当前位置:文档之家› 化药药物评价ICH毒代动力学指导原则毒性研究中全身暴露量的评价

化药药物评价ICH毒代动力学指导原则毒性研究中全身暴露量的评价

化药药物评价ICH毒代动力学指导原则毒性研究中全身暴露量的评价
化药药物评价ICH毒代动力学指导原则毒性研究中全身暴露量的评价

化药药物评价-ICH毒代动力学指导原则:毒性研究中全身暴露量的评价

审评五部王海学彭健20051101

该指导原则为ICH(人用药品注册技术要求的国际协调会议)三方(欧盟、日本和美国)协调的指导原则。根据ICH程序,该指导原则由ICH专家工作组(安全性)起草,并提交管理部门讨论协商。1994年10月27日,在ICH程序的第4阶段会议上,该指导原则被 ICH筹备委员会推荐给欧盟、日本和美国的行政管理部门采纳。1995年3月,该指导原则发布在美国FDA的Federal Register上(60 FR 11264),适用于化学药物和生物制品。

1 前言

本指导原则所涉及的毒物代谢动力学(毒代动力学)仅与拟开发作为人用的药品有关。

毒代动力学是药代动力学在全身暴露评价中的延伸,为非临床毒性研究的一个组成部分,或为某一特殊设计的支持研究。研究结果可用于阐明毒理学发现及其与临床安全性的关系(文中其它术语的定义见注释1)。

制定该指导原则是为了使人们理解毒代动力学的意义和应用,指导毒代动力学的试验设计。本指导原则强调毒性试验需与毒代动力学相结合,这将有助于解释毒理学发现和制定合理的试验设计。

毒代动力学测定通常是结合于毒性研究中,故又被称为“伴随毒代动力学”。毒性试验的试验程序有助于获得受试动物多剂量的毒代动力学数据。如果在毒性试验中测定了合适的指标或参数,毒代动力学研究可避免重复的毒性试验。有时,模拟毒性试验的支持研究也可获得相应的毒代动力学数据。获取数据的优化设计可以减少试验动物数。

非临床药代动力学和代谢过程的研究,对解释毒理学的发现可能有价值,但毒代动力学数据侧重于新药毒性研究中的动力学。

因此,毒代动力学是非临床试验设计的组成部分,在理解毒性试验结果和临床人体用药风险性、安全性时可提高毒理学资料的价值。毒代动力学已成为毒性试验的组成部分,成为非临床和临床试验间的桥梁,其研究重点是解释毒性试验结果,而不是为描述受试物的基本药代动力学参数特征。

由于药品开发是在非临床和临床间反馈的动态过程,因此毒代动力学研究无严格的、详细的试验程序,也无必要在全部研究中获取毒代动力学数据,应该科学地判断什么情况下需要进行。在考虑某个毒性试验是否需要获取毒代动力学数据和评估暴露量时,应灵活地、逐步地和逐例地作出判断,以获得足够资料来评价药物的危险性和安全性。

2 毒代动力学的目的和测定参数

毒代动力学的主要目的是:

●描述化合物在动物造成的全身暴露和其与毒性研究剂量和时间关系。

次要目的是:

●了解毒性研究中造成的暴露量与毒理学结果之间的关系,以评价这些结果与临床安全性之间的关系。

●支持非临床毒性研究的动物种属选择和给药方案。

●结合毒性研究结果,提供有助于后续非临床毒性研究的信息。

要达到这些目的,可在某一项研究过程中通过选择合适的时间点进行采样测定而获得一个或多个毒代动力学参数2。这些测定通常包括血浆(全血或血清)的原型化合物和/或代谢物的浓度,应根据情况选择。血浆(或全血或血清)AUC,Cmax和C(time)是毒代

动力学研究中评价暴露最常用的参数。对于某些药物,以非血浆蛋白结合(游离型)的药物浓度来评价暴露更为合适。

毒代动力学数据可以从毒性研究的全部动物获得,也可从代表性的组或卫星组,或从单独设计的研究中获得。

毒代动力学信息可来自单剂量、重复剂量、生殖毒性、遗传毒性和致癌性的试验研究,它有助于评价毒理学反应。对拟定改变临床给药途径的评价,毒代动力学信息也具有价值。

3 一般原则

3.1 引言

下面段落中提出的一般原则在个体研究设计中应予考虑。

必须注意,凡在GLP实验室进行的毒性研究,其伴随的毒代动力学也必须符合GLP的要求。在模拟毒性研究的条件下,回顾性地设计毒代动力学研究以获得系列特定数据用于安全性评价时,也应执行GLP。

3.2 暴露的定量

全身暴露可用来评价动物对受试物的负荷量,并有助于解释动物种属间、剂量组间和性别间的毒性相似性和差异性。暴露程度可用原型化合物或其代谢物的血浆(血清或全血)浓度或AUC表示。某些情况下,可设计测定组织中的药物浓度。在进行动物毒性研究时,为使动物毒性研究的不同剂量能达到相应的暴露,应考虑人体治疗剂量(预期的或已采用的)的整体暴露和剂量依赖性,考虑受试物的药效学(定性或定量的)可能存在的种属差异性。

药效作用或毒性也可为暴露提供支持性证据,某些情况下,甚至可替代药代动力学参数。

应确定达到何种暴露程度来进行毒代动力学监测或特征的研究,应警惕引起非线性且剂量相关的动力学改变。毒代动力学资料信息可用于种属间的毒性比较,这优于简单以剂量/体重(或体表面积)进行的比较。

3.3 采样时间点的确定

伴随毒代动力学研究中,采集体液的时间点应尽量达到所需的频度,但不可过于频繁以至于干扰正常进行的研究并引起动物过度的生理应激反应。在每项研究中,时间点的数量应满足暴露评价的要求(见3.2)。时间点的确定应以早期毒性研究、预试验或剂量范围毒性研究以及在相同动物模型或可以合理外推的其它动物模型上获得的动力学数据为基础。

3.4 达到适当暴露的给药剂量设置

毒性研究的剂量设置主要依据受试动物的毒理学发现和药效反应确定。但下面列举的毒代动力学原则可能有助于剂量水平的设置。

3.4.1 低剂量

低剂量最好是无毒性反应剂量。任何毒性研究中的动物暴露,在理论上应等同于或刚刚超过病人拟用的(或已知的)最高剂量,但这种理想状态并非总是可以达到。低剂量通常依毒理学的考虑而定,但应测定全身暴露量。

3.4.2 中剂量

根据毒性研究目的,中等剂量的暴露通常是低剂量暴露的合适倍数和高剂量暴露的合适分数。

3.4.3 高剂量

在毒性研究中,高剂量通常依毒理学的要求而定,但所用剂量应达到可评价的暴露。

当毒代动力学数据表明化合物的吸收限制了母体化合物和/或代谢物暴露时,且无其它剂量限制因素存在时,该化合物能达到最大暴露的最低剂量将被认为是可采用的最高剂量。

当选择的剂量引起非线性动力学时,应特别注意其与毒性研究中毒理学发现的关联

性。但是,非线性动力学并非必然导致毒性研究中的剂量限制或毒理学发现的无效。此种情况下,毒代动力学研究将非常有助于评价剂量与暴露间的相关性。

3.5 毒性研究中暴露评估的范围

在毒性研究中,全身暴露应通过适当数量的动物和剂量组进行测定,为风险评价提供依据。

伴随毒代动力学既可在主研究也可在特殊卫星组研究的所有动物或有代表性的部分动物上进行。毒代动力学数据的样本通常来自主研究所用的动物,因为主研究中的动物包括大动物,而卫星组常为较小的(啮齿类)动物。

所用动物数量至少应能获得足够的毒代动力学数据。在主研究中,应采用雄性和雌性动物。暴露的测定通常应包括两种性别的动物,除非有特殊的理由。

如果剂量方案基本不变(见4.3),则不必在不同研究中获取毒代动力学数据。

3.6 暴露解释中的复杂因素

如上所述,暴露评估有助于解释毒性发现和对比人体暴露,但应注意以下几点:

暴露评估应考虑蛋白质结合、组织摄取、受体性质和代谢概貌上的种属差异。例如,对于高蛋白结合的化合物,用游离(未结合)浓度来表示暴露则更为合适。此外,代谢物的药理活性、毒理学作用和生物制品的抗原性也是考虑因素。另外,即使在血浆浓度相对较低时,特殊的组织或器官也会有较高水平的受试物和/或代谢物的存在。

3.7 给药途径

改变给药途径(例如吸入、局部或非肠道给药)的毒代动力学的研究应根据受试物在拟给药途径下的药代动力学性质,需要根据临床给药途径采取合适的非临床给药途径。对某一药品,有时会被改变临床给药途径,例如一种口服剂型开发的产品后来被作为静脉给药途径开发。在此情况下,必须确定改变临床给药途径是否会明显缩小安全范围。

改变给药途径时应该比较现有的和拟定改变的给药途径下母体化合物和/或其相关代谢物(AUC和Cmax)的全身暴露。如果新途径导致AUC和/或Cmax的增加或代谢途径的改变,则应考虑继续进行动物毒理学和动力学研究以保证安全性。如果推荐的新途径与现有途径相比,进入体内的药物无显著增加或改变,则附加的非临床毒性研究可侧重于局部毒性实验。

3.8 代谢物的测定

毒代动力学的主要目的是了解受试物在产生毒性表现下动物达到的全身暴露情况。然而在下列情况下,毒代动力学试验更需关注血浆或其它体液中代谢物浓度的测定。

●受试化合物作为“前体化合物”且其释放的代谢物为主要的活性成份。

●化合物可被代谢为一种或多种具有药理或毒理活性代谢物,且产物可导致明显的组织/器官反应。

●受试物在体内被广泛代谢,毒性研究仅可以通过测定血浆或组织中的代谢物浓度来进行暴露评估。

3.9 数据的统计评价

暴露评价的数据需有代表性。由于动力学参数多存在个体内和个体间的差异,且毒代动力学资料多来源于小样本的动物,因此通常不需要高精度的统计学处理。应注意求算平均值或中位数并评估变异情况,某些情况下,个体动物的数据或许比经整理、统计分析过的成组资料更为重要。

如果进行了数据转换(如对数转换),应提供理由。

3.10 分析方法

将药代动力学结合于毒性试验意味着应早期建立分析物和基质的分析方法,且要根据代谢和种属差异而定。毒代动力学研究使用的分析方法对于被测物应是特异的,而且应有

足够的精确度和精密度,检测限应满足毒代动力学研究时预期的浓度范围。分析物和基质(生物体液或组织)分析方法的选择应排除样本中内源性物质可能引起的干扰。通常选择血浆、血清或全血(来自各个种属)作为毒代动力学研究的基质。

如果化合物是消旋体或其它对映异构体的混合物,对所选的分析物(消旋体或对映异构体)应进行附加说明。

非临床研究中检测的分析物和基质,理论上应与临床研究一致。如果在非临床和临床研究中应用了不同的分析方法,应进行合理的认证。

3.11 报告

完整的毒代动力学资料应包括对毒代动力学结果的自身评价和对毒性反应的解释,并报告分析方法。另外,应说明测定所选基质和分析物的理由(见3.8和3.10)。

本报告在申报资料中的位置取决于动力学资料是针对某一毒性研究,还是支持所有的毒性试验。

4. 毒性试验不同领域中的毒代动力学-特殊方面

4.1 引言

根据上述毒代动力学原则,以下特殊考虑是针对毒性试验的某个领域。暴露监测和特征描述的频度可根据需要增减。可仅从某些个别动物取样,这可能有助于解释这些动物的毒理学发现。

4.2 单剂量毒性研究。

这项研究通常是生物分析方法尚未建立前已经进行的早期试验研究,因此不可能在这项研究中进行毒代动力学的监测。如有必要,可在这些研究中采集血浆样本,贮存以待后期分析,但要求提供分析物在样本基质中的稳定性资料。

另外,为了回答在单剂量毒性研究中出现的特殊问题,可在此研究完成后进行附加的毒代动力学研究。

单剂量动力学研究结果有助于制剂的选择和给药期后暴露速率和持续时间的预测,这有利于后期研究中选择适宜的剂量水平。

4.3 重复剂量毒性研究

试验方案和种属的选择应尽可能与药效学和药代动力学原理相符合,但在既无动物资料也无人体药代动力学资料可借鉴的研究初期,此要求或许难以达到。

毒代动力学应尽可能纳入毒性研究的设计中,它包括在合适剂量水平下首次给药到试验结束全过程的暴露监测和特征研究。对后期研究所采用的程序将依据前期研究结果及试验方案而改变。当早期毒性研究出现难以解释的毒性问题时,可能需要延长、缩短或改变对特定化合物的毒性监测和特征研究。

4.4 遗传毒性研究

体内遗传毒性研究出现阴性结果时,毒代动力学可以较好地描述动物全身暴露情况或标本组织中的特定暴露情况。

4.5 致癌性研究

4.5.1 指标和剂量范围的研究

为获得有助于主研究(见4.5.2)的毒代动力学资料,应对这些研究适当地进行监测或特征描述,尤其应注意在早期毒性研究中未观察的动物种属、品系以及首次采用的给药途径和方法等情况。

应特别注意掺食给药情况下获得的毒代动力学数据。

毒代动力学数据可能有助于根据临床暴露资料进行剂量选择,当出现非线性动力学

特征时还可以用来解释毒性研究的复杂因素。

理论上,理想化的致癌性研究所选剂量产生的全身暴露值应超过人用最大治疗暴露量的若干倍。但由于这种理想化的剂量选择会不可避免地受到种属特异性问题的困扰,因此,该指导原则强调致癌研究应评价适当剂量时母体化合物及其代谢物在不同研究阶段达到的全身暴露,以便正确比较动物模型和人的暴露,用于评价毒理学发现。

致癌性试验应根据受试动物和人可能达到的全身暴露(终点指标)来确定最高剂量是可被接受的。在以往研究中,毒性终点指标通常用于高剂量的选择。

4.5.2 主研究

试验方案和动物种属、品系的选择应尽可能根据已有的药代动力学和毒代动力学资料。实际上,这些研究绝大多数都采用大鼠和小鼠。

如本章引言所述,主张通过监测确保主研究中的暴露与独立的或特定剂量范围研究所获得的动力学特征描述一致。这种监测,在少数研究中是适用的,但超过6个月则无必要。

4.6 生殖毒性研究

4.6.1 引言

生殖毒性研究前,最好掌握一些药代动力学资料,可根据这些资料选择动物和调整研究设计及剂量方案。此时并不需要复杂的或是来自孕期或哺乳期动物的资料,但获得的研究结果可能需要进一步结合孕期或哺乳期动物的药代动力学资料进行评价。

生殖毒性中暴露的限度通常由母体毒性确定。毒代动力学数据并非对所有化合物都是需要,某些情况下,毒代动力学监测是有价值的,尤其是对低毒性的化合物。

当试验未出现药效反应或毒性反应时,可能怀疑是否采用了足够的全身暴露量。此时,毒代动力学原理有助于确定生殖过程中不同阶段不同剂量达到的暴露。

雌性动物的卫星组试验也可用于获取毒代动力学资料。

4.6.2 生育力研究

可在重复剂量毒性研究(见 4.3)进行该项研究。是否需要监测这项研究取决于早期研究资料中动物的种属和剂量方案。

4.6.3 孕期和哺乳期研究

暴露期间的试验方案应根据毒理学发现以及药代动力学和毒代动力学原理来选择。

应考虑孕期与孕前动物的动力学可能不同。

毒代动力学研究包括对特定时间的母体、胚胎、胎儿或新生儿的暴露评估。化合物在乳汁中分泌的评价可用于确定其在新生儿暴露的作用。为了研究胚胎/胎儿的转运以及乳汁分泌,在某些情况下,附加研究是必要的或恰当的。

对生殖毒性试验结果的解释应考虑未被证明的药物胎盘转运因素。

5. 参考文献(略)

药物毒代动力学研究指导原则

附件6 药物毒代动力学研究技术指导原则 一、概述 毒代动力学研究目的是获知受试物在毒性试验中不同剂量水平下的全身暴露程度和持续时间,预测受试物在人体暴露时的潜在风险(注释1)。毒代动力学是非临床毒性试验的重要研究内容之一,其研究重点是解释毒性试验结果和预测人体安全性,而不是简单描述受试物的基本动力学参数特征。 毒代动力学研究在安全性评价中的主要价值体现在: (一)阐述毒性试验中受试物和/或其代谢物的全身暴露及其与毒性反应的剂量和时间关系;评价受试物和/或其代谢物在不同动物种属、性别、年龄、机体状态(如妊娠状态)的毒性反应;评价非临床毒性研究的动物种属选择和用药方案的合理性。 (二)提高动物毒性试验结果对临床安全性评价的预测价值。依据暴露量来评价受试物蓄积引起的靶部位毒性(如肝脏或肾脏毒性),有助于为后续安全性评价提供量化的安全性信息。 (三)综合药效及其暴露量和毒性及其暴露信息来指导人体试验设计,如起始剂量、安全范围评价等,并根据暴露程度来指导临床安全监测。 本指导原则适用于中药、天然药物和化学药物。生物制品的毒代动力学研究可参考本指导原则(注释2)。

二、基本原则 毒代动力学研究需执行《药物非临床研究质量管理规范》(GLP)(注释3)。 毒代动力学试验通常伴随毒性试验进行,常被称为伴随毒代动力学试验。开展研究时可在所有动物或有代表性的亚组或卫星组动物中进行,以获得相应的毒代动力学数据(注释4)。 三、基本内容 (一)暴露量评估 毒代动力学试验的基本目的是评估受试物和/或其代谢物的全身暴露量,常通过适当数量的动物和剂量组来开展研究。伴随毒代动力学研究所用动物数量应保证能获得足够的毒代动力学数据。由于毒性试验中通常采用两种性别动物,暴露测定也应包括两种性别的动物。选择单性别动物时应说明理由(注释5)。 暴露评估应考虑以下因素(注释6):血浆蛋白质结合、组织摄取、受体性质和代谢特征的种属差异、代谢物的药理活性、免疫原性和毒理学作用。在血浆药物浓度相对较低时,特殊的组织或器官也可能会有较高水平的受试物和/或其代谢物。对于血浆蛋白结合率高的化合物,用游离(未结合)浓度来表示暴露更为合适。 暴露评估中需关注血浆或体液中代谢物浓度的情况有:1)受试物为“前体化合物”且其转化生成的代谢物为主要活性成分;2)受试物可被代谢为一种或多种具有药理或毒理活性代谢物,且代谢物可导致明显的组

生物样品定量分析方法验证指导原则

9012 生物样品定量分析方法验证指导原则
1. 范围
准确测定生物基质(如全血、血清、血浆、尿)中的药物浓度,对于药物和 制剂研发非常重要。这些数据可被用于支持药品的安全性和有效性,或根据毒动 学、药动学和生物等效性试验的结果做出关键性决定。因此,必须完整地验证和 记录应用的生物分析方法,以获得可靠的结果。
本指导原则提供生物分析方法验证的要求,也涉及非临床或临床试验样品实 际分析的基本要求,以及何时可以使用部分验证或交叉验证,来替代完整验证。
生物样品定量分析方法验证和试验样品分析应符合本指导原则的技术要求。 应该在相应的生物样品分析中遵守 GLP 原则或 GCP 原则。
2. 生物分析方法验证
2.1 分析方法的完整验证
分析方法验证的主要目的是,证明特定方法对于测定在某种生物基质中分析 物浓度的可靠性。此外,方法验证应采用与试验样品相同的抗凝剂。一般应对每 个物种和每种基质进行完整验证。当难于获得相同的基质时,可以采用适当基质 替代,但要说明理由。
一个生物分析方法的主要特征包括:选择性、定量下限、响应函数和校正范 围(标准曲线性能)、准确度、精密度、基质效应、分析物在生物基质以及溶液 中储存和处理全过程中的稳定性。
有时可能需要测定多个分析物。这可能涉及两种不同的药物,也可能涉及一 个母体药物及其代谢物,或一个药物的对映体或异构体。在这些情况下,验证和 分析的原则适用于所有涉及的分析物。
对照标准物质 在方法验证中,含有分析物对照标准物质的溶液将被加入到空白生物基质 中。此外,色谱方法通常使用适当的内标。 应该从可追溯的来源获得对照标准物质。应该科学论证对照标准物质的适用 性。分析证书应该确认对照标准物质的纯度,并提供储存条件、失效日期和批号。 对于内标,只要能证明其适用性即可,例如显示该物质本身或其相关的任何杂质 不产生干扰。 当在生物分析方法中使用质谱检测时,推荐尽可能使用稳定同位素标记的内 标。它们必须具有足够高的同位素纯度,并且不发生同位素交换反应,以避免结 果的偏差。
1

药物临床试验的一般考虑指导原则

药物临床试验的一般考虑指导原则 一、概述 药物临床试验的一般考虑指导原则(以下称指导原则),是目前国家食品药品监督管理总局关于研究药物在进行临床试验时的一般考虑。制定本指导原则的目的是为申请人和研究者制定药物整体研发策略及单个临床试验提供技术指导,同时也为药品技术评价提供参考。另外,已上市药品增加新适应症等进行临床试验时,可参照本指导原则。本指导原则主要适用于化学药物和治疗用生物制品。 二、临床试验基本原则 (一)受试者保护 1.执行相关法律法规 药物临床试验必须遵循世界医学大会赫尔辛基宣言,执行国家食品药品监督管理总局公布的《药物临床试验质量管理规范》等相关法律法规。 2.应具备的安全性基础 开展任何临床试验之前,其非临床研究或以往临床研究的结果必须足以说明药物在所推荐的人体研究中有可接受的安全性基础。 在整个药物研发过程中,应当由药理毒理专家和临床专家等动态地对药理毒理数据和临床数据进行评价,以评估临床试验可能给受试者带来的安全性风险。对于正在或将要进行的临床试验方案,也应进行必要的调整。

参与药物临床试验的有关各方应当按各自职责承担保护受试者职责。 (二)临床试验基本方法 1.临床试验一般规律 药物研发的本质在于提出有效性、安全性相关的问题,然后通过研究进行回答。临床试验是指在人体进行的研究,用于回答与研究药物预防、治疗或诊断疾病相关的特定问题。通常采用两类方法对临床试验进行描述。 按研发阶段分类,将临床试验分为Ⅰ期临床试验、Ⅱ期临床试验、Ⅲ期临床试验和Ⅳ期临床试验。 按研究目的分类,将临床试验分为临床药理学研究、探索性临床试验、确证性临床试验、上市后研究。 两个分类系统都有一定的局限性,但两个分类系统互补形成一个动态的有实用价值的临床试验网络(图1)。 图1. 临床研发阶段与研究类型间的关系 (实心圆代表在某一研发阶段最常进行的研究类型,空心圆代表某些可能但较少进行的研究类型) 概念验证(Proof of Concept,POC)是指验证候选药物的

金属抗癌药物的应用和发展

金属抗癌药物的应用与发展 摘要:癌症是二十世纪以来人类健康的主要杀手,而生物无机化学领域研究的金属抗癌药物已在癌症治疗中发挥了巨大作用,并且显示出了良好的发展前 景。本文对当前的一些铂类及非铂类金属抗癌药物的研究状况作一综述,并且就降低铂类药物的毒性和抗药性提出了新的设计策略。 关键词:金属抗癌药物铂类药物非铂类药物设计策略 生物无机化学的研究与医药学的关系十分密切。研究发现,许多金属配合物如铂、锡和铜等金属元素的配合物具有潜在抗癌活性,并且不同配合物对不同形式的癌症的作用具有一定的选择性。因此,通过对其作用机理和构效关系的研究,设计合成高效、低毒的金属抗癌药物,可为临床上化疗法治疗癌症开辟一条新的途径。 金属药物有许多其它药物无法比拟的独特性质,以顺铂为代表的铂类抗癌药物在癌症临床化疗中发挥了巨大作用。 1 铂类抗癌药物的应用研究 自美国密执安州立大学教授B Rosenberg和V Camp发现顺铂具有抗癌活性以来,铂族金属抗癌药物的应用和研究得到了迅速的发展。顺铂和卡铂已成为癌症化疗不可缺少的药物。1995年WHO对上百种治癌药物进行排名,顺铂的综合评价(疗效、市场等)位居榜前,列第二位。另据统计,在我国以顺铂为主或有顺铂参加配位的化疗方案占据化疗方案的70-80%。 1.1 第一代铂族抗癌药物——顺铂(Cisplatin) 顺铂(Cisplatin)是顺式—二氯二氨合铂(Ⅱ)的简称,分子式是cis—Pt[(NH3)C12],相对分子质量为300。其结构式为:

顺铂作为一种广谱抗癌药物,在临床上已广泛使用。它在l9世纪末就被合成出来,60年代Rosenberg和Van Camp发现它具有抗癌活性,于1978年首先在美国批准临床使用,并迅速成为治疗癌症的佼佼者(现在临床采用的联合化疗方案中,70—80%以顺铂为主或有顺铂参与配位,是治疗癌症的首选药物之一)[1]。顺铂致力于治疗的癌症有卵巢癌、肺癌、宫颈癌、鼻咽癌、前列腺癌、恶性骨肿瘤、淋巴肉瘤等等。顺铂是第一个无机抗癌药物,它不但对癌症的治疗带来了一次革命,而且带动了一门新学科——生物无机化学的形成和发展。 但早期由于顺铂具有肾毒性、胃肠道反应、水溶性差、耳毒性以及交叉抗药等缺陷,使其应用受到限制。直到1976年通过水化或使用利尿剂的方法缓解其肾毒性以及通过服用5—HT,受体拮抗剂ondansetron来减轻恶心呕吐的症状,才使顺铂应用逐渐广泛起来。 各国研究人员先后合成2000多种铂类配合物并进行筛选,研究发现:当配体被较大的有机基团取代时,顺式和反式铂的配合物都具有抗肿瘤活性。也就是在设计反式铂类抗癌配合物时,利用一些空间位阻较大的基团来减少动力学活性。 1.2 第二代铂族抗癌药物——卡铂(Carboplatin)和奈达铂(Nedaplatin) 卡铂是1,1—环丁二羧酸二氨合铂(Ⅱ)的简称,是美国施贵宝公司、英国癌症研究所以及Johnson Matthey公司合作开发的第二代铂族抗癌药物。分子式是Pt(NH3)2CBDCA。其结构式为: 卡铂与紫杉酵联用在治疗晚期头颈部癌、小细胞肺癌等方面的应用很有价值。卡铂具有:(1)化学稳定性好,溶解度比顺铂高16倍;(2)毒副作用低于

药物非临床药代动力学研究技术指导原则

附件5 药物非临床药代动力学研究技术指导原则 一、概述 非临床药代动力学研究是通过体外和动物体内的研究方法,揭示药物在体内的动态变化规律,获得药物的基本药代动力学参数,阐明药物的吸收、分布、代谢和排泄(Absorption, Distribution, Metabolism, Excretion, 简称ADME)的过程和特征。 非临床药代动力学研究在新药研究开发的评价过程中起着重要 作用。在药物制剂学研究中,非临床药代动力学研究结果是评价药物制剂特性和质量的重要依据。在药效学和毒理学评价中,药代动力学特征可进一步深入阐明药物作用机制,同时也是药效和毒理研究动物选择的依据之一;药物或活性代谢产物浓度数据及其相关药代动力学参数是产生、决定或阐明药效或毒性大小的基础,可提供药物对靶器官效应(药效或毒性)的依据。在临床试验中,非临床药代动力学研究结果能为设计和优化临床试验给药方案提供有关参考信息。 本指导原则是供中药、天然药物和化学药物新药的非临床药代动力学研究的参考。研究者可根据不同药物的特点,参考本指导原则,科学合理地进行试验设计,并对试验结果进行综合评价。 本指导原则的主要内容包括进行药物非临床药代动力学研究的 基本原则、试验设计的总体要求、生物样品的测定方法、研究项目(血

药浓度-时间曲线、吸收、分布、排泄、血浆蛋白结合、生物转化、对药物代谢酶活性及转运体的影响)、数据处理与分析、结果与评价等,并对研究中其他一些需要关注的问题进行了分析。附录中描述了生物样品分析和放射性同位素标记技术的相关方法和要求,供研究者参考。 二、基本原则 进行非临床药代动力学研究,要遵循以下基本原则: (一)试验目的明确; (二)试验设计合理; (三)分析方法可靠; (四)所得参数全面,满足评价要求; (五)对试验结果进行综合分析与评价; (六)具体问题具体分析。 三、试验设计 (一)总体要求 1. 受试物 中药、天然药物:受试物应采用能充分代表临床试验拟用样品和/或上市样品质量和安全性的样品。应采用工艺路线及关键工艺参数确定后的工艺制备,一般应为中试或中试以上规模的样品,否则应有充分的理由。应注明受试物的名称、来源、批号、含量(或规格)、保存条件、有效期及配制方法等,并提供质量检验报告。由于中药的特殊性,建议现用现配,否则应提供数据支持配制后受试物的质量稳定性及均匀性。当给药时间较

抗肿瘤药物临床试验技术指导原则

抗肿瘤药物临床试验技术指导原则 一、概述 恶性肿瘤是严重威胁人类生命的一类疾病,尽管现有治疗手段取得了一定疗效,但多数肿瘤患者生存时间有限,缺乏有效的可以治愈的药物,亟需开发新的药物来满足需要。在抗肿瘤药物的风险效益评估中,医护人员和患者可能愿意承受相对较大的安全性风险,所以抗肿瘤药物的临床研究除遵循一般药物临床研究原则外,还应考虑其特殊性。由于肿瘤生物学研究的进展,一些新的作用机制、作用靶点的抗肿瘤药物不断涌现,呈现出不同于以往传统细胞毒类药物的安全性和有效性特点;肿瘤疾病的药物治疗也从以往的单纯追求肿瘤缩小向延长患者的生存期、提高生存质量转变,这些改变使抗肿瘤药物临床疗效评价终点指标也出现较大改变。因此,传统的抗肿瘤药物开发模式已经变得不适宜,需要更多地探索能加快和促进开发进程的临床研究策略。 本指导原则将对抗肿瘤药物临床研究一般考虑进行阐述,重点阐述在不同临床研究阶段中需要重点考虑的问题,旨在为抗肿瘤药物临床研究的设计、实施和评价提供方法学指导。申请人在进行临床研究时,还应当参照国家食品药品监督管理局(以下简称SFDA)既往发布的相关指导原则和《药物临床试验质量管理规范》(GCP)要求进行,对于一般药物临床研究需要遵从的原则以及与其他指导原则重复内容在本文中不再赘述。 本指导原则主要适用于抗肿瘤新化合物的临床研究,抗肿瘤生物制品也可参考部分内容,不适用于中药制剂。药物类别上主要针对细胞毒

类抗肿瘤药物临床研究,由于非细胞毒类药物(如信号传导抑制剂,生物反应调节剂,激素类等)是目前新药开发的主要方向,本指导原则也将尽可能对此类别药物临床研究的不同之处进行阐述。 本指导原则中的观点仅代表SFDA当前对抗肿瘤药物临床研究的一般性认识,不能涵盖在新药研发中遇到的所有情况,申请人在研究中应始终坚持具体问题具体分析的原则。尤其应注意的是,抗肿瘤药物研究理论和技术的快速发展,很可能对将来抗肿瘤药物开发模式产生影响,因此申请人可以积极探索更为科学合理的研究方法,并及时寻求SFDA 药品注册部门的建议。 二、临床研究的总体考虑 抗肿瘤药物的临床研究过程通常分为Ⅰ期、Ⅱ期和Ⅲ期临床试验。Ⅰ期临床试验主要目的是对药物的耐受性、药代动力学进行初步研究,为后期研究给药方案的设计提供数据支持;Ⅱ期临床试验主要是探索性的研究,如给药剂量探索、给药方案探索、瘤肿有效性探索等,同时也观察安全性;Ⅲ期临床试验则在Ⅱ期基础上进一步确证肿瘤患者临床获益情况,为获得上市许可提供足够证据。 需要指出,这种临床研究的分期并不是固定的开发顺序。在本指导原则中,尽管对Ⅰ、Ⅱ期探索性试验和Ⅲ期确证性试验区别对待,但统计假设的建立和检验也可以成为Ⅱ期临床试验的一部分,同样,部分探索性研究也可能成为Ⅲ期临床试验的一部分。 由于Ⅲ期临床试验需要提供生存获益的疗效数据,试验周期较长,因此可以采用探索的开发模式,按照预定的中期分析计划,依据不断积累的信息,对临床试验方案进行调整。

药理毒代动力学及其研究方法

全国药物安全性评价专题负责人第二期高级培训班
中国毒理学会药物毒理与安全性评价专业委员会 中国药学会药物安全性评价专业委员会 中国药理学会药物毒理专业委员会
毒代动力学及 其研究方法
李川
(021-********;chli@https://www.doczj.com/doc/0113661175.html,) 中国科学院上海药物研究所 上海药物代谢研究中心
2009年11月·成都
演讲内容
一 新药安评与体内药物暴露 二 影响体内药物暴露的因素 三 毒代动力学的概念 四 毒代动力学的研究方法与实施 五 小结
一 新药安评与体内药物暴露
过去20多年在新药研发领域发生的变化
45% 30%
ADME/PK
15%
0%
Financial
CaImndpirdoavteed
Formulation
Commercial Human AEs
ToAxnicimityal
EfCficliancicyal
Other
Br. J. Clin. Pharmacol. 25: 387 (1988)
Nature Rev./Drug discovery 3: 711 (2004)
化合物资源
新药上市前必须对其 安全性进行仔细评估
药物发现
1 药物先导化合物的发现 2 药物先导化合物的结构优化
药药物物候候选选化化合合物物
非临床安评研究
由于开展临床试验的伦理限制,必须先在
新药开发
1 临床前研究 2 临床试验
动物上进行全面的新药安评,以揭示新药 对动物器官组织的毒副作用,研究其剂量
药药安


依赖性、体内暴露相关性和可恢复性等, 帮助确定临床试验的初始安全剂量和应观
效代评


察的潜在毒副作用。
临床试验中的新药安全性考察
新药安全有效评价体系
安全性始终是临床试验关注的重点,影响临床试
验的推进。先从低剂量、小范围人群开展临床试
验,在安全性得以保证后,再增加给药剂量、扩
大人群已验证药物的有效性。
为什么在药物安评中要考虑体内药物暴露?
(确定药物的两个要素:功能和物质)
剂量-暴露
体内药物暴露
(化学形式/浓度)
机体对药物的作用
反映药物“物质” 的一种形式 相对准确
浓度-效应
给药剂量
反映药物“物质” 的一种形式
好用,但不准确
药物对机体的作用
毒副作用
1

9012生物样品定量分析方法验证指导原则

中国药典2015年版 9012生物样品定置分析方法验证 指导原则 一、范围 准确测定生物基质(如全血、血清、血浆、尿)中的药物浓度,对于药物和制剂研发非常重要。这些数据可被用于支持药品的安全性和有效性,或根据毒动学、药动学和生物等效性试验的结果做出关键性决定。因此,必须完整地验证和记录应用的生物分析方法,以获得可靠的结果。 本指导原则提供生物分析方法验证的要求,也涉及非临床或临床试验样品实际分析的基本要求,以及何时可以使用部分验证或交叉验证,来替代完整验证。本指导原则二和三主要针对色谱分析方法,四针对配体结合分析方法。 生物样品定量分析方法验证和试验样品分析应符合本指导原则的技术要求。应该在相应的生物样品分析中遵守 G L P原则或GC P原则。 二、生物分析方法验证 (一)分析方法的完整验证 分析方法验证的主要目的是,证明特定方法对于测定在某种生物基质中分析物浓度的可靠性。此外,方法验证应采用与试验样品相同的抗凝剂。一般应对每个新分析方法和新分析物进行完整验证。当难于获得相同的基质时,可以采用适当基质替代,但要说明理由。 一个生物分析方法的主要特征包括:选择性、定量下限、响应函数和校正范围(标准曲线性能)、准确度、精密度、基质效应、分析物在生物基质以及溶液中储存和处理全过程中的稳定性。 有时可能需要测定多个分析物。这可能涉及两种不同的药物,也可能涉及一个母体药物及其代谢物,或一个药物的对映体或异构体。在这些情况下,验证和分析的原则适用于所有涉及的分析物。 对照标准物质 在方法验证中,含有分析物对照标准物质的溶液将被加人到空白生物基质中。此外,色谱方法通常使用适当的内标。 应该从可追溯的来源获得对照标准物质。应该科学论证对照标准物质的适用性。分析证书应该确认对照标准物质的纯度,并提供储存条件、失效日期和批号。对于内标,只要能证明其适用性即可,例如显示该物质本身或其相关的任何杂质不产生干扰。 当在生物分析方法中使用质谱检测时,推荐尽可能使用稳定同位素标记的内标。它们必须具有足够高的同位素纯度,并且不发生同位素交换反应,以避免结果的偏差。 1.选择性 该分析方法应该能够区分目标分析物和内标与基质的内源性组分或样品中其他组分。应该使用至少6个受试者的适宜的空白基质来证明选择性(动物空白基质可以不同批次混 9012生物样品定量分析方法验证指导原则 合),它们被分别分析并评价干扰。当干扰组分的响应低于分析物定量下限响应的20%,并低于内标响应的5%时,通常即可以接受0 应该考察药物代谢物、经样品预处理生成的分解产物以及可能的同服药物引起干扰的程度。在适当情况下,也应该评价代谢物在分析过程中回复转化为母体分析物的可能性。 2.残留 应该在方法建立中考察残留并使之最小。残留可能不影响准确度和精密度。应通过在注射高浓度样品或校正标样后,注射空白样品来估计残留。高浓度样品之后在空白样品中的残留应不超过定量下限的20%,并且不超过内标的5%。如果残留不可避免,应考虑特殊措施,在方法验证时检验并在试验样品分析时应用这些措施,以确保不影响准确度和精密度。这可能包括在高浓度样品后注射空白样品,然后分析下一个试验样品。 3.定量下限 定量下限是能够被可靠定量的样品中分析物的最低浓度,具有可接受的准确度和精密度。定量下限是标准曲线的最低点,应适用于预期的浓度和试验目的。 4.标准曲线 应该在指定的浓度范围内评价仪器对分析物的响应,获得标准曲线。通过加人已知浓度的分析物(和内标)到空白基质中,制备各浓度的校正标样,其基质应该与目标试验样品基质相同。方法验证中研究的每种分析物和每一分析批,都应该有一条标准曲线。 在进行分析方法验证之前,最好应该了解预期的浓度范围。标准曲线范围应该尽量覆盖预期浓度范围,由定量下限和定量上限(校正标样的最髙浓度)来决定。该范围应该足够描述分析物的药动学。 应该使用至少6个校正浓度水平,不包括空白样品(不含分析物和内标的处理过的基质样品)和零浓度样品(含内标的处理过的基质〉。每个校正标样可以被多次处理和分析。 应该使用简单且足够描述仪器对分析物浓度响应的关系式。空白和零浓度样品结果不应参与计算标准曲线参数。 应该提交标准曲线参数,测定校正标样后回算得出的浓度应一并提交。在方法验证中,至少应该评价3条标准曲线。 校正标样回算的浓度一般应该在标示值的:t l5%以内,定量下限处应该在±20%内。至少75%校正标样,含最少6个有效浓度,应满足上述标准。如果某个校正标样结果不符合这些标准,应该拒绝这一标样,不含这一标样的标准曲线应被重新评价,包括回归分析^ 最好使用新鲜配制的样品建立标准曲线,但如果有稳定性数据支持,也可以使用预先配制并储存的校正标样。 5.准确度 分析方法的准确度描述该方法测得值与分析物标示浓度的接近程度,表示为:(测得值/真实值)x l00?^应采用加人已知 ? 363

化学药物临床药代动力学研究技术指导原则

【H】G C L 1-2 指导原则编号: 化学药物临床药代动力学研究 技术指导原则 二○○五年三月

目 录 一、概述 (1) 二、药代动力学研究生物样品分析方法的建立和确证 (2) (一)常用分析方法 (2) (二)方法学确证 (2) 1、特异性 (3) 2、标准曲线和定量范围 (3) 3、定量下限 (4) 4、精密度与准确度 (4) 5、样品稳定性 (5) 6、提取回收率 (5) 7、微生物学和免疫学分析 (5) 8、方法学质控 (6) (三)分析数据的记录与保存 (6) 1、方法建立与确认的数据 (7) 2、样品分析的数据 (7) 3、其他相关信息 (7) 三、药代动力学研究的具体内容 (7) (一)健康志愿者药代动力学研究 (8) 1、单次给药药代动力学研究 (8) 2、多次给药药代动力学研究 (11) 3、进食对口服药物制剂药代动力学影响的研究 (13) 4、药物代谢产物的药代动力学研究 (14) 5、药物-药物的药代动力学相互作用研究 (14) (二)目标适应症患者的药代动力学研究 (15)

(三)特殊人群药代动力学研究 (15) 1、肝功能损害患者的药代动力学研究 (15) 2、肾功能损害患者的药代动力学研究 (16) 3、老年人药代动力学研究 (17) 4、儿科人群药代动力学研究 (17) 四、结语 (18) 五、参考文献 (19) 六、著者 (20)

化学药物临床药代动力学研究技术指导原则 一、概述 新药的临床药代动力学研究旨在阐明药物在人体内的吸收、分布、代谢和排泄的动态变化规律。对药物上述处置过程的研究,是全面认识人体与药物间相互作用不可或缺的重要组成部分,也是临床制定合理用药方案的依据。 在药物临床试验阶段,新药的临床药代动力学研究主要涉及如下内容: 1、健康志愿者药代动力学研究 包括单次给药的药代动力学研究、多次给药的药代动力学研究、进食对口服药物药代动力学影响的研究、药物代谢产物的药代动力学研究以及药物-药物的药代动力学相互作用研究。 2、目标适应症患者的药代动力学研究 3、特殊人群药代动力学研究 包括肝功能损害患者的药代动力学研究、肾功能损害患者的药代动力学研究、老年患者的药代动力学研究和儿童患者的药代动力学研究。 上述研究内容反映了新药临床药代动力学研究的基本要求。在新药研发实践中,可结合新药临床试验分期分阶段逐步实施,以期阐明临床实践所关注的该药药代动力学的基本特征,为临床合理用药奠定基础。 鉴于不同类型药物的临床药代动力学特征各不相同,故应根据所研究品种的实际情况进行综合分析,确定不同阶段所拟研究的具体内容,合理设计试验方案,采用科学可行的试验技术,实施相关研究,并作出综合性

药物代谢动力学完整版

药物代谢动力学完整版 第二章药物体内转运 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

药物毒代动力学研究技术指导原则2014

药物毒代动力学研究技术指导原则 一、概述 毒代动力学研究目的是获知受试物在毒性试验中不同剂量水平 下的全身暴露程度和持续时间,预测受试物在人体暴露时的潜在风险(注释1)。毒代动力学是非临床毒性试验的重要研究内容之一,其研究重点是解释毒性试验结果和预测人体安全性,而不是简单描述受试物的基本动力学参数特征。 毒代动力学研究在安全性评价中的主要价值体现在: (一)阐述毒性试验中受试物和/或其代谢物的全身暴露及其与毒性反应的剂量和时间关系;评价受试物和/或其代谢物在不同动物种属、性别、年龄、机体状态(如妊娠状态)的毒性反应;评价非临床毒性研究的动物种属选择和用药方案的合理性。 (二)提高动物毒性试验结果对临床安全性评价的预测价值。依据暴露量来评价受试物蓄积引起的靶部位毒性(如肝脏或肾脏毒性),有助于为后续安全性评价提供量化的安全性信息。 (三)综合药效及其暴露量和毒性及其暴露信息来指导人体试验设计,如起始剂量、安全范围评价等,并根据暴露程度来指导临床安全监测。 本指导原则适用于中药、天然药物和化学药物。生物制品的毒代动力学研究可参考本指导原则(注释2)。 二、基本原则

毒代动力学研究需执行《药物非临床研究质量管理规范》(GLP)(注释3)。 毒代动力学试验通常伴随毒性试验进行,常被称为伴随毒代动力学试验。开展研究时可在所有动物或有代表性的亚组或卫星组动物中进行,以获得相应的毒代动力学数据(注释4)。 三、基本内容 (一)暴露量评估 毒代动力学试验的基本目的是评估受试物和/或其代谢物的全身暴露量,常通过适当数量的动物和剂量组来开展研究。伴随毒代动力学研究所用动物数量应保证能获得足够的毒代动力学数据。由于毒性试验中通常采用两种性别动物,暴露测定也应包括两种性别的动物。选择单性别动物时应说明理由(注释5)。 暴露评估应考虑以下因素(注释6):血浆蛋白质结合、组织摄取、受体性质和代谢特征的种属差异、代谢物的药理活性、免疫原性和毒理学作用。在血浆药物浓度相对较低时,特殊的组织或器官也可能会有较高水平的受试物和/或其代谢物。对于血浆蛋白结合率高的化合物,用游离(未结合)浓度来表示暴露更为合适。 暴露评估中需关注血浆或体液中代谢物浓度的情况有:1)受试物为“前体化合物”且其转化生成的代谢物为主要活性成分;2)受试物可被代谢为一种或多种具有药理或毒理活性代谢物,且代谢物可导致明显的组织/器官反应;3)受试物在体内被广泛代谢,毒性试验仅可通过测定血浆或组织中的代谢物浓度来进行暴露评估。

抗药抗体免疫原性分析方法学验证指导原则(中文版)

抗药抗体免疫原性分析方法学验证指导原则 摘要: 几乎所有的生物制药产品都会引起一定的抗药抗体(anti-drug antibody,ADA)反应,抗药抗体反应可能会降低药物疗效或导致严重的不良反应。在人体内,抗药抗体通常不会引起明显的临床反应。但是对于某些治疗性蛋白质,抗药抗体反应能引起各种临床的不良反应,包括温和事件及严重不良事件。临床前研究表明,抗药抗体能对药物暴露、药物毒性作用、药物代谢动力学、药物效应动力学等造成影响。因此治疗性蛋白质的免疫原性引起了临床医生、药企及监管机构的注意。为了评估生物药物分子的免疫原性,以及将实验结果与临床事件联系起来,在临床前研究和临床研究中,很有必要开发可靠的能够有效评估抗药抗体反应的实验方法。这里方法学验证显得尤为重要,并且方法学验证是药物上市申请必不可少的。现行的监管文件对于免疫分析方法的验证的指导相当有限,特别是缺乏有关免疫原性分析方法的验证的指导。因此,本文对抗药抗体免疫分析方法的验证提供科学的建议。在现有的关于生物分析的规范性文件的基础上加入独特的性能验证。笔者建议采用实验和统计学的方法进行免疫分析的方法学验证。这些建议被视为最佳的例子,旨在促进整个医药行业形成一个更加统一的抗体检测方法。 1.简介: 生物制药产品包括氨基酸聚合物、碳水化合物或核酸,一般通过人细胞系、哺乳动物细胞或细菌进行表达,比常规的小分子药物更大(一般大于1~3KD)。由于以上特性,生物制药产品引起免疫反应的潜力更大。生物制药的免疫原性与产品的内在因素(种属特异性表位、外源性、糖基化程度、聚合或变性程度、杂质和制剂)、外在因素(给药途径、慢性或急性给药、药代动力学及内源性当量)、患者因素(自身免疫性疾病、免疫抑制、和替代疗法)相关。 抗药抗体反应可能会导致严重的临床症状,包括过敏、自身免疫和不同的药代动力学特征(例如,药物中和、生物分布异常和药物清除率增强等均可能会使

药理学知识药物代谢动力学重要名词解释集锦一

学习好资料欢迎下载 药物代谢动力学是药理学中的重要知识。在药物代谢动力学学习过程中,考生要掌握:药物作用与选择性,治疗作用与不良反应,量效关系,构效关系,药物作用机制,受体概念与特性,受体类型,受体调节,激动剂与拮抗剂,并且熟悉受体占领学说、跨膜信息传递,还要了解受体其他学说、受体药物反应动力学。 1.药物作用(action):药物与机体组织间的原发作用,构成了药物作用机制的主要方面。 2.药物效应(effect):药物作用所引起的机体原有功能的改变。 3.药物作用的基本表现:药物引起机体器官原有功能水平的改变,如兴奋、亢进、抑制、麻痹、衰竭等。药物的局部作用与全身作用。药物作用特异性与药理效应选择性之间的关系。药物作用的两重性:治疗作用和不良反应。药物的对因治疗、对症治疗及补充治疗。 4.药物的不良反应(untoward effects):包括副反应、毒性反应、后遗效应、继发性反应、变态反应、致畸作用等。 5.量效关系(dose-effect relationship):在一定剂量范围内,药物剂量的大小与血药浓度高低成正比,亦与药效的强弱有关,这种剂量与效应的关系称为量效关系。 6.量反应:药理效应强度的高低或多少,可用数字或量的分级表示,这种反应类型为量反应。 7.质反应:观察的药理效应是用阳性或阴性,结果以反应的阳性率或阴性率作为统计量,这种反应类型为质反应。 8.半数有效量(ED50):指使一群动物中半数动物产生效果的药物剂量。 9.半数致死量(LD50):指使一群动物中半数动物死亡的药物剂量。 10.药物的安全评价指标:治疗指数及安全界限。 11.治疗指数(TI);半数致死量(LD50)伴数有效量(ED50),数值越大越好。安全界限:(LD1)/ED99 12..构效关系:特异性药物的化学结构与药理作用有密切的关系。

抗癌药物的研究发展历程

抗癌药物的研究发展历程 抗癌药物在国内外古籍中虽早有记载,但进行系统的科学研究一般认为是从20世纪40年代开始的[1],美国耶鲁大学发现氮芥能治疗恶性淋巴瘤,增强了用药物治疗肿瘤的信心,逐步展开了抗癌药的实验模型和筛选方法来寻找新药的研究。50年代从合成化合物及植物、动物、微生物产物等方面进行大量筛选,找到了有抗癌活性的物质达数十种,60年代已累集了丰富的资料,研发出20多种有效的抗癌药物,对7~8种恶性肿瘤取得良好的治疗效果,并出现了癌细胞动力学、抗肿瘤药物药理学、肿瘤化学治疗学等新的分支学科。以后抗癌药物不断发展,在肿瘤的治疗中发挥越来越重要的作用。我国抗癌药物的研究历程尚未有系统的论述,笔者从自身经历及接触的一些研究工作进行简要回顾,不可能做到全面,只选择性地整理史料,供作参考。 1 我国抗癌药物的发展历程 新中国诞生以前,我国抗癌药物的研究处于空白。解放后百废待兴,科研人才奇缺,对防治疾病的药物研究主要侧重于传染病和流行病,抗癌药物无人问津。1955年全国提出向科学进军,抗癌药的问题也开始引起国内医药学界的注意。1955年底在我国举办的一次国际性抗生素学术会议上[2],有人建议要中国科学院上海药物研究所承担抗癌抗生素类的药物研究任务,那时笔者刚从前苏联留学归国不久,在药物所接受了此任务。1956年全国制定12年科学研究远景规划,抗癌药物研究被正式纳入国家科研规划之中,许多医药院校及科研机构相继参加到此项工作之中。 20世纪50年代末期是我国大跃进开始的年代,那时倡导解放思想,科学研究搞群众运动,抗癌药物的研究迅速升温。人们积极进行抗癌中草药的调查,广泛收集单方、验方、复方及传统的中草药,群众性的抗癌药物筛选活动蓬蓬勃勃,发现了不少苗子药。1966~1976年期间在全国逐渐掀起研究六类抗癌药物的热潮,即对喜树、斑蝥、三尖杉、农吉利、秋水仙及三棱莪术(亦称六匹马)的研究,取得了一定成绩。此时期的工作可算是我国抗癌药的早期研究阶段,经过十多年的实践,积累了不少知识和经验,为后来的工作奠定了基础。 20世纪70年代后期,在全国改革开放形势的推动下,国际交往增加,不少人有机会到国外去访问考察,进行合作研究,参加国际学术交流。了解到国际上的最新动向,学者

ICH毒代动力学指导原则:毒性研究中全身暴露量的评价

该指导原则为ICH(人用药品注册技术要求的国际协调会议)三方(欧盟、日本和美国)协调的指导原则。根据ICH程序,该指导原则由ICH专家工作组(安全性)起草,并提交管理部门讨论协商。1994年10月27日,在ICH程序的第4阶段会议上,该指导原则被ICH筹备委员会推荐给欧盟、日本和美国的行政管理部门采纳。1995年3月,该指导原则发布在美国FDA的Federal Register上(60 FR 11264),适用于化学药物和生物制品[医学教育网整理发布]。 1 前言本指导原则所涉及的毒物代谢动力学(毒代动力学)仅与拟开发作为人用的药品有关。毒代动力学是药代动力学在全身暴露评价中的延伸,为非临床毒性研究的一个组成部分,或为某一特殊设计的支持研究。研究结果可用于阐明毒理学发现及其与临床安全性的关系(文中其它术语的定义见注释1)。制定该指导原则是为了使人们理解毒代动力学的意义和应用,指导毒代动力学的试验设计。本指导原则强调毒性试验需与毒代动力学相结合,这将有助于解释毒理学发现和制定合理的试验设计。毒代动力学测定通常是结合于毒性研究中,故又被称为“伴随毒代动力学”。毒性试验的试验程序有助于获得受试动物多剂量的毒代动力学数据。如果在毒性试验中测定了合适的指标或参数,毒代动力学研究可避免重复的毒性试验。有时,模拟毒性试验的支持研究也可获得相应的毒代动力学数据。获取数据的优化设计可以减少试验动物数。非临床药代动力学和代谢过程的研究,对解释毒理学的发现可能有价值,但毒代动力学数据侧重于新药毒性研究中的动力学。因此,毒代动力学是非临床试验设计的组成部分,在理解毒性试验结果和临床人体用药风险性、安全性时可提高毒理学资料的价值。毒代动力学已成为毒性试验的组成部分,成为非临床和临床试验间的桥梁,其研究重点是解释毒性试验结果,而不是为描述受试物的基本药代动力学参数特征。由于药品开发是在非临床和临床间反馈的动态过程,因此毒代动力学研究无严格的、详细的试验程序,也无必要在全部研究中获取毒代动力学数据,应该科学地判断什么情况下需要进行。在考虑某个毒性试验是否需要获取毒代动力学数据和评估暴露量时,应灵活地、逐步地和逐例地作出判断,以获得足够资料来评价药物的危险性和安全性。 2 毒代动力学的目的和测定参数毒代动力学的主要目的是:●描述化合物在动物造成的全身暴露和其与毒性研究剂量和时间关系。次要目的是:●了解毒性研究中造成的暴露量与毒理学结果之间的关系,以评价这些结果与临床安全性之间的关系。●支持非临床毒性研究的动物种属选择和给药方案。●结合毒性研究结果,提供有助于后续非临床毒性研究的信息。要达到这些目的,可在某一项研究过程中通过选择合适的时间点进行采样测定而获得一个或多个毒代动力学参数2。这些测定通常包括血浆(全血或血清)的原型化合物和/或代谢物的浓度,应根据情况选择。血浆(或全血或血清)AUC,Cmax和C(time)是毒代动力学研究中评价暴露最常用的参数。对于某些药物,以非血浆蛋白结合(游离型)的药物浓度来评价暴露更为合适。毒代动力学数据可以从毒性研究的全部动物获得,也可从代表性的组或卫星组,或从单独设计的研究中获得。毒代动力学信息可来自单剂量、重复剂量、生殖毒性、遗传毒性和致癌性的试验研究,它有助于评价毒理学反应。对拟定改变临床给药途径的评价,毒代动力学信息也具有价值。 3 一般原则 3.1 引言下面段落中提出的一般原则在个体研究设计中应予考虑。必须注意,凡在GLP实验室进行的毒性研究,其伴随的毒代动力学也必须符合GLP的要求。在模拟毒性研究的条件下,回顾性地设计毒代动力学研究以获得系列特定数据用于安全性评价时,也应执行GLP。 3.2 暴露的定量全身暴露可用来评价动物对受试物的负荷量,并有助于解释动物种属间、剂量组间和性别间的毒性相似性和差异性。暴露程度可用原型化合物或其代谢物的血浆(血清或全血)浓度或AUC表示。某些情况下,可设计测定组织中的药物浓度。在进行动物毒性研究时,为使动物毒性研究的不同剂量能达到相应的暴露,应考虑人体治疗剂量(预期的或已采用的)的整体暴露和剂量依赖性,考虑受试物的药效学(定性或定量的)可能存在的种属差异性。药效作用或毒性也可为暴露提供支持性证据,某些情况下,甚至可替代药代动力学参数。应确定达到何种暴露程度来进行毒代动力学监测或特征的研究,应警惕引起非线性且剂量相关的动力学改变。毒代动力学资料信息可用于种属间的毒性比较,这优于简单以剂量/体重(或体表面积)进行的比较。 3.3 采样时间点的确定伴随毒代动力学研究中,采集体液的时间点应尽量达到所需的频度,但不可过于频繁以至于干扰正常进行的研究并引起动物过度的生理应激反应。在每项研究中,时间点的数量应满足暴露评价的要求(见3.2)。时间点的确定应以早期毒性研究、预试验或剂量范围毒性研究以及在相同动物模型或可以合理外推的其它动物模型上获得的动力学数据为基础。 3.4 达到适当暴露的给药剂量设置毒性研究的剂

抗癌药物

抗癌药物的发展历史,现状及趋势 5071109116 武杰一、抗癌药物发展历史 抗癌药物在国内外古籍中虽早有记载,但进行系统的科学研究一般认是从20世纪40年代开始的,美国耶鲁大学发现氮芥能治疗恶性淋巴瘤,增强了用药物治疗肿瘤的信心,逐步展开了抗癌药的实验模型和筛选方法来寻找新药的研究50年代从合成化合物及植物、动物、微生物产物等方面进行大量筛选,找到了有抗癌活性的物质达十,60年代已累集了丰富的资料,研发出20种有效的抗癌药物,对7~8种恶性肿瘤取得良好的治疗效果,并出现了癌细胞动力学、抗肿瘤药物药理学、肿瘤化学治疗学等新的分支学科。以后抗癌药物不断发展,在肿瘤的治疗中发挥越来越重要的作用。 对肿瘤的不同认识水平诞生了不同水平的治疗方法,早在几百年前,不发达的医学科学不能对当时肿瘤的有解释时,中草药是治疗肿瘤的主要药物。 在20世纪初,西方国家发现癌细胞比正常细胞分裂的时候多,于是研究了对生长过程中的细胞有破坏作用的化学药物,该药物沿用至今,即化疗。可是正常细胞虽然分裂的时候少一些,但总要分裂的,于是化疗也会杀死大量的正常细胞,这成为化学药物的必然困境。包括激素药物、栓塞类药物,都具有与化学药物相似的问题。 在西方化学药物研究举步不前的时候,中国开始研究中成药物治疗肿瘤,当时认为肿瘤是毒,所以采用中医中的“以毒攻毒”法,用斑蝥、蟾酥、蜈蚣、全蝎等的提取物制成了大量的抗癌中药。 80年代,证明癌并非毒,而是自身细胞变化产生的,可是具体变化还不清楚,在当时中医药的提取和制药技术不成熟,研究的抗癌药物治疗率非常低,所以为此就出现了用于增强肿瘤病人抵抗力的保健品,保健品使用的是灵芝、雪莲、人参、冬虫夏草、硒蛋白等。当然保健品对肿瘤细胞本身是没有意义的。 90年代是我国药品发展的重要时期,肿瘤的研究取得了很大的发展,人们发现癌细胞内的很多蛋白和酶远远多于正常蛋白,如甲胎蛋白、端粒酶、微管蛋白、金属蛋白酶、Caspase 蛋白等。于是开始研究能控制或破坏这些蛋白的药物,这也是当前中药中比较普遍的抗癌药物。由于蛋白和酶的增加是由基因变异产生的,药物破坏了部分蛋白,基因还可以促进细胞继续合成蛋白来补充,于是这类药物在治疗肿瘤过程中表现不明显。 2000年后,临床中出现了针对个别基因的治疗药物。目前的医学研究确定癌细胞是很多个基因一同变异的,恢复个别基因不能解决根本问题,所以单基因治疗的药物有效率较低,通常所说的基因疗法都是指单基因治疗,是基因治疗肿瘤中最不成熟的治疗手段。 二、抗癌药物现状 我国现已批准上市的抗肿瘤药大约有200种,其中以各种癌症治疗为主要适应证的品种在100种左右。大部分的药学文献常按药物性质和来源将抗肿瘤药物分为以下九大类:烷化剂,如氮芥类、乙撑亚胺类、甲磺酸酯及多元醇类、亚硝基脲类;抗代谢药,如嘧啶拮抗物、嘌呤拮抗物、叶酸拮抗物;抗肿瘤抗生素;植物类抗肿瘤药(或称来自天然药物的抗肿瘤药);激素类;金属铂类;其它抗肿瘤药;辅助抗肿瘤类药;免疫调节剂(免疫增强剂类)。前7种的临床适应证较集中在抗肿瘤治疗上,后两种适应证较多,在治疗其它疾病中也广泛采用。 2003年5月出版的《新编药物学》(第十五版)第十九章共收载了抗肿瘤药6大类74种

相关主题
文本预览
相关文档 最新文档