当前位置:文档之家› 论完全泛函的变分问题_老大中

论完全泛函的变分问题_老大中

论完全泛函的变分问题_老大中
论完全泛函的变分问题_老大中

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 我是一名自考生,通过网络学习这门课程,学习了不少以前书本上学不到的东西。它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。我深深地被复变函数与积分变换这门课程给吸引住了。同时网络学习也带给我了一定的帮助。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学习提供了必要的数学工具因此,学好这门课程非常必要然而,该课程一直是学生较难学的课程之一。 第一、学生普遍认为复变函数的应用性不强我们知道复变函数是建立在复数的基础上的,而复数中是一个虚数单位,从而大家对复数的真实性存在疑虑,所以很难想象它在现实生活和实践中的应用价值另外,在学习这门课程当中,复变函数这部分原理、规律多,内容枯燥、抽象,需要理解的概念和定义也多,学生普遍感觉到理论性偏强,有点抓不住重点;而积分变换这部分所涉及的背景较多,学生所面对的大多是一些抽象枯燥的变换公式这些会让学生们认为这是一门纯理论且没用的课程,也就没有兴趣可言。 第二、复变函数是实变函数在复数域的推广,它的许多概念性质和意义与实变函数有相同之处,同时又与实变函数有着诸多不同不少学生在学习当中往往只注意到相同点,而没有注意到它们的不同点,这让学生感觉可以直接把实变函数当中所学的知识和方法照搬过来即可,觉得这门课程与高等数学没什么区别,感觉是在重复学习,没多大意思。 第三、与后续专业课衔接不够紧密,复变函数与积分变换课程的讲授往往与后续专业课程的使用存在一定的时间差,在后续课程用到时,往往都要花一定得时间去复习,否则学生难于跟上,造成教学重复现象,课时利用率不高。所以网络学习给我们提供了一个后备平台。 们合理利用网络来学习其他课程。 第四、通过网络学习增强了我们对远程教育的了解,提高了我们对这门课程的认真度,同时鼓励同学

实变函数与泛函分析要点

实变函数与泛函分析概要 第一章集合基本要求: 1、理解集合的包含、子集、相等的概念和包含的性质。 2、掌握集合的并集、交集、差集、余集的概念及其运算性质。 3、会求已知集合的并、交、差、余集。 4、了解对等的概念及性质。 5、掌握可数集合的概念和性质。 6、会判断己知集合是否是可数集。 7、理解基数、不可数集合、连续基数的概念。 8、了解半序集和Zorn引理。 第二章点集基本要求: 1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。 2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。掌握聚点的性质。 3、掌握开核、导集、闭区间的概念及其性质。 4、会求己知集合的开集和导集。 5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。 6、会判断一个集合是非是开(闭)集,完备集。 7、了解Peano曲线概念。 主要知识点:一、基本结论: 1、聚点性质§2 中T1聚点原则: P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞) 2、开集、导集、闭集的性质§2 中T2、T3 T2:设A?B,则A ?B ,· A? · B, - A? - B。 T3:(A∪B)′=A′∪B′. 3、开(闭)集性质(§3中T1、2、3、 4、5) T1:对任何E?R?,?是开集,E′和― E都是闭集。(?称为开核,― E称为闭包的理由也 在于此) T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。 T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。 T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I 它覆盖了F(即Fс ∪ i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们

泛函分析重要内容

们同意前人的提法,认为线性泛函与无穷维空间上引进坐标的思想有关,而对偶理论则有如无穷维线性空间上的解析几何学。 Chp.1 距离线性空间 SS1. 选择公理,良序定理,佐恩引理 有序集的定义: (1)若a在b之先,则b便不在a之先。 (2)若a在b之先,b在c之先,则a在c之先。 这种先后关系记作 良序集:A的任何非空子集C都必有一个属于C的最先元素。 良序集的超限归纳法: (1)为真,这里是A中最先的元素。 2)对一切,为真,则亦真 那么对一切皆真。 选择公理 设N={N}是一个非空集合构成的族,则必存在定义在N上的函数f,使得对一切N都有 部分有序 称元素族X是部分有序的,如果在其中某些元素对(a,b)上有二元关系,它据有性质: 例如X中包换关系 在部分有序集下,有上界、极大元和完全有序 其中完全有序的C:。 例如在复数域中,按大小关系定义两个复数的关系,则复平面是部分有序的,实轴、虚轴是完全有序的。 佐恩引理 设X非空的部分有序集,如果X的任何完全有序子集都有一个上界在X中,则X必含有极大元。 从现代观点来看,泛函分析研究的主要是研究实数域或者复数域上的完备赋线性空间。 SS2. 线性空间,哈迈尔(Hamel)基 线性空间的定义:加法交换、加法结合、有零元,有负元、有单位元等。 线性流形:线性空间中的非空子集,如果它加法封闭、数乘封闭。 线性流形的和M+N:所有形如m+n的元素的集合,其中m∈M, n∈N。 线性流形的直和:如果M∩N={θ},则以代替M+N 如果,则称M与N是代数互补的线性流形。 于是有下述定理:

定理2.1 设M,N是线性空间X的线性流形,则当且仅当对每个x∈X都有唯一的表达式 x=m+n, m∈M,n∈N. 定理2.2 若,则dimX=dimM+dimN Hamel基的定义: 设X是具有非零元的线性空间,X的子集H称为X的Hamel基,如果 (1)H是线性无关的。 (2)H成的线性流形是整个空间。 则有Hamel基和线性无关子集的关系: 定理2.3 设X是线性空间,S是X中任意的线性无关子集,则存在X的一个Hamel基使得 推论任何非零线性空间必有Hamel基 由定理2.3,可有 定理2.4 设M是线性空间X的线性流形,则必有线性流形使得,即N是M的代数补。 SS3 距离空间(度量空间),距离线性空间 定义了距离(满足正定性、对称性和三角不等式的映射)d(x,y)的空间即为距离空间,记为 按距离收敛: 设距离空间中的点列使得 ,则称按d(·,·)收敛到x,简记为 距离线性空间: 设赋有距离d(·,·)的线性空间X满足 (1) (2) 距离线性空间的例子 例1 有界序列空间(m) 设X代表所有有界数列的集合,设

泛函分析复习提要

泛函分析复习提要 一、填空 1. 设X 是度量空间,E 和M 是X 中两个子集,如果 ,则称集M 在集E 中 稠密。如果X 有一个可数的稠密子集,则称X 是 空间。 2. 设X 是度量空间, M 是X 中子集,若 ,则称M 是第一纲集。 3. 设T 为复Hilbert 空间X 上的有界线性算子,若对任何x X ∈,有*Tx T x =, 则T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是正常算子的充要条件是 。) 4. 若复Hilbert 空间X 上有界线性算子T 满足对一切x X ∈,,Tx x <>是实数,则 T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是自伴算子的充要条件是 。) 5.设X 是赋范线性空间,X '是X 的共轭空间,泛函列(1,2,)n f X n '∈= ,如果 存在f X '∈,使得对任意的x X ∈,都有 ,则称{}n f 弱*收敛于f 。 6. 设,X Y 是赋范线性空间,(,)n T B X Y ∈,1,2,n = ,若存在(,)T B X Y ∈使得对任意的x X ∈,有 ,则称{}n T 强收敛于T 。 7. 完备的赋范线性空间称为 空间,完备的内积空间称为 空间 8. 赋范线性空间X 到赋范线性空间Y 上的有界线性算子T 的范数T = 9. 设X 是内积空间,则称 是由内积导出的范数。 10.设X 是赋范空间,X 的范数是由内积引出的充要条件是 。 11. 设Y 是Hilbert 空间的闭子空间,则Y 与Y ⊥⊥满足 。 12.设X 是赋范空间,:()T D T X X ?→的线性算子,当T 满足 时, 则T 是闭算子。 二、叙述下列定义及定理 1. 里斯(Riesz )定理; 2. 实空间上的汉恩-巴拿赫泛函延拓定理;

泛函分析论文

泛函分析是现代数学的一个分支,其研究的主要对象是函数构成的空间。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科,是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉对泛函分析的广泛应用有重要贡献。 泛函分析是二十世纪三十年代从变分法、微分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。下面结合这学期的学习和内容从以下几个方面来浅谈泛函分析: 一、度量空间和赋范线性空间 1、度量空间现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R. 弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;(II)(对称性)d(x,y)=d(y,x);(III)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。2、赋范线性空间泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。(一)、希尔伯特空间希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。

复变函数发展历程

复变函数发展历程 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 校内发展的历史 《复变函数论》,又称《复分析》,是在《数学分析》的基础上,应用分析与积分方法研究复变量复值解析函数的一门分析数学,它是学习与研究《泛函分析》、《微分方程》等课程的重要基础。复变函数论是数学专业的一门专业必修课程,是数学分析的后续课程。它的理论和方法,对于其它数学学科,对于物理、力学及工程技术中某些二维问题,都有广泛的应用。通过本课程的教学,使学生掌握复变函数论的基本理论和方法,提高分析问题和解决问题的能力,培养学生独立地分析和解决某些有关的理论和实际问题的能力。 随着学校的升本成功,该门课程已在本科层面授课两届。 针对学生普遍基础薄弱的特点,在教学中,着力要求任课教师将基本概念讲解正确清楚,基本理论阐述系统简明,对学生的基本运算能力的训练也严格要求。教材选用了国内较成熟且讲解较为简单明了的钟玉泉的复变函数论(第2版),方便学生学习。 实际教学中注意本课程和其它课程的联系,特别是与数学分析的衔接,相应内容在处理方法上的异同。在基本运算方面,应通过适当的例题和习题,加强习题课和练习,使学

《泛函分析》课程标准

《泛函分析》课程标准 英文名称:Functional Analysis 课程编号:407012010 适用专业:数学与应用数学学分数:4 一、课程性质 泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。 二、课程理念 1、培育理性精神,提高数学文化素养 基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。 2、良好的学习状态,提高综合解题能力 本课程面对的是数学与应用数学专业四年级的学生。学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。需要师生共同努力去正确面对才能顺利完成本门课的教学任务。为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。 3、内容由浅入深 本课程的框架结构是根据教学对象和教学任务来安排的: “度量空间”泛函分析的基本概念之一,十分重要。首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。在赋范空间上定义线性算子及线性泛函,并讨论相关性质。第三步,在线性赋范空间上定义内积,可以得到内积空间和希尔伯特空间的定义,在内积空间上引入正交以及投影的概念,并建立起相应的几何学,还要讨论希尔伯特空间上的算子,特别是自伴算子、酉算子、正常算子的一些初步性质。最后,介绍巴拿赫空间中的四个著名定理:Hahn-Banach泛函延拓定理,一致有界性定理,逆算子定理和闭图像定理,这些定理充分显示了泛函分析的威力及其广泛应用。 4、理论联系实际,拓展学生知识面 在教学过程中,主要把握以下几点:将先进的教学思想和教学理念贯穿到课程的内容和体系;强化数学思想方法、加强学生分析解决问题能力和数学素养的培养,让学生接受现代的、新的观念,以启迪学生的创新思维;准确把握课程定位,培养学生掌握扎实的数学基础知识、严密的逻辑思维能力以及应用数学知识解决实际问题的能力,同时为学生向科研型理论型人才发展留下充足的空间。课堂教学提倡启发式,采用各种现代化的教学手段,有些内容举一些数学分析中的例子使学生容易理解泛函分析的抽象理论等。教师通过应用信息技术手段,可以使得授课内容信息量大,学生更能深入泛函分析的内容。 要求学生做到:将书上的基本知识点吃透,注意咬文嚼字;注意抽象思维能力和逻辑思维能力,要求会做一些理论证明;要求在上课时认真听讲,完成课上训练和课堂作业.课下能够查阅

泛函分析论文

泛函分析作业 数学系08级5班 08020170 赵英杰

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 一、度量空间和赋范线性空间 1、度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空

间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。 (一)、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 (二)、巴拿赫空间

泛函分析学习心得(2020年10月整理).pdf

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

实变函数与泛函分析

长春理工大学数学研究生入学加试 《实变函数与泛函分析》考试大纲 一、总体要求 考生应按本大纲的要求,掌握Lebesgue的测度论,实变量的可测函数理论,Lebesgue 积分理论与微分理论,掌握度量空间和赋范线性空间的概念和例子,有界线性算子和连续线性泛函的概念和例子,掌握Hilbert空间的基本性质。较好的掌握测度论与抽象积分理论,并且在一定程度上掌握集合的分析方法。 二、教材 《实变函数与泛函分析基础(第二版)》,程其襄等,高等教育出版社,2003. 三、考试内容 (一)集合 1. 掌握集合的概念,集合的包含和相等的关系和判定方法; 2. 熟练掌握集合的和、交、差、余的运算,掌握上限集、下限集和收敛集的定义 3. 会求集合的和、交、差、余,会求集合族的上限集、下限集,会判定集合列是否收敛; 4. 理解集合基数的概念,对等的概念,掌握Bernstein定理,会用Bernstein定理判定集合对等; 5. 掌握可数集合与具有连续基数的不可数集合的概念、例子和运算性质,能够利用已知的例子和运算性质去确定集合为哪类无限集合; 6. 知道不存在具有最大基数的集合。 (二)点集 1. 理解距离和距离空间的概念,懂得Euclid空间是距离空间; 2. 掌握邻域的概念与性质,掌握点列收敛、点集距离、有界集和区间的概念; 3.深入理解内点、外点、界点、聚点、孤立点的定义,理解并掌握集合的开核、导集、边界、闭包的概念及相关的性质; 4. 熟练掌握开集、闭集的概念和相关性质,掌握紧集的概念,完备集的概念,掌握有限覆盖定理; 5. 理解直线上开集、闭集的构造定理,掌握Cantor集的性质。 (三)测度论 1.深入理解并熟练掌握外测度,L-可测集的定义和基本性质,并掌握典型的例子 2.理解σ代数的定义,掌握Borel集、G δ 型集、Fσ型集的定义,明确可测集和Borel 集、Gδ型集、Fσ型集之间的关系,掌握L-可测集类; (四)可测函数 1. 理解并掌握可测函数的定义与等价条件,掌握简单函数的概念,几乎处处收敛的概念,理解简单函数与可测函数的关系; 2. 理解Egorov定理,Lusin定理; 3. 理解并掌握依测度收敛的定义,理解Riesz定理,Lebesgue定理,会利用这两个定理去解决实际问题。

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

泛函分析论文

浅谈泛函分析 数学科学学院 张健 20111101710 2011级数学与应用数学汉班 摘 要 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。它在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 关键词 泛函分析、空间、度量、算子 泛函分析是20世纪30年代形成的数学分科,是从变分问题、积分方程和理论物理的研究中发展起来的。它综合运用函数论、几何学、现代数学的观点来研究无限维向量空间上的函数、算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 .1度量空间和赋范线性空间 1.1度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家.G 康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家..R M -弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X 为一个集合,一个映射d :R X X →?。若对于任何z y x ,,属于X ,有 ()1(正定性)(),0,≥y x d 且(),0,=y x d 当且仅当y x = ()2(对称性)()()x y d y x d ,,= ()3(三角不等式)()()()z y d y x d z x d ,,,+≤ 则称d 为集合X 的一个度量(或距离)。称偶对()X d ,为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。 2.1赋范线性空间

实变函数论与泛函分析曹广福1到5章课后答案

第一章习题参考解答 3.等式)()(C B A C B A --=?-成立的的充要条件是什么? 解: 若)()(C B A C B A --=?-,则 A C B A C B A C ?--=?-?)()(. 即,A C ?. 反过来, 假设A C ?, 因为B C B ?-. 所以, )(C B A B A --?-. 故, C B A ?-)(?)(C B A --. 最后证,C B A C B A ?-?--)()( 事实上,)(C B A x --∈?, 则A x ∈且C B x -?。若C x ∈,则C B A x ?-∈)(;若C x ?,则B x ?,故C B A B A x ?-?-∈)(. 从而,C B A C B A ?-?--)()(. A A C B A C B A C =?-?--=?-?)()(. 即 A C ?. 反过来,若A C ?,则 因为B C B ?-所以)(C B A B A --?- 又因为A C ?,所以)(C B A C --?故 )()(C B A C B A --??- 另一方面,A x C B A x ∈?--∈?)(且C B x -?,如果C x ∈则 C B A x )(-∈;如果,C x ?因为C B x -?,所以B x ?故B A x -∈. 则 C B A x ?-∈)(. 从而 C B A C B A ?-?--)()( 于是,)()(C B A C B A --=?- 4.对于集合A ,定义A 的特征函数为????∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是 一集列 ,证明: (i ))(inf lim )(inf lim x x n n A n n A χχ= (ii ))(sup lim )(sup lim x x n n A n n A χχ= 证明:(i ))(inf lim n n m N n n n A A x ≥∈??=∈?,N ∈?0n ,0n m ≥?时,m A x ∈. 所以1)(=x m A χ,所以1)(inf =≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A n m N b A n χχ

实变函数和泛函分析还是很重要的

实变函数和泛函分析还是很重要的 实变函数和泛函分析在经济学中的用处非常大。首先,实变函数是研究L 积分理论的,这种L积分使积分理论得以应用的函数范围大大推广了,实际上除了数学家刻意构造出来的奇异函数,一般的函数,特别是我们在分析实际问题时遇到的函数,都是L可积的。因此L积分的理论可以用于我们分析实际问题时遇到的所有函数。 L积分的理论中哪些内容是极其重要的呢?从应用的角度来讲,最有价值的就是测度理论和积分的三个相互等价控制收敛定理。测度论使的概率论变得更加威力强大,可以解决很多以前被认为是古怪的无法分析的问题。也使很多概率理论变得更加严格。比如无限可分事件的概率以及用西格玛域来阐述的条件概率等等。没有测度论就无法分析连续鞅等等。 另外,积分收敛定理解决了积分运算与极限运算互换的问题,使得很多极限问题变得可以计算。所以支持大样本统计理论的概率极限理论就建立起来了。如果搞懂了实变函数,你对统计,计量,金融工程等问题的研究就可以一枪刺到底,从基本概念的学习开始可以一路畅通的达到对前沿理论的深刻理解。没有实变函数的基础,学计量,统计和金融工程就是隔靴挠痒。 再看泛函分析,泛函分析是建立在实变函数的基础上的。为什么这么说呢?其实就分析的问题的思路来讲,泛函和实变还是有很大差别的,但是泛函研究的是函数空间,研究函数空间中的收敛和连续等拓扑概念必须依赖范数的定义,而函数空间的范数的定义依赖于积分理论,所以实变函数就成了泛函的基础。所以一般都是先学实变,再学泛函。当然,也有先学直接学泛函的,这时就只能直接的接受积分定义的范数概念,或者干脆只从抽象范数的角度来研究,不去管范数的具体形式。从理解泛函本身的理论来讲并没有什么不妥,只是在用泛函解决实际问题时就有麻烦,因为研究实际问题就要给出具体的范数定义,没有实变函数的积分理论就不行了。所以,纯粹学习泛函,而不讲究实用,可以直接学泛函,大不了在学习时补充一点范数的具体形式就可以了。泛函分析有什么用呢?无非是泛函可以让我们在更广义的层次上分析最优化问题。泛函分析不仅给出的是最优路径,而不是微积分中的最优点。当然,你也可以说最优路径就是函数空间中的最优点。一般在运筹学中用处很多。那在博弈论中有什么应用呢?我们说,理性经纪人的行为就是给定约束和目标下的最优路径。所以分析经济行为当然离不开泛函分析了。但是想把泛函分析理论用来解决经济学中的优化问题并不容易。即因为首先你要把研究的问题数学模型化,然后在定义一个恰当的函数空间,一般是线性空间,然后在这个空间中定义出恰当的范数。然后把你的优化问题转化

实变函数与泛函分析总复习题

第一章 复习题(一) 一、判断题 1、大人全体构成集合。(× ) 2、小个子全体构成集合。(× ) 3、所有集合都可用列举法表示。(× ) 4、所有集合都可用描述法表示。(√ ) 5、对任意集合A ,总有A ??。(√ ) 6、()A B B A -?=。(× ) 7、()()A B B A B B A A -?=?=-?。(√ ) 8、若B A ?,则()A B B A -?=。(√ ) 9、c A A ?≠?,c A A X ?=,其中X 表示全集。(× ) 10、A B B A ?=?。(× ) 11、()c c c A B A B ?=?,()c c c A B A B ?=?。(× ) 12、()()()A B C A C B C ??=???,()()()A B C A C B C ??=???。(√ ) 13、若A B ,B C ,则A C 。(√ ) 14、若A B ,则A B =,反之亦然。(√ ) 15、若12A A A =?,12B B B =?,且11A B ,22A B ,则A B 。(× ) 16、若A B ?,则A B ≤。(√ ) 17、若A B ?,且A B ≠,则A B <。(× ) 18、可数集的交集必为可数集。(× ) 19、有限或可数个可数集的并集必为可数集。(√ ) 20、因整数集Z ?有理数集Q ,所以Q 为不可数集。(× ) 21、()c c A A =。(√ ) 第二章 复习题 一、判断题 1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。(× ) 2、设P ,n Q R ∈,则(,)0P Q ρ>。(× ) 3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。(× ) 4、设点P 为点集E 的内点,则P E ∈。(√ )

泛函分析在控制工程的应用

泛函分析在控制工程中的 应用 作者:景苏银 学号: 0211443 单位:兰州交通大学 日期:2011.12.1

泛函分析在控制工程中的应用 【摘要】本文综合运用函数论,几何学,代数学的观点来研究无限维向量空间上的函数,算子和极限理论,通过泛函理论求解工程中可微方程的极值问题,为工程的设计提供了理论基础。它可以看作无限维向量空间的解析几何及数学分析。 【关键词】泛函分析控制工程控制优化 泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。主要内容有拓扑线性空间等。它广泛应用于物理学、力学以及工程技 术等许多专业领域。 泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。 Functional analysis in water conservancy of application

Abstract:This article through the functional theory solution of differential equations can be hydraulic extremum problems, for water conservancy project design provides theory basis. It draws function theory, geometry, algebra point of view to study the infinite dimensional vector space function, operator and limit theory. It can be as infinite dimensional vector space analytic geometry and mathematics analysis。 Functional Analysis (Functional Analysis) is the modern a branch of mathematics, belongs to learn Analysis, the study of main object is function consists of the space. Functional analysis is made to transform (such as Fourier transform, etc.) of the nature of the study and differential equation and integral equation of research and development. Using functional as a statement from the variational method, representative of the function for function. And take Hector <(Stefan Banach) is functional analysis of the theory of the primary founders, and mathematician and physicist voltaire pull (Vito Volterra) to the wide application of functional analysis is an important contribution. Functional analysis is the 1930 s of the formation of the mathematics branch. From the variational problem, integral equation and theoretical physics research develops. Functional analysis in mathematical physics equation, probability theory, the calculation of mathematics branch all has the application, is also a degree of freedom with an infinite physical system mathematical tools. Main content have topological space, etc. It is widely used in physics and mechanics and engineering skills and Art etc many professional fields. 【正文】

相关主题
文本预览
相关文档 最新文档