当前位置:文档之家› 小型变压器计算机辅助优化设计

小型变压器计算机辅助优化设计

小型变压器计算机辅助优化设计
小型变压器计算机辅助优化设计

小型变压器计算机辅助优化设计

张 利 郑文利 路 杰3 王国栋 刘相华

(东北大学 沈阳 110006) (沈阳化工学院3 

沈阳 110021)摘要

采用模块编程技术,应用电磁学原理及用C 语言开发了一个基于Windows 平台

的功能较强的小型变压器(单相20kVA 以下,三相50kVA 以下)的CAD 系统,该系

统主要包括变压器的铁心选择、绕组的排列、几何参数和电磁参数的计算、总体结构

优化设计及参数化绘图等功能.

关键词: 小型变压器; 计算机辅助设计; 优化设计

分类号: TP 391.72

现代电器工业的发展要求小型变压器的设计具有更高的可靠性、快速性、灵敏性和精确性.国内各小型变压器厂尽管在单台容量和安装容量方面满足了生产实践的需要,但采用的设计方法基本上还是传统的手工设计方法,常用的方法有两种,即计算法和图解法.设计人员往往感到设计重复量大、设计效率低、精确性差.因此,我们开发了小型变压器(单相20kVA 以下,三相50kVA 以下)的计算机辅助优化设计系统,从而可以缩短设计周期,创造较好的经济效益,提高工厂的竞争能力.

1 系统结构

本系统参考了国内外有关小型变压器的设计方面的最新理论,应用计算机技术完成了1998年3月1日收稿

第12卷 第2期

1998.6沈 阳 化 工 学 院 学 报JOURNAL OF SHEN Y AN G INSTITU TE OF CHEMICAL TECHNOLO GY

Vo.12 No.2J um.1998

总体功能的设计.在使用本系统时,只需输入初级电压、次级电压、次级电流、电源频率等数据,设计者便可按照计算机的提示进行变压器的铁心形式选择、绕组排列、铁心、绕组、导线等几何参数及电磁参数的计算.在此基础上,采用改进复合形法进行优化设计和采用ADS 进行参数化绘图.本系统分为8个模块,它们既相互独立,又可以通过数据文件的方式相互传递数据(如图1所示).这8个模块是:

(1) 数据信息模块: 用来输入数据和保存数据.

(2) 铁心参数计算: 选择铁心形式,计算铁心截面、窗口尺寸等参数.

(3) 绕组计算模块: 主副绕组设计(正弦分布绕组)

.

图1 

软件模块

图2 设计框图

041沈 阳 化 工 学 院 学 报 1998年

(4) 材料数据库: 用Fropro3.0开发公共数据库,以便程序调用.

(5) 整体优化设计: 以变压器整体的经济成本为目标,采用复合形法进行优化.

(6) 参数化绘图: 采用尺寸驱动法,对变压器结构进行参数化绘图.

(7) 打印输出模块: 用打印机打出变压器的计算清单,用绘图仪输出变压器的铁心断面图、铁心叠片图、整体装配图等.

(8) 使用帮助块: 包括软件的使用方法演示说明、软件设计原理、作者信息等内容.

系统的设计框图如图2所示.

2 优化设计

设计小型变压器时,满足基本性能的可行方案通常不是唯一的,而是几十个,甚至更多.在这样多的方案中,应当依据一定的准则去衡量各种方案,经过综合分析,选择出最佳方案.在求解本设计最优化问题时,采用改进复合形法,它的基本的思想是在可行域内由K≥n+1个顶点形成一个称为复合形的多面体,比较各个顶点的目标函数值,找出目标函数值最大的最坏点,然后沿最坏点和复合形中心的连线方向上进行一维搜索,找出一个既满足约束条件,又满足目标函数值有所下降的点以取代最坏点,如此反复进行,当复合形收缩到足够小时,即可将复合形顶点中的最好点作为近似最优点输出.

小型变压器的优化的数学模型包括以下3个部分:(1)变压器的设计变量;(2)变压器的约束条件;(3)变压器的目标函数.

变压器的设计变量的选取是多种多样的.在选取设计变量时,变量越多,求解就越困难.为了减少设计变量的数目,对于相互间有依赖关系的变量只选取其中一个作为设计变量.同时,选取的设计变量还应为程序的编制带来方便,以便保证程序结果的可靠性[2,3].在考虑上述因素后,本文选取以下8个参数作为小型变压器的设计变量:铁心的舌宽x1、铁心窗口高度x2、铁心窗口宽度x3、高压绕组层数x4、低压绕组层数x5、铁心磁密x6、高压电流密度x7和低压电流密度x8,即:

X=(x1,x2,x3,x4,x5,x6,x7,x8)T(1)

其中,T表示向量转置.

在变压器优化设计时,可以选用体积、重量、经济成本等作为目标函数.考虑到是小型变压器,在体积等方面优化意义不大,因此,采用经济成本作为优化的目标函数.对于单相、三相变压器,目标函数的表达式分别为:

F(x)=2C1ρ1gA C(x1+x2+2x3)+3C2ρ2g[I1

x6

(∑

n1

i=1

l i1+∑

n2

i=1

l i2+∑

x

4

-n1-n2

i=1

l i3)

+I2

x7

(∑

m1

j=1

l j1+∑

m2

j=1

l j2+∑

x

5

-m1-m2

j=1

l j3)(2)

F(x)=2C1ρ1gA C(3x1+x2+2x3)+9C2ρ2g[I1

x6

(∑

n1

i=1

l i1+∑

n2

i=1

l i2+∑

x

4

-n1-n2

i=1

l i3)

141

第2期 张 利等:小型变压器计算机辅助优化设计

+I2

x7

(∑

m1

j=1

l j1+∑

m2

j=1

l j2+∑

x

5

-m1-m2

j=1

l j3)(3)

其中,C1、C2分别为硅钢片、铜导线的单价,ρ1、ρ2分别为硅钢片、铜导线的密度,n1为高压绕组满匝层层数,n2为高压绕组不满匝层层数,l i1为高压绕组满匝层长度,l i2、l i3为高压绕组不满匝层长度,m1为低压绕组满匝层层数,m2为低压绕组不满匝层层数,l j1为低压绕组满匝层长度,l j2、l j3为低压绕组不满匝层长度,I1、I2分别为高、低压绕组的电流密度,g为重力加速度.

为了避免由于温度过高而烧毁变压器,应该限制其温升;做为变压器,输出电压应当稳定,所以其相对电压降应当在一定的范围之内;同时铁心的窗口应当容纳得下绕组等.把以上这些电磁性能和几何性能作为变压器优化设计的性能约束和结构约束.

小型变压器的优化问题属于带约束条件的非线性优化问题.在采用改进的复合法进行优化后,对设计变量进行了圆整,达到了最优的经济成本.

3 参数化绘图

由于变压器产品具有结构大致相同而尺寸不同的特点,比较适合采用参数化设计方法.因此,完成小型变压器从优化设计到参数化绘图过程一体化,具有理论和现实两方面的意义.

在参数化绘图模块中,以AU TOCAD为图形支撑软件,采用Visual C++作为编译器[1],开发了参数图形库、符号图形库、图形元素命令库.采用了基于变量设计的参数化尺寸驱动方法,为固定视图形式和标住形式图形建立了参数化模型,从而直接沟通了图形尺寸与设计参数的联系.在装配图的形成过程中,运用冷冻图层的装配算法,通过分析装配关系和定位关系,为零件图的装配定点增加了结构描述信息,这样在部分结构尺寸改动后,根据相配关系,可以重新生成合理的装配图,以改善装配图形成的灵活性.

为了使软件面向用户,避免设计人员在输入修改数据方面的麻烦,本文还使用DCL (Dialog Control Language)语言开发了对话框程序.这样,设计者便可以在集成环境下进行变压器的参数化绘图.

4 结束语

通过改进复合形法最优设计及ADS的AutoCAD二次开发,本文完成了小型变压器(单相20kVA以下,三相50kVA以下)从设计计算到参数化绘图的一体化过程.本软件使用方便,操作简单,提高了变压器的设计效率,降低了变压器的经济成本.目前,本系统正处于试用设计阶段.

参考文献

1 Kurt Hampe Jim Boyce.Auto CAD应用开发工具大全.北京:清华大学出版社,1994

2 West G W.Basic program optimizes core selection in transformer design.(Power Tech West Seattle WA, USA)EDN(Fur,ED)(USA)1995,40:87~90

241沈 阳 化 工 学 院 学 报 1998年

3 Rale Transformer Design Program Users Guide.dial 2up edition ,1994,USA.

4 张利.小型变压器优化设计与自动绘图CAD 系统:[学位论文].沈阳:东北大学,1997Computer Aided Optimization Design of Small Transformer

Zhang Li Zheng Wenli Lu Jie 3 Wang Guodong Liu Xianghua

(Northeastern University ,Shenyang 110006)

(Shenyang Institute of Chemical Technology 3,Shenyang 110021)

ABSTRACT

The paper has developed a windows platform CAD system of small trans 2former (less than 20kVA one phase and less than 50kVA three phase )on the ba 2sis of electromagnetism principle by C language and module programming tech 2nology.The system mainly includes core selection ,winding arrangement ,physical and electromagnetism dimension calculation ,general structure optimization and parametrization drawings and so on.

Key words : small transformer ; computer aided design ;

optimization design 3

41第2期 张 利等:小型变压器计算机辅助优化设计

小型变压器计算机辅助优化设计

小型变压器计算机辅助优化设计 张 利 郑文利 路 杰3 王国栋 刘相华 (东北大学 沈阳 110006) (沈阳化工学院3  沈阳 110021)摘要 采用模块编程技术,应用电磁学原理及用C 语言开发了一个基于Windows 平台 的功能较强的小型变压器(单相20kVA 以下,三相50kVA 以下)的CAD 系统,该系 统主要包括变压器的铁心选择、绕组的排列、几何参数和电磁参数的计算、总体结构 优化设计及参数化绘图等功能. 关键词: 小型变压器; 计算机辅助设计; 优化设计 分类号: TP 391.72 现代电器工业的发展要求小型变压器的设计具有更高的可靠性、快速性、灵敏性和精确性.国内各小型变压器厂尽管在单台容量和安装容量方面满足了生产实践的需要,但采用的设计方法基本上还是传统的手工设计方法,常用的方法有两种,即计算法和图解法.设计人员往往感到设计重复量大、设计效率低、精确性差.因此,我们开发了小型变压器(单相20kVA 以下,三相50kVA 以下)的计算机辅助优化设计系统,从而可以缩短设计周期,创造较好的经济效益,提高工厂的竞争能力. 1 系统结构 本系统参考了国内外有关小型变压器的设计方面的最新理论,应用计算机技术完成了1998年3月1日收稿 第12卷 第2期 1998.6沈 阳 化 工 学 院 学 报JOURNAL OF SHEN Y AN G INSTITU TE OF CHEMICAL TECHNOLO GY Vo.12 No.2J um.1998

总体功能的设计.在使用本系统时,只需输入初级电压、次级电压、次级电流、电源频率等数据,设计者便可按照计算机的提示进行变压器的铁心形式选择、绕组排列、铁心、绕组、导线等几何参数及电磁参数的计算.在此基础上,采用改进复合形法进行优化设计和采用ADS 进行参数化绘图.本系统分为8个模块,它们既相互独立,又可以通过数据文件的方式相互传递数据(如图1所示).这8个模块是: (1) 数据信息模块: 用来输入数据和保存数据. (2) 铁心参数计算: 选择铁心形式,计算铁心截面、窗口尺寸等参数. (3) 绕组计算模块: 主副绕组设计(正弦分布绕组) . 图1  软件模块 图2 设计框图 041沈 阳 化 工 学 院 学 报 1998年

深入学习高频脉冲变压器的设计

深入学习高频脉冲变压器的设计 但凡真正的KC人,都有不同程度的偏执,对一个问题不摸到根源绝不罢手—ehco 脉冲变压器属于高频变压器的范畴,与普通高频变压器工况有别。脉冲变压器要求输出波形能严格还原输入波形,前后沿陡峭,平顶斜降小。 在众多的制作实践中,随处可见脉冲变压器的身影。例如DRSSTC中的全桥驱动GDT(Gate Driving Transformers门极驱动变压器),感应加热电路中的GDT等等,相信KCer对其功能和重要性都有一定了解。但谈到如何具体设计一个符合规格的脉冲变压器,相信也还有不少人停留在简单的匝比计算或是经验设计层面,没有深入地研究。每每遇到磁芯的选择,匝数、线材的确定时,都无从下手。本文针对这些问题,在高压版black、ry7740kptv、山猫等大神的鼓舞下,将本人的学习心得形成图文与大家分享,旨在抛砖引玉。因本人水平有限,如若存在错漏,望斧正为谢。 下面从一个简易的GDT驱动电路说起 上图中,T1为脉冲变压器,当初级(左侧)为上正下负时,右侧输出上正下负信号,该信号通过D3、D4、C23、RG,给IGBT的Cge充电,当充电电压达到V GE(ON) 时IGBT的C、E开通,并且C23充电,C23的充电电压被D5钳制在8V。当T1输入为上负下正时,D3反向截止,T1的输出被阻断。在R15偏置电阻提供的偏流下,C23存储的电压构成反偏,迅速抽干Cge 存储的电荷,使IGBT快速关断。 那么,根据实测值或相关厂商数据,有以下已知数据。 1、IGBT型号:IKW50N60T 2、开关频率f s :50KHz 3、栅极正偏电压+V GE :+15V 4、栅极反偏电压-V GE :-8V 5、脉冲变压器初级侧驱动电压:+24V 6、单个IGBT驱动电压占空比D:0.46 7、栅极电阻R G :10Ω 8、IGBT管内栅极电阻R g :0Ω 9、三极管饱和压降:Vces=0.3V 10、二极管压降:V DF =0.55V 11、GDT效率η:90% 一、计算IGBT驱动所需的峰值电流I GPK I GPK =(+V GE -(-V GE ))/R G +R g =23/5.1=2.3A 二、计算次级电流有效值I srms

对干式和油浸式变压器优化设计的研究

对干式和油浸式变压器优化设计的研究 发表时间:2017-07-04T15:28:50.517Z 来源:《电力设备》2017年第7期作者:刘建萍[导读] 摘要:我国干式变压器和油浸变压器的优化设计,是社会进步发展的必然选择。本文根据我国目前使用的干式变压器以及油浸变压器的特点,结合最新的科学技术,优化变压器的系统,并且对设计内容进行研究和阐述。 (山东泰开箱变有限公司 271000) 摘要:我国干式变压器和油浸变压器的优化设计,是社会进步发展的必然选择。本文根据我国目前使用的干式变压器以及油浸变压器的特点,结合最新的科学技术,优化变压器的系统,并且对设计内容进行研究和阐述。 关键词:干式变压器;油浸式变压器;优化设计 1. 干式和油浸式变压器优化的原因 变压器是电力系统的重要组成部分,其工作效率、工作能耗、生产成本是影响电力系统运行效率、运行线损、运行成本的关键。当前我国电力系统中干式和油浸式变压器占有极高比例,因此采用计算机辅助设计和最优化方法对上述两种变压器进行优化设计具有鲜明的显示意义。 2. 干式和油浸式变压器优化设计理念 我国较早使用的变压器系统设计工具是CAD。随着社会和科技的不断发展,CAD系统和技术也在不断地研发,加快了变压器的改革和优化进程。同时电力需求的增加,远距离、跨区域输变电工程大力建设发展,对变压器的要求也越来越高。所以我国需要优化变压器,我们秉承的理念是节约材料,,力求科学与自然地融合,提高干式变压器和油浸变压器的工作效率,实现远距离低损耗输电以及环境保护的目的。 3. 干式和油浸式变压器优化设计分析以及方法 3.1 干式和油浸式变压器优化设计分析 3.1.1 变压器优化设计使用工具 变压器的结构和系统比较复杂,尤其传统的变压器设计方法,其中的数据是分散式的,并不集中,对于变压器的控制和管理,以及设计都十分的不利。“工欲利其事,必先利其器”,所以想要优化变压器的设计方法,首先需要确定设计变压器的工具,使用正确的变压器设计工具,能够有效的提高变压器的设计效率,利用UML语言,以及变压器数据计算和IE型电源变压器自动设计软件,根据变压器系统的特点,以及数据模型的支持,可以制作有关数据计算的软件,体改手工计算。比如编制一个程序和公式,通过计算机,把电磁计算等流程的过程简化,加快计算效率和准确率。 3.1.2 变压器优化设计的理论依据 决定变压器性能的参数主要涉及电、磁、热以及结构,也就是说,变压器的优化也是根据这几方面来决定的。只要能够设计出这几方面的优化计划,就可以改变现有的变压器的系统和结构。因此,新型的变压器首先需要确定计算公式,根据计算公式来确定需要修改的参数和标准值,然后根据电、磁、热以及结构四方面理论,加入节能低碳等约束条件等,设置相关的离散型数值。因为变压器设计本身的特点,虽然设计系统使用的数值比较分散,但是在系统的管理之下,可以确定变压器系统使用的标准值,比如圆形铁心柱直径,就可以通过现有的系统进行计算得到。使用的公式为 通过公式可以知道,f(x)为目标函数,其中,变量为x1,x2,......xn,其中gi(x)为约束条件,首先需要根据约束条件,控制变压器的材料选择,这样能够改变变压器的工作功率。其中,约束条件就是技术性指标,也就是说,是硬性指标,该指标包括变压器的电压比,阻抗电压、空载耗损、空载电流只有变压器达到一定的标准,才能为商户和居民提供高质量的电能。比如,变压器的电阻比,主要是根据电阻率来计算的,即ρ=RS/L。常用单位几种金属导体及其在20℃时的电阻率 (Ω m) 为铜 1.75 × 10-8 ,铝 2.83 × 10-8 ,铁 9.78 × 10-8 。同种材料导电能力是和截面积成正比,与长度成反比。选择不同的变压器材质,对变压器的性能会产生不同的影响。 其次是材料性能约束,也就是说,变压器在设计的过程中,材料的选择需要满足国家和国际的标准。材料的性能不能影响到变压器的技术性能,选择的绝缘物质,也不能发生导电。不同绝缘材料的特性不同,其需要的电阻值以及绕组温升的值也不同,只有确定其范围,才能在保证变压器的设计优化更加合理科学。变压器的铜耗与铁耗与自身的材质是有关系的。在材料上的优化上,如果选择非晶态磁性材料,这种变压器能够大幅度的降低电损和涡损。

变压器微机保护装置的设计方案原理

变压器微机保护装置的设计原理 1、设计背景

键盘输入和液晶显示模块又称为人机接口模块,主要负责参数的输入和状态的显示,这里采用的是小键盘输入和LCD1602液晶模块。 电流检测模块采用的是Maxim公司生产的Max471芯片,电压检测模块采用AD736,温度监测模块选用Maxim公司的MAX6674。在电压、电流分别通过电压互感器和电流互感器后,再经过电流、电压监测模块,进行对数据的采集与转换;变压器的温度直接通过温度监测模块进行收集,接着把转换过的数据通入单片机中进行处理,最后报警并显示变压器当前的参数值并自动地控制、调整变压器的运行。 三、系统模块的设计 从总体上看,变压器智能保护系统可以分为以下模块:CPU模块、温度信号处理模块、电流信号监测处理模块、电压信号监测处理模块及<显示)输出模块、通信模块。下面我们就一一进行较为详细的阐述。 1、CPU模块 在本设计中采用的微处理器

电力变压器铁芯柱截面的优化设计

A 题 电力变压器铁心柱截面的优化设计 电力变压器的设计中很重要的一个环节就是铁心柱的截面如何设计。我国变压器制造业通常采用全国统一的标准铁心设计图纸。根据多年的生产经验,各生产厂存在着对已有设计方案的疑问:能否改进及如何改进这些设计,才能在提高使用效果的同时降低变压器的成本。 现在以心式铁心柱为例试图进行优化设计。 电力变压器铁心柱截面在圆形的线圈筒里面。为了充分利用线圈内空间又便于生产管理,心式铁心柱截面常采用多级阶梯形结构,如图1所示。截面在圆内上下轴对称,左右也轴对称。阶梯形的每级都是由许多同种宽度的硅钢片迭起来的。由于制造工艺的要求,硅钢片的宽度一般取为5的倍数(单位:毫米)。因为在多级阶梯形和线圈之间需要加入一定的撑条来起到固定的作用,所以一般要求第一级的厚度最小为26毫米,硅钢片的宽度最小为20毫米。 铁心柱有效截面的面积,等于多级铁心柱的几何截面积(不包括油道)乘以叠片系数。而叠片系数通常与硅钢片厚度、表面的绝缘漆膜厚度、硅钢片的平整度以及压紧程度有关。设计时希望有效截面尽量大,既节省材料又减少能量损耗。显然铁心柱的级数愈多,其截面愈接近于圆形,在一定的直径下铁心柱有效截面也愈大。但这样制造也工艺复杂,一般情况下铁心柱的级数可参照表1选取。 图1 铁心柱截面示意图

表1 铁心柱截面级数的选择 问题一:当铁心柱外接圆直径为650毫米时,如何确定铁心柱截面的级数、各级宽度和厚度,才能使铁心柱的有效截面积最大。 问题二:实际生产中线圈的内筒直径和铁心柱的外接圆直径不是精确地相等,而留有一定的间隙以便于安装和维修,设计的两个直径的取值范围称为各自的公差带。因此可以在设计铁心截面时稍微增加铁心柱的外接圆的直径以使得铁心柱有更好的截面形状。请结合铁心柱截面的设计而设计出二者的公差带。 问题三:铜导线在电流流过时发热造成的功率损耗简称为铜损;铁心在磁力线通过时发热造成的功率损耗简称为铁损。为了改善铁心内部的散热,铁心柱直径为380毫米以上时须设置冷却油道。简单地说,就是在某些相邻阶梯形之间留下6毫米厚的水平空隙(如图2所示),空隙里充满油,变压器工作时油上下循环带走铁心里的热量。具体油道数可按表2选取。 油道的位置应使其分割的相邻两部分铁心柱截面积近似相等。 分别针对问题一和问题二的情况,增加油道要求再给出设计,并指出油道的位置。 油道 图2 带油道的铁心柱截面

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

高频变压器的设计与实验研究

高频变压器的设计与实验研究 刘修泉1,曾昭瑞2,黄平2 (1.广州番禺职业技术学院,广东广州511483;2.华南理工大学机械与汽车工程学院, 广东广州510640) 摘要:给出了感应电能传输系统高频变压器的设计方法,并进行了实验和分析。关键词:高频变压器;感应电能传输;损耗;温升中图分类号:TM402 文献标识码:B 文章编号:1001-8425(2009)03-0013-04 Design and Experimental Research of HF Transformer LIU Xiu 蛳quan 1,ZENG Zhao 蛳rui 2,HUANG Ping 2 (1.Guangzhou Panyu Polytechnic,Guangzhou 511483,China; 2.South China University of Technology,Guangzhou 510640,China ) Abstract :The design method of HF transformer for inductive electric energy transmission system is presented.The experiment and analysis are made. Key words :HF transformer ;Inductive electric energy transmission ;Loss ;Temperature rise 基金项目:广州市科技攻关项目(2005Z3-E0341) 1引言 移动机电设备,如电力机车和城市电车等,其传统供电方式一般为滑动接触方式,存在磨损和电火花等一系列问题。由此一种新的能量供应方式感应电能传输被提出来。感应电能传输系统可以无接触供电,消除了传统接触供电的安全隐患,提高了系统供电的灵活性[1]。感应电能传输系统主要是利用变压器来传递能量,利用耦合式电磁感应原理,电磁耦合结构相当于一个分离变压器,即变压器初级和次级绕组是分离的,存在空隙的。工频交流电经整流且逆变成高频交流电提供给初级绕组,根据电磁感应定律,次级绕组两端产生高频的感应电动势,经过整流和稳压等环节之后,为用电负载供应电能,实现电能传输。 感应电能传输系统变压器初、次级绕组的频率很高,其绕组参数受频率影响很大,电感和电阻均随着频率变化而变化,电感变化一般很小,但电阻变化很大,称为交流电阻,是直流电阻的几倍、几十倍甚至更大[2,3]。因此,高频变压器设计是感应电能 传输系统的核心。 笔者介绍了高频变压器设计中主要考虑的因素,根据面积法给出了设计高频变压器的一般方法,并对其进行了实验和分析。 2高频变压器设计中考虑的因素 在高频变压器的设计中,对铁心有以下要求:(1)高的饱和磁通密度或高的振幅磁导率。(2)在工作频率范围有低的铁心总损耗。软磁铁氧体满足上述要求,因此高频变压器铁心选择铁氧体PC30。但是在设计中必须考虑铁心损耗、绕组损耗和温升等问题,才能获得高效的系统。 2.1铁心损耗 铁心损耗取决于磁感应增量、频率和温度,在这里忽略温度的影响。软磁铁氧体铁心总损耗通常由三部分构成:磁滞损耗P h 、涡流损耗P e 和剩余损耗P r 。每种损耗产生的频率范围是不同的。但是铁心总损耗为[4]: P coreless =K p V core f m B n (1) 式中 K p ——— 铁心损耗系数,忽略温度变化时为常数第46卷第3期2009年3月 TRANSFORMER Vol.46March No.32009

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

脉冲变压器

脉冲变压器 脉冲变压器是一种宽频变压器,对通信用的变压器而言,非线性畸变是一个极重要的指标,因此要求变压器工作在磁心的起始导磁率处,以至即使象输入变压器那样功率非常小的变压器,外形也不得不取得相当大。除了要考虑变压器的频率特性,怎样减少损耗也是一个很关心的问题。 与此相反,对脉冲变压器而言,因为主要考虑波形传送问题。即使同样是宽频带变压器,但只要波形能满足设计要求,磁心也可以工作在非线性区域。因此,其外形可做得比通信用变压器小很多。还有,除通过大功率脉冲外,变压器的传输损耗一般还不大。因此,所取磁心的尺寸大小取决于脉冲通过时磁通量是否饱和,或者取决于铁耗引起的温升是否超过允许值。 一、脉冲变压器工作原理 脉冲变压器利用铁心的磁饱和性能把输入的正弦波电压变成窄脉冲形输出电压的变压器。可用于燃烧器的点火、晶闸管的触发等。脉冲变压器结构为原绕组套在断面较大的由硅钢片叠成的铁心柱上,副绕组套在坡莫合金材料制成的断面较小的易于高度饱和的铁心柱上,在两柱中间可设置磁分路。电压和磁通的关系,输入电压u1是正弦波,在左面铁心中产生正弦磁通Φ1。右面铁心中磁通Φ2高度饱和,是平顶波,它只有在零值附近发生变化,并立即饱和达到定值。当Φ2过零值的瞬间,在副绕组中就感应出极陡的窄脉冲电动势e2。磁分路有气隙存在,Φσ基本上按线性变化,与漏磁相似,其作用在于保证Φ1为正弦波。 二、脉冲变压器的应用 脉冲变压器广泛用于雷达、变换技术;负载电阻与馈线特性阻抗的匹配;升高或降低脉冲电压;改变脉冲的极性;变压器次级电路和初级电路的隔离应用几个次级绕组以取得相位关系;隔离等)相同,但就磁芯的磁化过程这一点来看是有区别的,分析如下: (1) 脉冲变压器是一个工作在暂态中的变压器,也就是说,脉冲过程在短暂的时间内发生,是一个顶部平滑的方波,而一般普通变压器是工作在连续不变的磁化中的,其交变信号是按正弦波形变化. (2) 脉冲信号是重复周期,一定间隔的,且只有正极或负极的电压,而交变信号是连续重复的,既有正的也有负的电压值。 (3) 脉冲变压器要求波形传输时不失真,也就是要求波形的前沿,顶降都要尽可能小,然而这两个指标是矛盾的。 三、脉冲变压器与一般变压器的比较 所有脉冲变压器其基本原理与一般普通变压器(如音频变压器、电力变压器、电源变压器等)相同,但就磁芯的磁化过程这一点来看是有区别的,分析如下: (1) 脉冲变压器是一个工作在暂态中的变压器,也就是说,脉冲过程在短暂的时间内发生,是一个顶部平滑的方波,而一般普通变压器是工作在连续不变的磁化中的,其交变信号是按正弦波形变化. (2) 脉冲信号是重复周期,一定间隔的,且只有正极或负极的电压,而交变信号是连续重复的,既有正的也有负的电压值。 (3) 脉冲变压器要求波形传输时不失真,也就是要求波形的前沿,顶降都要尽可能小,然而这两个指标是矛盾的。 本文由https://www.doczj.com/doc/0211285889.html,整理。

脉冲变压器设计

脉冲变压器设计-CAL-FENGHAI.-(YICAI)-Company One1

脉冲变压器设计

目录 前言 ................................................................................... 错误!未定义书签。 1 脉冲变压器设计要求和原始数据 ................................ 错误!未定义书签。脉冲变压器计算程序设计要求................................... 错误!未定义书签。计算原始数据:........................................................... 错误!未定义书签。 2 脉冲变压器的设计 ........................................................ 错误!未定义书签。线路的计算................................................................... 错误!未定义书签。绝缘的设计................................................................... 错误!未定义书签。铁心和绕组的选择....................................................... 错误!未定义书签。 铁心的设计要求 ........................................................ 错误!未定义书签。 铁心的去磁电路 ........................................................ 错误!未定义书签。 绕组的选择 ............................................................... 错误!未定义书签。脉冲变压器的脉冲的计算........................................... 错误!未定义书签。 脉冲平顶降落的验算 ............................................... 错误!未定义书签。 脉冲的前沿畸变验算 ............................................... 错误!未定义书签。 脉冲后沿宽度的检查 ............................................... 错误!未定义书签。脉冲变压器的整体结构............................................... 错误!未定义书签。脉冲变压器的温升与经济指标................................... 错误!未定义书签。 脉冲变压器的温升和经济指标 ................................ 错误!未定义书签。 脉冲变压器的温升和经济指标的验算 ................... 错误!未定义书签。 3 脉冲变压器的试验 ........................................................ 错误!未定义书签。脉冲变压器的初次试验............................................... 错误!未定义书签。 加压试验 ................................................................... 错误!未定义书签。 改变回路参数的试验 ............................................... 错误!未定义书签。 “+/-极性”的试验 .................................................. 错误!未定义书签。脉冲变压器的负荷试验............................................... 错误!未定义书签。 脉冲波形的检查 ....................................................... 错误!未定义书签。 漏感和电容 ............................................................... 错误!未定义书签。 变比的测量 ............................................................... 错误!未定义书签。总结 .................................................................................. 错误!未定义书签。致谢 ................................................................................. 错误!未定义书签。参考文献 ........................................................................... 错误!未定义书签。

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

变压器优化设计软件开发

变压器优化设计软件开发 摘要:本软件编程语言为Visual Basic和C++,编程语言和变压器设计原理相结合。采用分层遗传算法实现变压器的优化设计,并以220kV两圈变压器为实例进行验证,改进的MLGA比单层传统GA成本节省了3.02%,比手工设计方案节约9.48%。开发了10-220kV等级变压器的优化设计软件及界面,实现变压器设计人员由手工计算向计算机软件计算转变。 关键词:Visual Basic;变压器设计原理;分层遗传算法;变压器优化设计 1 概述 变压器优化设计软 件节约设计成本,提高设计质量,缩短产品的开发周期,将人工智能技术、数据库技术应用于设计中去,快速设计其结构方案,进一步提高公司的技术水平、企业形象和在市场中的核心竞争力。研究基于知识工程的计算机集成系统对变压器制造企业在“以市场需求为中心”的激烈竞争中有着很强的应用价值,对我国变电设 备制造企业和国民经济的发展有重要的现实意义[1]。 2 分层遗传算法的原理 本软件采用改进的分层遗传算法进行优化设计,传统的遗传算法是将所有设计优化变量进行编码形成一个向量(染色体),然后由染色体组成一个种群进行进化操作;分层遗传算法的基本思想是将设计优化变量根据工程实际权重或优化先后顺序分类并进行独立编码,放置在不同的层中,每层中可以有多个种群进行并行的遗传操作,因此每个种群可以采用不同的遗传算子、不同的遗传参数,并行的设计。不失一般性,这里以三层遗传优化算法为例,简要介绍分层遗传算法原理[2]。如图1所示。 第一层GA1是控制其他模块的独立遗传算法,第二层GA2和第三层GA3分别由一系列的模块组成,每个模块对应一个子问题,每个子问题对应一个独立的GA,且同一层中的各个模块的编码相同。一个独立的GA可以用以下格式来描述: GA=(PO,PS,IS,FIT,SO,CO,MO) (1)其中PO、PS、IS、FIT,分别表初始种群、种群大小、编码长度以及适应度值,SO、CO、MO分别代表选择、交叉、变异,故分层遗传算法可以用下式描述: GAij=(POij,PSij,ISij,FITij,SOij,COij,MOij) (2) 其中下标i和j表示分层遗传算法第i层第j个模块,GAij表示用独立遗传算法求解第i层第j个模块。由于上层和下层以及同层相邻模块之间的影响,考虑上层和下层之间的影响,GAij可以表示为式(3)。 GAij={POij(GAi-1,j),PSij(GAi-1,j),ISij(GAi-1,j),FITij(GAi-1,j),SOij (GAi-1,j),COij(GAi-1,j),MOij(GAi-1,j)}(3) 如果考虑同层相邻模块的影响则GAij表示为式(4)。 GAij={POij(GAi-1,j,GAi-1,j,GAi-1,j),PSij(GAi-1,j,GAi,j-1,GAi,j +1), ISij(GAi-1,j,GAi,j-1,GAi,j +1),FITij(GAi-1,j,GAi,j-1,GAi,j +1), SOij(GAi-1,j,GAi,j-1,GAi,j +1),COij(GAi-1,j,GAi,j-1,GAi,j +1), MO(GAi-1,j,GAi,j-1,GAi,j +1)}(4)

微机保护课程设计

课程设计(论文) 题目10kv干式配电变压器微机保护设计学生姓名 学号 班级 指导教师 评阅教师 完成日期2014 年12 月 5 日

10kv干式配电变压器微机保护装置设计 引言 随着我国经济建设的迅速发展,人民生活水平的不断提高,城乡用电负荷不断增加,在电力紧缺的情况下,无油、防火、寿命长、低噪、维修简单、安全可靠的10kv干式配电变压器得到越来越广泛的应用。 本文将通过对变压器微机保护原理的阐述和分析,以10kv干式变压器为对象设计一套微机保护装置,包括了与微机保护相配合的主接线形式、主要电器设备及保护配置方式的选择,并对保护装置的信号、开关量输入输出、时钟、数据存储、数据通信等功能模块进行选型设计,使之具有对变压器电压、电流、温度实时监控,反映故障并对故障信息进行存储和与计算机进行通信等功能。 关键字:10kv 干式变压器微机保护

目录 1 绪论---------------------------------------------------------------------------------------------- 4 2 微机保护系统组成、特点及其功能 ------------------------------------------------------ 4 2.1 硬件部分 ------------------------------------------------------------------------------- 4 2.2 软件部分 ------------------------------------------------------------------------------- 6 2.3 微机保护的功能 ---------------------------------------------------------------------- 6 3 变压器微机保护配置 ------------------------------------------------------------------------ 7 4 微机保护功能模块设计 -------------------------------------------------------------------- 8 4.1 信号处理模块设计 ------------------------------------------------------------------- 8 4.2 开关量输入/输出模块设计--------------------------------------------------------- 9 4.3 实时时钟模块和数据存储模块设计 -------------------------------------------- 10 5 变压器微机保护演示装置硬件电路设计--------------------------------------------- 10 5.1 键盘输入电路 ----------------------------------------------------------------------- 11 5.2 输出模块 ----------------------------------------------------------------------------- 11 6 软件设计-------------------------------------------------------------------------------------- 13 6.1 单片机软件编程 -------------------------------------------------------------------- 13 6.2 部分程序流程图 -------------------------------------------------------------------- 13 6.2.1 数据采集程序流程图------------------------------------------------------ 13 6.2.2 键盘显示程序--------------------------------------------------------------- 14 6.2.3 LCD显示程序 -------------------------------------------------------------------------- 15 6.3 主程序流程图如下 ----------------------------------------------------------------- 16 7 总结-------------------------------------------------------------------------------------------- 16 参考文献----------------------------------------------------------------------------------------- 16

简析500kV变电站所用变压器的优化设计

简析500kV变电站所用变压器的优化设计 发表时间:2016-07-01T15:15:50.023Z 来源:《电力设备》2016年第7期作者:龙晓慧罗栋梁邵贤[导读] 500kV电网系统的加强,设计和制造技术的提高及产品的不断改进。 龙晓慧罗栋梁邵贤(国核电力规划设计研究院)0引言500kV电网系统的加强,设计和制造技术的提高及产品的不断改进,所用电系统的可靠性也越来越高,通过对山东省已运行的3座500kV变电站所用电系统实际应用情况进行了调查、分析、研究,有必要对所用电系统中的所用变压器容量、台数及其一次接线方式作进一步优化设计。1所用变压器容量及台数的选择500kV变电站远景规模一般为2~4台主变压器,500kV出线4~回,220kV出线10~16回,主变压器低压侧接6~12组无功补偿装置,所用变压器容量大多在630~1000kVA之间[1-3]。安装3台所用变压器,近期安装2台所用变压器,其容量均按100%负荷考虑。所用变压器容量按下式计算[4]:S≥K1.P1+P2+P3 式中:S—所用变压器容量(kVA);K1—所用动力负荷换算系数,一般取K1=0.85;P1—所用动力负荷之和(kW);P2—所用电热负荷之和(kW);P3—所用照明负荷之和(kW)。根据变电站负荷统计及计算结果,在500kV变电站设计中,站用变压器一般选择630kVA或800kVA。由于负荷计算均按远景规模,而近期建设规模主变压器最多为2台,如淄博500kV变电站为2台主变压器;济南、潍坊500kV变电站均为1主变压器。主变压器各侧电压等级的出线回路也较少,这样所用变压器所带负荷也相对较少,如果所用变压器容量选择较大就不利于所用变压器的经济运行。从调查已运行的变电站所用电系统负荷情况与按远景规模所用负荷计算的结果相比较看,按远景规模所用负荷计算的结果要大的多, 主要原因如下: (1)真空滤油机和真空泵负荷,一般在主变压器大修时才使用。(2)主变压器冷却负荷,在计算负荷时按ODAF冷却方式,全部冷却器都运行,而实际情况主变压器负荷轻只有部分冷却器运行。(3)各电压等级配电装置断路器、隔离开关操作机构等加热负荷,由于各电压等级单元数量较少,达不到远景计算负荷。从所用变低压侧380V/220V接线方式来考虑,一般均采用单母线分段接线,一段母线上接一台工作所用变,正常运行时两台所用变分裂运行,基本上各带一半全所用电负荷。重要负荷都按双回路设计,另外随着制造厂技术水平不断提高,主变压器的可靠性越来越高,主变压器大修的可能性变的更少。鉴于上述分析的情况及所用变压器本身故障率极小,500kV变电站所用变压器我们推荐选用2所用变压器。每台所用变压器容量按全所负荷的100%考虑。若仍选用3台所用变压器,其一,考虑实际所用电负荷应用情况。其二,考虑低压侧380V/220V一般采用单母线分段接线,一段接一台工作所用变,备用所用变低压侧有两台自动开关分别接两段母线上。正常工作时两台工作所用变同时运行,分段开关断开。任一台工作所用变故障、退出或检修时可投入备用所用变;当仅有一台所用变运行时合上分段开关,此时一台所用变带全所负荷。一台所用变压器运行的可能性是非常小的,这种情况的出现只有在一台主变压器检修时才会出现上述情况,即便如此,在考虑其它负荷的同时率后,一台所用变带全所负荷也是适宜的。因此我们建议采用3台所变时,从初期到远景每台所用变压器容量都按全所负荷66.7%来选择。 2所用变压器一次接线方式对于选用2台所用变压器,初期建设只有1台主变压器时,装设1台从所外可靠电源引接的所用变压器。当第二台主变压器安装后,此外引的所用变压器从第二台主变压器低压侧引接。因为两台主变压器同时故障的可能性很小,若出现这种可能,我们从接线方式上考虑外引电源通过隔离刀闸与主变压器低压母线上引接隔离刀闸,相互切换来实现对全所供电。其接线方式如下: 这种接线方式,正常时由主变压器低压母线供电;母线或主变压器故障检修时,由外引电源来供电。母线隔离刀闸与外引电源进线隔离刀闸之间可实现电气闭锁,来保证母线或主变压器故障检修时,其低压侧不带电。当500kV变电站最终规模选用3台所用变压器时,与以往工程接线相同,即两台工所用变高压侧分别接于主变压器三次侧母线上,备用所用变压器采用外引电源。3技术经济比较从技术上来讲,选用两台所用变压器是完全可行的,正常时,两台所用变压器同时向全所负荷供电;当一台所用变压器故障、检修退出运行时,另一台所用变压器可带全所负荷。从经济上来讲,选用两台所用变压器可节省一台所用变压器约16,一台带套管电流互感器的断路器约12.5万元,另外还可适当节约占地,共计节省投资约30万元左右。4结论

相关主题
文本预览
相关文档 最新文档