当前位置:文档之家› 第六章万有引力与航天

第六章万有引力与航天

第六章万有引力与航天
第六章万有引力与航天

第六章 万有引力与航天

要点解读

一、天体的运动规律

从运动学的角度来看,开普勒行星运动定律提示了天体的运动规律,回答了天体做什么样的运动。

1.开普勒第一定律说明了不同行星的运动轨迹都是椭圆,太阳在不同行星椭圆轨道的一个焦点上;

2.开普勒第二定律表明:由于行星与太阳的连线在相等的时间内扫过相等的面积,所以行星在绕太阳公转过程中离太阳越近速率就越大,离太阳越远速率就越小。所以行星在近日点的速率最大,在远日点的速率最小;

3.开普勒第三定律告诉我们:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,比值是一个与行星无关的常量,仅与中心天体——太阳的质量有关。 开普勒行星运动定律同样适用于其他星体围绕中心天体的运动(如卫星围绕地球的运动),比值仅与该中心天体质量有关。

二、天体运动与万有引力的关系

从动力学的角度来看,星体所受中心天体的万有引力是星体作椭圆轨道运动或圆周运动的原因。若将星体的椭圆轨道运动简化为圆周运动,则可得如下规律:

1.加速度与轨道半径的关系:由2

Mm G ma r =得2r GM a =

2.线速度与轨道半径的关系:由22Mm v G m r r

=得v =

3.角速度与轨道半径的关系:由22Mm G m r r

ω=得ω=4.周期与轨道半径的关系:由r T m r Mm G 222??

? ??=π得GM r T 32π= 若星体在中心天体表面附近做圆周运动,上述公式中的轨道半径r 为中心天体的半径R 。

学法指导

一、求解星体绕中心天体运动问题的基本思路

1.万有引力提供向心力;

2.星体在中心天体表面附近时,万有引力看成与重力相等。

二、几种问题类型

1.重力加速度的计算 由2

()Mm G mg R h =+得2()GM g R h =+ 式中R 为中心天体的半径,h 为物体距中心天体表面的高度。

2.中心天体质量的计算

(1)由r T m r GMm 22)2(π=得23

24GT

r M π= (2)由mg R

Mm G =2得2gR M G = 式(2)说明了物体在中心天体表面或表面附近时,物体所受重力近似等于万有引力。该式给出了中心天体质量、半径及其表面附近的重力加速度之间的关系,是一个非常有用的代换式。

3.第一宇宙速度的计算

第一宇宙速度是星体在中心天体附近做匀速圆周运动的速度,是最大的环绕速度。

(1)由2R

Mm G =R v m 21得1v =

(2)由mg =R

v m 2

1得1v =4.中心天体密度的计算

(1)由mg R Mm G =2和ρπρ334R V M ==得RG

g πρ43= (2)由R T m R Mm G

22)2(π= 和ρπρ334R V M ==得23GT πρ=

高考物理万有引力与航天专题训练答案

高考物理万有引力与航天专题训练答案 一、高中物理精讲专题测试万有引力与航天 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

(完整版)万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

安徽省阜阳三中万有引力与宇宙同步单元检测(Word版 含答案)

一、第七章 万有引力与宇宙航行易错题培优(难) 1.如图所示为科学家模拟水星探测器进入水星表面绕行轨道的过程示意图,假设水星的半径为R ,探测器在距离水星表面高度为3R 的圆形轨道I 上做匀速圆周运动,运行的周期为T ,在到达轨道的P 点时变轨进入椭圆轨道II ,到达轨道II 的“近水星点”Q 时,再次变轨进入近水星轨道Ⅲ绕水星做匀速圆周运动,从而实施对水星探测的任务,则下列说法正确的是( ) A .水星探测器在P 、Q 两点变轨的过程中速度均减小 B .水星探测器在轨道II 上运行的周期小于T C .水星探测器在轨道I 和轨道II 上稳定运行经过P 时加速度大小不相等 D .若水星探测器在轨道II 上经过P 点时的速度大小为v P ,在轨道Ⅲ上做圆周运动的速度大小为v 3,则有v 3>v P 【答案】ABD 【解析】 【分析】 【详解】 AD .在轨道I 上运行时 2 12 mv GMm r r = 而变轨后在轨道II 上通过P 点后,将做近心运动,因此 22 P mv GMm r r > 则有 1P v v > 从轨道I 变轨到轨道II 应减速运动;而在轨道II 上通过Q 点后将做离心运动,因此 22 Q mv GMm r r <'' 而在轨道III 上做匀速圆周运动,则有 23 2= mv GMm r r ''

则有 3Q v v < 从轨道II 变轨到轨道III 同样也减速,A 正确; B .根据开普勒第三定律 3 2 r T =恒量 由于轨道II 的半长轴小于轨道I 的半径,因此在轨道II 上的运动周期小于在轨道I 上运动的周期T ,B 正确; C .根据牛顿第二定律 2 GMm ma r = 同一位置受力相同,因此加速度相同,C 错误; D .根据 2 2 mv GMm r r = 解得 v = 可知轨道半径越大运动速度越小,因此 31v v > 又 1P v v > 因此 3P v v > D 正确。 故选ABD 。 2.2020年5月24日,中国航天科技集团发文表示,我国正按计划推进火星探测工程,瞄准今年7月将火星探测器发射升空。假设探测器贴近火星地面做匀速圆周运动时,绕行周期为T ,已知火星半径为R ,万有引力常量为G ,由此可以估算( ) A .火星质量 B .探测器质量 C .火星第一宇宙速度 D .火星平均密度 【答案】ACD 【解析】 【分析】 本题考查万有引力与航天,根据万有引力提供向心力进行分析。 【详解】 A .由万有引力提供向心力

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析 一、高中物理精讲专题测试万有引力与航天 1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求: (1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期. 【答案】(1) R=m M M +L, r=m M m +L,(2)()3L G M m + 【解析】 (1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+ 两星做圆周运动时的向心力由万有引力提供,则有:22 22244mM G mR Mr L T T ππ== 可得 R M r m = ,又因为L R r =+ 所以可以解得:M R L M m = +,m r L M m =+; (2)根据(1)可以得到:2222244mM M G m R m L L T T M m ππ==?+ 则:()()233 42L L T M m G G m M π= =++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径. 2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ; (3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .

万有引力与航天公式总结

注释: M 中心天体质量 m 中心天体上的物体质量或者围绕中心天体做匀速圆周运动的物体质量 R 中心天体半径(地球半径约为6400km ) r 两球心间距离或轨道半径 h 距离中心天体高度 R r h -=(同步卫星轨道半径约为36000km ) g 星球表面重力加速度 ρ中心天体密度 一、地面公式 当忽略中心天体自转影响时: 二、围绕中心天体做匀速圆周运动的卫星公式 结论:越远周期越大,剩下都小 三、万有引力与重力的关系 在南北极:万有引力等于重力极mg R GMm =2 在赤道:万有引力一小部分充当向心力?????????=-22224自自赤T R m R m ma mg R GMm n πω 四、宇宙速度 第一宇宙速度(环绕速度)s km gR R GM v /9.7≈==(最大的环绕速度,最小的发射速度) 第二宇宙速度(脱离速度)s km v /2.11=(使物体挣脱地球引力束缚的最小发射速度) 第三宇宙速度(逃逸速度)s km v /7.16=(使物体挣脱太阳引力束缚的最小发射速度) 五、双星 1)双星系统的周期、角速度相同. 2)轨道半径之比与线速度成正比与质量成反比. 3)双星系统的周期与双星间距离的三次方之比只与双星的总质量有关. 六、卫星变轨 速度:B ⅡB Ⅲv v > ⅡB ⅡA v v > A ⅠⅡA v v > ⅢB ⅠA v v > 加速度:ⅡA ⅠA a a = ⅢB ⅡB a a = B A a a > 周期:123T T T >> 机械能:123E E E >>

结论:低轨道变高轨道→加速,高轨道变低轨道→减速; 同一点加速度相等,越近加速度越大 越远周期越大,能量越高,一直在一个轨道上环绕时机械能守恒 七、开普勒行星定律 ①(轨道定律)所有行星绕太阳运动都是椭圆,太阳处在椭圆的一个焦点上 ②(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积 ③(周期定律)所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等 即:k T a 23 (圆轨道半长轴用R ,k 的大小与中心天体质量有关)

万有引力定律与航天练习题

万有引力定律与航天 练习题 Revised on November 25, 2020

万有引力定律与航天章节练习题 一、选择题 1.如图所示,火星和地球都在围绕太阳旋转,其运行轨道是椭圆,根据开普 勒行星运动定律可知( ) A. 火星绕太阳运动过程中,速率不变 B. 火星绕太阳运行一周的时间比地球的长 C. 地球靠近太阳的过程中,运行速率将减小 D. 火星远离太阳的过程中,它与太阳的连线在相等时间内扫过的面积逐渐增大 2.经国际小行星命名委员会命名的“神舟星”和“杨利伟星”的轨道均处在 火星和木星轨道之间,它们绕太阳沿椭圆轨道运行,其轨道参数如下表。 注:AU 是天文学中的长度单位,1AU=149 597 870 700m (大约是地球到太阳的平均距离)。“神舟星”和“杨利伟星”绕太阳运行的周期分别为T 1和T 2,它们在近日点的加速度分别为a 1和a 2。则下列说法正确的是( ) A. 1212,T T a a >< B. 1212,T T a a << C. 1212,T T a a >> D. 1212,T T a a 3.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“31peg b” 的发现拉开了研究太阳系外行星的序幕。“31peg b”绕其中心恒星做匀速圆周运 动,周期大约为4天,轨道半径约为地球绕太阳运动半径的1 20,该中心恒星 与太阳的质量比约为( ) A. 1 10 B. 1 C. 5 D. 10 4.2013年6月13日,“神舟十号”与“天空一号”成功实施手控交会对接,下列关于“神舟十号”与“天空一号”的分析错误的是( ) A .“天空一号”的发射速度应介于第一宇宙速度与第二宇宙速度之间

备战2021新高考物理-重点专题-万有引力与航天(三)(含解析)

备战2021新高考物理-重点专题-万有引力与航天(三) 一、单选题 1.三颗人造地球卫星绕地球做匀速圆周运动,运行方向如图所示.已知 ,则关于三颗卫星,下列说法错误的是() A.卫星运行线速度关系为 B.卫星轨道半径与运行周期关系为 C.已知万有引力常量G,现测得卫星A的运行周期T A和轨道半径R A,可求地球的平均密度 D.为使A 与B同向对接,可对A适当加速 2.如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是() A.B,C的角速度相等,且小于A的角速度 B.B,C的线速度大小相等,且大于A的线速度 C.B,C的向心加速度相等,且大于A的向心加速度 D.B,C的周期相等,且小于A的周期 3.2020年4月24日,国家航天局宣布,我国行星探测任务命名为“天问”,首次火星探测任务命名为“天问一号”。已知万有引力常量,为计算火星的质量,需要测量的数据是() A.火星表面的重力加速度和火星绕太阳做匀速圆周运动的轨道半径 B.火星绕太阳做匀速圆周运动的轨道半径和火星的公转周期 C.某卫星绕火星做匀速圆周运动的周期和火星的半径 D.某卫星绕火星做匀速圆周运动的轨道半径和公转周期 4.一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,F N表示人对秤的压力,下面说法中正确的是()

A.g′=0 B.g′= C.F N=0 D.F N= 5.2019年11月23日8时55分,我国在西昌卫星发射中心用“长征三号“乙运载火箭,以“一箭双星”方式成功发射第50、51颗北斗导航卫星。两颗卫星均属于中圆轨道(MEO)卫星,是我国的“北斗三号”系统的组网卫星。这两颗卫星的中圆轨道(MEO)是一种周期为12小时,轨道面与赤道平面夹角为60°的圆轨道。是经过GPS和GLONASS运行证明性能优良的全球导航卫星轨道。关于这两颗卫星,下列说法正确的是() A.这两颗卫星的动能一定相同 B.这两颗卫星绕地心运动的角速度是长城随地球自转角速度的4倍 C.这两颗卫星的轨道半径是同步卫星轨道半径的 D.其中一颗卫星每天会经过赤道正上方2次 6.如图所示,a、b、c是地球大气层外圆形轨道上运行的三颗人造地球卫星,a、b质量相等且小于c的质量,则下列判断错误的是() A.b所需向心力最小 B.b、c周期相等,且大于a的周期 C.b、c向心加速度大小相等,且大于a的向心加速度 D.b、c线速度大小相等,且小于a的线速度 7.将地球看成质量均匀的球体,假如地球自转速度增大,下列说法中正确的是() A.放在赤道地面上的物体所受的万有引力增大 B.放在两极地面上的物体所受的重力增大 C.放在赤道地面上的物体随地球自转所需的向心力增大 D.放在赤道地面上的物体所受的重力增大 8.太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是() A.2年 B.4年 C.8年 D.10年 9.若将八大行星绕太阳运行的轨迹可粗略地认为是圆,各星球半径和轨道半径如下表所示:从表中所列数据可以估算出海王星的公转周期最接近( )

万有引力与航天专题

A O 万有引力与航天专题 1.【2012?湖北联考】经长期观测发现,A 行星运行的轨道半径为R 0,周期为T 0但其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离.如图所示,天文学家认为形成这种现象的原因可能是A 行星外侧 还存在着一颗未知行星B ,则行星B 运动轨道半径为( ) A . 030002()2t R R t T =- B .T t t R R -=000 C . 3 20000)(T t t R R -= D .300200T t t R R -= 2.【2012?北京朝阳期末】2011年12月美国宇航局发布声明宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、可适合居住的行星。该行星被命名为开普勒一22b (Kepler 一22b ),距离地球约600光年之遥,体积是地球的2.4倍。这是目前被证实的从大小和运行轨道来说最接近地球形态的行星,它每290天环绕着一颗类似于太阳的恒星运转一圈。若行星开普勒一22b 绕恒星做圆运动的轨道半径可测量,万有引力常量G 已知。根据以上数据可以估算的物理量有( ) A.行星的质量 B .行星的密度 C .恒星的质量 D .恒星的密度 3.【2012?江西联考】如右图,三个质点a 、b 、c 质量分别为m 1、m 2、 M (M>> m 1,M>> m 2)。在c 的万有引力作用下,a 、b 在同一平面内 绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a ∶T b =1∶k ; 从图示位置开始,在b 运动一周的过程中,则 ( ) A .a 、b 距离最近的次数为k 次 B .a 、b 距离最近的次数为k+1次 C .a 、b 、c 共线的次数为2k D .a 、b 、c 共线的次数为2k-2 4.【2012?安徽期末】2011年8月26日消息,英国曼彻斯特大学的天文学家认为,他们已经在银河系里发现一颗由曾经的庞大恒星转变而成的体积较小的行星,这颗行星完全

必修二万有引力与航天知识点总结完整版

第六章 万有引力与航天知识点总结 一. 万有引力定律: ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们 之间的距离r 的二次方成反比。即: 其中G =6. 67×10 -11N ·m 2/kg 2 ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 二. 重力和地球的万有引力: 1. 地球对其表面物体的万有引力产生两个效果: (1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。 由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。 (2)重力约等于万有引力: 在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。 地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重 力大小相等。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小, 就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰 好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。 在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g += 。 强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。 2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。 即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2 122 m m F G r =2 R Mm G mg =

高中物理《万有引力与航天(1)》优质课教案、教学设计

《万有引力与航天》高三复习教学设计 ( 一) 设计思想 本讲主要内容就是《万有引力》部分一轮复习。通过教学,给学生一个清晰的知识脉络和模型,使学生在面对高考试题时能高效入题,高效做题,高效得分。促进学生熟练掌握, 并能减轻学生学习的负担,提高学习的效率。其次就是通过这部分内容的学习,激发学 生对航空、航天产生更加浓厚的兴趣和爱好。 ( 二 ) 教材分析 《万有引力与航天》在高考试题中是一个必出的内容。几乎每年都以选择题的形式出 现。 本专题的知识是以所学物理规律解决“天地”问题的典范。所以深刻理解万有引力定 律及应用的条件、范围和思路,是这个单元教学的中心。 在万有引力的应用上,主要有三方面,一是在地表面附近的应用, G Mm =mg, R 2 和 G Mm =Fn+mg (矢量相加),前者是在不考虑自转影响时用(因为在地面上的物 R 2 体随,后者是在考虑地球自转影响时用。二是在天上的应用(以圆周运动为主),依据 是 G Mm =F n。三是卫星的发射与变轨的问题。 r 2 ( 三) 学情分析 经过高二的学习之后,学生对万有引力定律及其应用有了一定的认识,但由于时间较 长,学生不仅在知识上有所遗忘,更重要的是规律的生疏和方法经验的缺失、遗忘,致使学生对这部分知识又成陌路。所以在一轮复习时,回顾知识,用一些做过的问题作为引子,唤醒学生记忆,并在此基础上有针对性地加强经验、方法、模型的小结(针对考试),可更有效地提升做题的效率。 ( 四) 教学目标 1、知识与技能 (1) )复习回顾《万有引力》。

(2))小结回顾归纳万有引力定律在实际中的应用及典型模型,指出各类问题解决的 方法思路。提高学生做题的技巧和能力。 (3))通过适量练习,小结方法经验,指出需要注意的事项。提高解题技巧和估算能力。 2、过程与方法 (1))能够应用万有引力定律解决简单的引力计算问题。 (2))掌握计算天体质量与密度方法。 (3))掌握天体运动规律与宇宙速度的概念。 3、情感、态度与价值观 (1))航空与航天,是多少优秀中华儿女的梦想,通过学习掌握万有引力定律及其应用,促使学生热爱航空航天事业,激发学生的深厚兴趣,为我国航空航天事业贡献力量。(2))通过本单元教学,可以培养学生热爱生活的态度和实事求是的精神,培养学生唯 物史观和探索宇宙兴趣和爱好。 (五)教学重难点 教学重点:万有引力在天体运动中的应用教 学难点:万有引力与重力的关系应用 (六)教学方法 1、小结归纳、难点透析; 2、例题归类、方法点拨; 3、联系实际、激发兴趣。 (七)教学手段 1、多媒体呈现主要内容和主要过程; 2、板书内容要点和演练过程。 (八)教学过程 一复习回顾基本知识 【知识储备】 1、开普勒行星运动第一定律:. 第二定律:. 第三定律:. 2 、有两个质量均匀分布的小球,质量分别为M 和m,半径为r,两球间距离也为 r,则两球之间的万有引力为。 3、向心力计算公式F = F = F= 。

万有引力与航天重点知识归纳

r G Mm = mg ? g = GM ;在地球表面高度为 h 处: (R + h) 2 (R + h) 2 Mm = mg ? g = = 4 , r 万有引力与航天重点知识归纳 考点一、万有引力定律 1. 开普勒行星运动定律 (1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: a 3 T 2 = k 。其中 k 值与太阳有关,与行星无关。 (4)推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星 旋转时, a 3 = k ,但 k 值不同,k 与行星有关,与卫星无关。 T 2 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为 v 与ω不变,行星或卫星做匀速圆周运动; ③ R 3 = k ,R ——轨道半径。 T 2 2. 万有引力定律 (1)内容:万有引力 F 与 m 1m 2 成正比,与 r 2 成反比。 (2)公式: F = G m 1m 2 ,G 叫万有引力常量, G = 6.67 ? 10 -11 N ? m 2 / k g 2 。 r 2 (3)适用条件:①严格条件为两个质点;②两个质量分布均匀的球体, 指两球心间的距离;③一个均匀 球体和球外一个质点,r 指质点到球心间的距离。 (4)两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力 mg ,另一个是 物体随地球自转所需的向心力 f ,如图所示。 ①在赤道上,F=F 向+mg ,即 mg = G Mm - m ω 2 R ; R 2 ②在两极 F=mg ,即 G Mm = mg ;故纬度越大,重力加速度越大。 R 2 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上, R 2 R 2 G GM ,所以 g = h h h R 2 (R + h ) 2 g ,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法: G Mm = mr ( 2π ) 2 ? M = 4π 2 r 3 ,再根据 r 2 T GT 2 V M 3πr 3 π R 3 , ρ = ? ρ = 3 V GT 2 R 3 ,当 r=R 时, ρ = 3π GT 2 2.g 、R 法: G Mm = mg ? M = R 2 g R 2 G ,再根据V = 4 πR 3 ρ = M ? ρ = 3g 3 V 4πGR 3.v 、r 法: G Mm = m v 2 ? M = rv 2 r 2 r G 4.v 、T 法: G Mm = m v 2 , G Mm = mr ( 2π ) 2 ? M = v 3 T r 2 r 2 T 2πG

万有引力与航天专题复习

万有引力与航天专题 复习 Revised on November 25, 2020

万有引力与航天 一、行星的运动 1、 开普勒行星运动三大定律 ①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 ②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 推论:近日点速度比较快,远日点速度比较慢。 ③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等。 即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。 推广:对围绕同一中心天体运动的行星或卫星,上式均成立。K 取决于中心天体的质量 例1. 据报道,美国计划从2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球沿椭圆轨道运行时,在近地点A 的速率 (填“大于”“小于”或“等于”)在远地点B 的速率。 例2、宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( ) 年 年 年 年 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正 比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 例3.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为(式中G 为万有引力恒量) (2)计算重力加速度 3 2a k T =2Mm F G r =1122 6.6710/G N m kg -=??12 2m m F G r =2R Mm G mg =

万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一. 三种模型 1匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点, 围绕中心天体(视为静止)做匀速圆周运动 2. 双星模型: 将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自 转动的向心力。 3. 天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二. 两种学说 1. 地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三. 两个定律 1. 开普勒定律: 第一定律 2. 牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的 .两个物体间引力的方向在它们的连线上 力的大小跟它们的质量的乘积成正比 ,跟它们之间的距离的二次方成反比 . ⑵.数学表达式: F 万=G 导 r ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时, 两球心间的距离) b.当r T 0时,物体不可以处理为质点,不能直接用万有引力公式计算 C.认为当r T 0时,引力F T 处的说法是错误的 任何客观存在的有质量的物体之间都有这种相互作用力 两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G : :所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦 点上 :对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的 面积。 :所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公 转周期T 的二次方的比值都相等。 3 表达式为: R = K (K =単)k 只与中心天体质量有关的 T 4兀 第二定律 (又叫面积定律) 第三定律 (又叫周期定律) ⑷.对定律的理解 a. 普遍性: b. 相互性: C.宏观性: ,引 ?与所在 (又叫椭圆定律)

必修万有引力与航天优秀教案

7.1行星的运动 知识与技能 1.知道地心说和日心说的基本内容。 2.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 3.知道所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关。 4.理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。 过程与方法 1.通过托勒密、哥白尼、第谷、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。 情感态度与价值观 1.澄清对天体运动神秘、模糊的认识,掌握人类认识自然规律的科学方法。 2.感悟科学是人类进步不竭的动力。 教学重点 1.理解和掌握开普勒行星运动定律,认识行星的运动。学好本节有利于对宇宙中行星的运动规律的认识,掌握人类认识自然规律的科学方法,并有利于对人造卫星的学习。 教学难点 1.对开普勒行星运动定律的理解和应用,通过本节的学习可以澄清人们对天体运动神秘、模糊的认识。 教学过程:略 新课教学 引入:

7.2太阳与行星间的引力 7.3万有引力定律 知识与技能 1.理解太阳与行星间存在引力 2.能根据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力表达式2r Mm G F 3.理解万有引力定律的含义并会推导万有引力定律 4.理解地面上物体所受的重力与天体间的引力是同一性质的力,即服从平方反比定律的万有引力 过程与方法 1.通过推导太阳与行星间的引力公式,体会逻辑推理在物理学中的重要性 2.体会推导过程中的数量关系 情感态度与价值观 1.感受太阳与行星间的引力关系,从而体会大自然的奥秘 2.通过学习认识和借鉴科学的实验方法,充实自己的头脑,更好地去认识世界,建立科学的价值观 教学重点 1.根据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力公式,记住推导出的引力公式 2.在研究具体问题时,如何选取参考系 3.质点概念的理解 教学难点 1.太阳与行星间的引力公式推导过程 2.什么情况下可以把物体看作质点 教具 多媒体视频 课时安排 1课时 教学过程 开普勒定律发现之后,人们便开始更深入的思考:行星为什么这样运动? 这节课我们“追寻着牛顿的足迹”,用自己的手和脑,重新“发现”万有引力定律。 一. 太阳对行星的引力 为了简化问题,行星的轨道按圆来处理,请猜想太阳与行星的引力与什么因数有关 研究的问题中,只有太阳、行星,那么他们之间的引力可能与太阳的质量、行星的质量、他们之间的距离以及行星与太阳之间的媒介物有关,还可能与太阳与行星的形状、大小有关。太阳与行星的是否可以看作质点?太阳与行星之间是真空,对太阳与行星的引力有无影响? 讨论小结:太阳与行星之间的引力应该与行星到太阳的距离、太阳的质量、行星的质量有关。我们先研究太阳对行星的引力,这样只研究引力与行星的质量以及太阳与行星之间的距离的关系。那么,F 与r 的定量关系是什么?

高一物理万有引力和航天复习知识点汇总

万有引力与航天知识点复习 ☆知识梳理 1.内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积 成 ,与它们之间的距离r 的 成反比. 2.公式:2 21r m m G F =,其中G = N·m 2/kg 2叫引力常量. 3.适用条件:公式适用于 间的相互作用.也适用于两个质量分布均匀的球体间的 相互作用,但此时r 是 间的距离,一个均匀球体与球外一个质点的万有引力 也适用,其中r 为球心到 间的距离. ☆要点深化 1.万有引力和重力的关系 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg , 另一个是物体随地球自转需要的向心力F 向,如图4-4-1所示,可知: (1)地面上的物体的重力随纬度的增大而增大.故重力加速度g 从赤道 到两极逐渐增加. (2)在两极:重力等于万有引力,重力加速度最大. (3)在赤道:F 万=F 向+mg 故22ωmR r Mm G mg -= (4)由于地球的自转角速度很小,地球的自转带来的影响很小,一般情况下认为: mg R Mm G =2,故GM =gR 2,这是万有引力定律应用中经常用到的“黄金代换”. (5)距地面越高,物体的重力加速度越小,距地面高度为h 处的重力加速度为: g h R R g 2/ )(+= 其中R 为地球半径,g 为地球表面的重力加速度. 2.万有引力定律的基本应用 (1)基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由 提供. (2)“万能”连等式 ?????????===ω πωmv T mr mr r v m ma mg r Mm G r 2 22 2)2( 其中g r 为距天体中心r 处的重力加速度.

高一物理必修二第六章《万有引力与航天》知识点总结

万有引力与航天知识点总结 一、人类认识天体运动的历史 1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德) 2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容 开普勒第二定律:v v >远近 开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体 才可以列比例,太阳系: 333222 ===......a a a T T T 水火地地水火 三、万有引力定律 1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。 K T R =23 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝' 2r Mm F ∝ 2r Mm G F = 2、表达式:221r m m G F = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量 m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。 4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭 秤实验测出。 5、适用条件:①适用于两个质点间的万有引力大小的计算。 ②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。 ③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。 ④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质 心间的距离。 6、推导:2224mM G m R R T π= ? 3224R GM T π =

高考物理万有引力与航天专题经典例题

万有引力与航天专题——经典例题 1.(2018·重庆月考)(多选)下列说法正确的是( ) A .关于公式r 3 T 2=k 中的常量k ,它是一个与中心天体有关的常量 B .开普勒定律只适用于太阳系,对其他恒星系不适用 C .已知金星绕太阳公转的周期小于地球绕太阳公转的周期,则可判定金星到太阳的距离小于地球到太阳的距离 D .发现万有引力定律和测出引力常量的科学家分别是开普勒、伽利略 2.假如地球的自转角速度增大,关于物体所受的重力,下列说法错误的是( ) A .放在赤道上的物体所受的万有引力不变 B .放在两极上的物体的重力不变 C .放在赤道上的物体的重力减小 D .放在两极上的物体的重力增大 3.(2018·河南商丘二模)(多选)“雪龙号”南极考察船在由我国驶向南极的过程中,经过赤道时测得某物体的重力是G 1;在南极附近测得该物体的重力为G 2.已知地球自转的周期为T ,引力常量为G ,假设地球可视为质量分布均匀的球体,由此可知( ) A .地球的密度为3πG 1GT 2G 2-G 1 B .地球的密度为3πG 2GT 2G 2-G 1 C .当地球的自转周期为 G 2-G 1G 2 T 时,放在地球赤道地面上的物体不再对地面有压力 D .当地球的自转周期为 G 2-G 1G 1 T 时,放在地球赤道地面上的物体不再对地面有压力 4.(2018·吉林长春外国语学校模拟)(多选)宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上,用R 表示地球的半径,g 表示地球表面处的重力加速度,g 0表示宇宙飞船所在处的地球引力加速度,N 表示人对台秤的压力,则关于g 0、N ,下列式子正确的是( ) A .g 0=0 B .g 0=R 2 r 2g C .N =0 D .N =mg 5.(2018·福建厦门一模)据报道,2020年前我国将发射8颗海洋系列卫星,包括4颗海洋水色卫星,2颗海洋动力环境卫星和2颗海陆雷达卫星,以加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测.设海陆雷达卫星绕地球做匀速圆周运动的轨道半径是海洋动力环境卫星的n 倍,下列说法正确的是( ) A .在相等的时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积相等 B .在相等的时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积之比为n :1 C .海陆雷达卫星与海洋动力环境卫星线速度之比为n :1 D .海陆雷达卫星与海洋动力环境卫星向心加速度之比为n 2:1 6.(2018·贵州遵义航天高级中学五模)(多选)若宇航员在月球表面附近自高h 处以初速度v 0水平抛出一个小球,测出小球的水平射程为L .已知月球半径为R ,万有引力常量为G .则下列说法正确的是( ) A .月球表面的重力加速度g 月=2hv 20L 2 B .月球的平均密度ρ=3hv 20 2πGL 2R C .月球的第一宇宙速度v =v 0 L 2h D .月球的质量M 月=hR 2v 2 0GL 2 7.(2018·辽宁省实验中学质检)设地球是一质量分布均匀的球体,O 为地心.已知质量分布均匀的球壳对壳内物体的引力为零.在下列四 个图中,能正确描述x 轴上各点的重力加速度g 的分布情况的是( )

相关主题
文本预览
相关文档 最新文档