数陆海石油和天然气管道. 乙二醇浓缩器(MEG Concentrator) 和The Starcevic Distillation System?乙二醇蒸馏系统(The Starcevic Distillation System?) 可非常容易的和陆海石油和天然气行业的其它设备整合, 以满足和适合当地实际的操作条件, 规范限制, 以及环保要求.

全球乙二醇生产工艺路线及成本对比

全球乙二醇生产工艺路线及成本对比 一目前全球乙二醇生产工艺路线及成本对比 目前世界上大规模生产乙二醇的方法有3种: 1)采用天然气为原料制乙二醇(主要集中在中东地区),2009年产能620万吨,占全球总产能的32%,预计2011年产能将达到1000万吨; 2)以石油为原料制乙二醇,2009年全球产能1300万吨,占世界的68%; 3)采用褐煤做原料生产乙二醇(丹化科技),年产能20万吨。 目前中东地区天然气3乙二醇每吨生产成本约250美元。据丹化科技披露,即便能以非常优惠的价格(130元/吨)获得褐煤资源,煤制乙二醇生产成本依然高达2600元/吨(约合380美元/吨)。因此相比天然气制乙二醇,即使加上运费(从中东到中国最新报价20美元/吨),煤制乙二醇也不具备竞争力。 与石油制乙二醇相比,煤制乙二醇是否具备成本优势,取决于国际油价和能否获得廉价煤炭资源。根据丹化科技煤制乙二醇实验数据推算,若煤价为750元/吨,当石油价跌到67美元/桶以下时,煤制乙二醇将不具备成本优势。 以天然气为原料制乙二醇(环氧乙烷水合法):具体工艺路线是:首先以天然气生产乙烯,然后乙烯生产乙二醇。采用该工艺路线,乙二醇的生产成本主要由两部分构成:1)原料成本约为6300元(其中乙烯市场价格按照10 000元/吨计算,成本6 000元);2)其他成本约700元(其中固定成本约330元,动力成本约380元)。 以石油为原料制作乙二醇(环氧乙烷水合法):具体工艺路线是:首先石脑油生产乙烯,然后使用乙烯生产乙二醇,本工艺路线和天然气为原料的工艺路线的区别在于获得乙烯的方式,前者通过石脑油制作乙烯,后者通过天然气制作乙烯。 目前全球乙烯总需求约为亿吨,总产能约亿吨。其中约50%用石脑油制作,50%用天然气(乙烷、丙烷等)制作,用两种不同工艺路线的生产成本存在巨大差异。用天然气生产乙烯的成本:中东乙烯装置以乙烷为原来成产成本最低达100美元/吨,平均为240美元/吨;美国墨西哥湾沿岸为250美元/吨。用石脑油生产乙烯的成本:每生产一吨乙烯约需要吨石脑油。因石脑油制乙烯会产生燃料油,汽油等副产品,考虑综合收益,乙烯成本约为石脑油成本的~倍之间,从原油到石脑油的加工费一般在50美元/吨左右。因此石油路线制乙烯的成本可用如下公式推算:乙烯成本=(原油价格+50美元)×~。 以褐煤做原料生产乙二醇:具体工艺路线是:煤炭—羟化—加氢—乙二醇。根据丹化科技公开的煤制乙二醇项目建议书中提供的数据,煤制乙二醇项目成本构成如下表(表1)所示: 表1 按此成本,当国际油价降到54美元以下事,煤制乙二醇不具备成本优势。根据丹化科技披露的试验数据推算。煤制乙二醇的生产成本构成如上表2所示。

037-热回收处理

热回收空调机组技术要求 1.招标范围 热回收空调机组本体(变频风机、电热式蒸汽加湿器、蜂巢式高压静电灭菌除尘过滤器应包括控制柜)及其配套零部件的供应和设备的调试及维保。高压微雾加湿只需按照我司已确定的高压微雾加湿品牌规格选配高压管路及热回收空调机组内的高压微雾加湿部件。加湿主机及软水装置已包括在空调机组标段内。 2.环境条件: 电源:1、三相交流:380V 50Hz 2、单相交流:220V 50Hz 3、波动范围:电压±10%频率±5% 3、整体技术要求 3.1投标人提供的热回收空调机组技术参数应满足凯悦工程标准、《供货需求表》要求。 3.1.1、冷、热量应不低于设计要求 3.1.2转轮热回收效率应≥70%,板式热回收效率应≥60%。 3.2热回收机组生产厂家须有生产及安装同类型设备的经验,且其所生产的设备须具有 三年以上成功运行的经验。招标方在评标时有权考证。 3.3 有关设备须符合下列有关国际认可的机构/组织和中国有关政府机关所制订的条例 和规范。 3.4 热回收机组要求为通过欧洲TUV检测和EUROVENT一体化认证的机型。 3.5 机组冷/热盘管的空气阻力不能超过125Pa,而流过盘管的风速不能2.7m/s。 3.6机组外壳箱体须为双层金属板结构,内外层分别采用厚度不小于0.8mm及1.3mm 的镀锌钢板,中间夹以保温材料拼合安装在坚固的五角柱组合而成的框架上,形成坚固、耐用及气密的机组。面板及框架表面须经防锈处理。 3.7外壳钢板的组合设计应为可拆卸的并附设检修门及手柄以方便风机和盘管的检修。 3.8机组在正常运行时所产生的震动及噪音必须不能超过指定的标准。 3.9须采用40mm厚不含CFC、抗腐烂的保温材料作为机组外壳间壁及结构支撑件的保 温,导热系数不能大于0.02w/m.℃,须保证机组表面不含产生凝结水。 3.10所有由厂方提供及安装的保温及消音材料,必须为当地消防部门批准使用的耐火材 料。 3.11热回收空调机组各组件必须为不含石棉物质产品。

转轮热回收原理

转轮热回收原理 转轮式全热交换器的心脏是一个以10转/分钟的速度不断转动的蜂窝状转轮.转芯用特殊金属箔作载体,将无毒、无味、环保型蓄热、吸湿材料,用高科技方法合成,制作成具有蓄热吸湿等性能的蜂窝状转轮,装配在一个左右或上下分隔区的金属箔箱体内由传动装置通过皮带驱动轮子转动。冬季运动时,室内排风经过过滤后再通过热回收转轮处理时,转芯温度升高,水分含量增加,当转芯转过清洗扇后与室外新鲜空气接触,转轮向低温的新鲜空气放出热量和水分,使新鲜空气升温增湿。夏季与之相反,降低新风温湿度。通过换热从而使空调系统达到节能的目的。 这种蜂窝式转轮的设计构成了一个吸湿、蓄热、传质、传热的巨大接触面积,蕴藏了超级能量,具备了回收显热和潜热的优异特性。 在空调系统中,为了人员舒适和通风顺畅,必须考虑引入外界新鲜空气,同时排出部分室内浑浊空气。由于新风为高温高湿状态,因此冷负荷大部分要被新风负荷所占有,能耗惊人。 工作原理 转轮式能量回收换热器有两种型式,即全热回收和显热回收。 转轮作为蓄热芯体,新风通过轮转的一个半圆,而同时排风逆向通过转轮的另一个半圆,新风和排风以这种方式交替逆向通过转轮。 在冬季,转轮蓄热芯体吸收排风中的热(湿)量,当转到新风侧时,由于存在温(湿)差的原因,蓄热芯体就会释放其中的热(湿)量,当再转到排风侧时,又继续吸收排风中的热(湿)量。如此往复循环实现能量的回收,其工作原理如图。 在夏季则是一个相反的处理过程。

结构特点 高热回收效率:蜂窝状的蓄热芯体设计,构成了一个蓄热、吸湿、传热、传质的巨大接触面积具备了回收显热和潜热的优异特性。 自清洁功能:通过转轮的气流方向不断的交替改变以及设置双清洁扇面,保证了自清洁能达到最佳的效果。 低运行费用:转轮的结构特点,决定了其运行费用较低。 便于控制:可以根据室内外温湿度变化控制转轮转速,以达到最佳运行效果。 热回收效率 寿命周期成本

乙二醇水溶液防腐蚀回收处理

乙二醇溶液防腐蚀处理 通常情况下,乙二醇作为一种传统的载冷剂同样具有很强的腐蚀性。铁和无氧纯水的反应其自由能是降低的,反应要放出氢。同时,乙二醇在使用过程中与空气接触容易产生气泡,气泡在溃灭过程中产生的微射流或冲击波对设备产生损伤——穴蚀(又称气蚀、空蚀)。穴蚀现象开始是变色,表面局部呈灰白色,而后逐步变粗糙,继而呈现出麻点和针孔,并逐步向深处发展,最后产生散落或形成局部聚集的蜂窝状孔群,严重的针孔可穿透设备。加上钢铁表面不均匀,它在水中要形成无数微小的腐蚀电池,造成对设备的腐蚀。同时乙二醇含有羟基本身不稳定容易酸化等因素会导致新鲜乙二醇溶液能在小于1周的时间内腐蚀碳钢(一般用碳钢)和铜;能在约1年的时间内,腐蚀一般不锈钢(304不锈钢),并导致溶液系统中铁锈杂质等含量很高,很多企业使用的乙二醇溶液在1年左右,杂质含量达到1%附近。由此导致换热效果低,冰点提高等后果。另外,发生腐蚀的乙二醇溶液,由于存在电化学腐蚀、垢下腐蚀、酸性腐蚀等一些列叠加腐蚀作用,具有更强的腐蚀性。 有些企业在使用过程中经常出现蒸发器、管路等泄露,确切地说,一个新建载冷系统,如果使用乙二醇水溶液做循环载冷介质,那么,经过几年时间运行,该循环系统就会在乙二醇类溶液的腐蚀下出现泄漏现象。因为载冷剂锈蚀而损坏设备,造成停产的现象有很多。比如,北京某工厂于1995年建成的一组12个碳钢发酵罐,经过5年运行,到2000年生产旺季时,冷却带出现大范围渗漏,最后,只有停产大修,扒掉保温层,割掉全部被腐蚀的冷带,重新焊制新冷带,整个大修费用花掉200多万元,停产损失几百

万元。2001年浙江某工厂制冷系统冷带及氨蒸发器蛇管均被醇类溶液腐蚀发生泄漏,造成停产维修,损失严重。 冷冻循环系统金属出现腐蚀后,首先要更换蒸发器、管路、发酵罐等,即使更换新鲜的乙二醇溶液,长时间之后由于乙二醇溶液腐蚀又会出现泄漏,这样一方面更换成本很高,另一方面影响生产,因此使用一种无腐蚀的载冷介质,才能保证载冷循环系统的长期稳定运行,就国内而言朝阳光大化工早已经开发出无腐蚀的载冷介质,而且在国内推广使用多年,效果也得到了客户的认可。下图为两块完全相同的碳钢试块,同时分别放入无色透明的乙二醇水溶液和光大产品溶液中,经过一段时间拍摄的照片如图所示。乙二醇水溶液变浑浊,碳钢试块90%部分生红锈,而光大产品仍保持无色透明,碳钢试块表面无明显变化。 乙二醇溶液出现腐蚀如果不及时采取措施,时间越长,腐蚀也会越来越严重,增加了维修和运行费用。若阀门、管线被腐蚀穿孔,会造成物料泄漏等危害,严重影响生产。因此将乙二醇溶液更换成无腐蚀性的载冷介质已成为稳定生产的必要条件。

热回收设备应用市场简介

热回收设备应用调研及合作建议 一.产品在国内发展情况及趋势 节能和环保既是我国的长期国策,也是公众关心的问题。随着经济快速发展,现有的土地、水、能源等资源紧缺已成为制约我国经济发展的瓶颈。传统的以资源和环境为代价的粗放型经济增长模式将难以支撑我国经济与社会的可持续发展。全世界范围内的能源危机引发了各个行业对节能的思考, 在中国,其中空调用电负荷占全国耗电量的15%左右,首先在各个工业行业的用户提出了空调排风能量回收的概念, 直接催生了气—气能量热回收器制造行业的发展。空调系统的节能是节能一个非常重要方面,为解决这一问题,原建设部,住房和城乡建设部于近年先后颁布一系列节能要求,在《公共建筑节能设计标准》中明确提出, 大于4000m3/h 的空调排风系统宜设置能量回收装置。在空调系统中, 为了人员舒适和通风顺畅, 必须考虑引入外界新鲜空气, 同时排出室内浑浊空气, 新风负荷在冷负荷中所占比重较大。故在排风侧和新风侧之间增一个合适的能量回收器是必需的, 这直接导致了热回收行业在中国快速发展。 二.国内主要生产商情况 这几年里,热回收转轮在我国发展非常快,很多国外的知名品牌进入中国市场,如:德国的克林根堡(KLINGENBURG),日本的西部技研(Seibu Giken),印度的百瑞(Bry-Air),加拿大的轮通(Arotor),德国的豪森维尔(Housewell),瑞典的奥斯博格(Ostberg)等。其目前在高端市场上,主要是被德国的克林根堡(KLINGENBURG),日本的西部技研(Seibu Giken),

印度的百瑞(Bry-Air)这三家企业所占有,其中日本的企业80%以上都使用西部技研的转轮,这三家企业的产品热回收率基本上能达70%左右,其它的可能只能达到50%左右。国内企业的品质更差,只能达到20% 左右,有的只能做做样子,没有一点效果。由于这类产品现阶段还没有一具体的性能指标,国内很多企业为了应付环保部门的检查,使用一些价格低,品质差的低档的设备,导致人们对这类产品不信任。 三.成功进入中国市场主要因素 1.品牌:在中国市场上,品牌效应是非常明显,国内人们消费观点是:凡是品牌好的,其质量一定很好,售后服务一定好。国内大的项目都是进行招标采购,很多招标文件上也都明确规定选用合资品牌的产品,这样好品牌的产品中标机会就高很多。高端的用户一般都选用名牌产品,希望其质量能得到保障。 2.价格成本: 产品价格的高低也是非常重要,它是决定其产品的市场占有率。所以有很多外资企业都纷纷到中国设立工厂,如日本的西部技研(Seibu Giken)在江苏常熟设了工厂,瑞典的奥斯博格(Ostberg)江苏昆山工厂生产,这样他们就大大降低了生产及运输成本,也成功实施了避税,在中国本土生产的成本将大大低于直接从国外进口的成本。 3.供货周期:供货周期也是产品销售的一个重要要素,国内一个中等的项目,从立项到工程完工一般是三、四个月,设备采购只有一个月左右。据调查,德国的克林根堡(KLINGENBURG)的质量比西部技研(Seibu Giken)要好,其价格相当,但西部技研(Seibu Giken)的销量远远超过克林根堡,其原因是克林根堡的供货周期比较长,在国内也没有生产工厂。

相关主题
文本预览
相关文档 最新文档