当前位置:文档之家› 线路圆曲线半径_缓和曲线长度和线间距标准制定依据的介绍

线路圆曲线半径_缓和曲线长度和线间距标准制定依据的介绍

线路圆曲线半径_缓和曲线长度和线间距标准制定依据的介绍
线路圆曲线半径_缓和曲线长度和线间距标准制定依据的介绍

收稿日期:20040524

作者简介:王厚雄(1938—

),男,研究员,1959年毕业于唐山铁道学院选线设计及铁路航空勘察专业。

线路圆曲线半径、缓和曲线长度和

线间距标准制定依据的介绍

王厚雄

(铁道科学研究院铁道建筑研究所 北京 100081)

摘 要:着重介绍《新建时速200公里客货共线铁路设计暂行规定》(以下简称《暂规》

)中3个主要线路平面设计标准的拟定原则,计算方法和参数选择的思路。《暂规》期望,这些思路有助于提高线路平面质量,使线路有可能达到“少维修”的水平,从而满足新建时速200km 客货共线铁路安全、舒适和不间断运营的要求。

关键词:时速200km 铁路;客货共线铁路;线路圆曲线半径;线间距;缓和曲线长度 中图分类号:U412134 文献标识码:C 文章编号:10042954(2004)07003304

《新建时速200公里客货共线铁路设计暂行规定》基于我国铁路设计和运营实践多年经验教训,对线路

主要平面设计标准的拟定原则、计算方法及参数选择

方法,作了不同于99版国标《铁路线路设计规范》

(以下简称《线规》

)的一些改动。这些改动与前苏联铁路设计规范(СНИПⅡ3976)和欧盟国家铁路设计思路基本接轨[1]。编制者期望,由这些改动得出的相关设计标准,配合线路、轨道、路基和桥梁等设计标准,有助于提高时速200km 铁路的线路设计质量,在符合安全适用、技术先进、经济合理的前提下,有可能使线路达到“少维修”水平,从而满足新建时速200km 客货共线铁路安全、舒适和不间断的运营要求。国外多年运营实践表明,“少维修”是时速200km 以上高速铁路所必需具备的基本条件之一。

由于新建时速200km 客货共线铁路在我国属开创性工程,既无试验数据可以利用,也无运营实践经验可遵循,故本次编制的相关规定只能是暂时性的,有待今后深入研究、实践观测和修订完善。1 线路圆曲线半径

111 圆曲线半径的划分及选用原则

(1)推荐半径

在定线选择圆曲线半径时,应优先选用推荐半径。

这一原则可保证线路具有良好的平面条件,从而提高客货列车通过曲线的运行品质,使线路与列车间保持良好的匹配关系,实现线路“少维修”的目标。

(2)最小半径和括号中最小半径

在困难条件下允许采用最小半径,但强调了慎用原则,以期降低最小半径的出现频次,使线路养护维修工作的难度和工作量控制在适度范围之内;在特殊困难条件下,经技术经济比选,方可采用括号中最小半径,严格控制其出现频次。《暂规》期望,线路中出现括号中最小半径只是个别的现象,使线路养护维修工作,

在建议采用的养护维修体制(包括维修方式、维修时间和维修设备等)下,能够控制在可以接受的范围之内。如果括号中最小半径选用偏多,线路养护维修工作有可能出现忙于应付的局面,致使影响铁路的正常运营,甚至埋下行车事故的隐患。

(3)限速半径

在更为困难的条件下,需经技术经济比选和鉴定审批,才能选用限速半径,其选用原则更为苛刻,并要着重考虑其分布,以及对路段速度的影响等诸多因素。

(4)最大半径和括号中最大半径

历版《线规》选用半径由大至小这个提法有局限性,不够完善。运营实践和理论分析均表明,曲线半径大到某一程度,线路养护维修工作十分困难,甚至超出线路养护维修能力范围,致使线形难以保持,成为轨道不平顺的隐患。因此,需对曲线半径给出上限值。《暂规》建议,在困难条件下,慎用最大半径,控制其出现频次;在特殊困难条件下,经技术经济比选方可采用括号中最大半径,严格控制其出现频次。在经济发达地区,受地物设施的限制,经技术经济比选后,可能不得不考虑采用大于括号中最大半径的特大半径,但必须经鉴定审批后方可采用。

(5)在推荐半径与最小、最大半径之间的半径

这类曲线半径不属推荐使用范围,也不属慎用之列,设计人员可视具体情况灵活选用,但不能优先

?设计标准?

选用。

112 推荐半径R的取值范围

(1)计算公式

R=1118V2max-V2h

h q+h g

 (m)(1)

式中 V max———旅客列车最高运行速度,km/h;

V h———货物列车平均运行速度,km/h;

h q———欠超高,mm;

h g———过超高,mm。

(2)参数选择

V max取200km/h;V h取100km/h。

h q,“少维修”是取值的主要依据。h q的下限值,目前只能参考广深准高速铁路的养护维修经验,即h q 不大于60mm,曲线属于易于养护维修范围,故h q的下限值取55mm;h q的上限值,根据广深线经验,取35mm。

h g,“少维修”同样是h g取值的主要依据。h g取值范围具体考虑的依据有:我国繁忙干线铁路多年运营经验;《线规》规定,一般地段最小半径的允许过超高值30mm。综合分析后建议,h g下限值取25mm。其值约为h q取值之半;据此关系,h g上限值建议取15mm。

(3)推荐半径的建议范围

将上述各参数建议取值代入式(1),计算取整后,推荐半径上、下限值分别取7000m和4500m。113 最小半径R min和括号中最小半径(R min)

(1)计算公式

当R=R min时,式(1)可转换为

R min=1118V2max-V2h

h q+h g

 (m)(2)

(2)[h q+h g]的选择

如果取欠、过超高之和的允许值[h q+h g]等于欠超高允许值[h q]与过超高允许值[h g]之和,即[h q+ h g]=[h q]+[h g],则式(2)就和历年各版《线规》计算R min的公式相同。这个公式存在的问题是:与R min对应的超高值是唯一的。运营经验表明,这个超高值不能适应实际的运营的要求。工务部门按照《铁路线路维修规则》(以下简称《维规》)规定,根据实际运行列车的加权均方根速度设置超高,多年运营实践表明基本合理。按《维规》设置的超高往往低于《线规》给出的超高值,两者之间存在一个差值Δh。其值在线路不同地段有所差别,在不同运营阶段也会有所出入。为了使R min标准能够适应日后运营的要求,《暂规》建议

[h q+h g]=[h q]+[h g]-Δh (mm)(3) [h q],广深线多年养护维修的经验是,h q>90 mm,曲线线路难于养护维修。因此,从线路养护维修层面考虑,[h q]的取值区间宜为(60mm)、[90mm]。用乘坐舒适度试验结果,检验这一范围,准高速列车的90mm和60mm欠超高所对应的乘坐舒适度与普速客车的75mm和58mm欠超高所对应的乘坐舒适度相当[2]。可以预期,新型时速200km客车的性能将优于时速160km准高速列车。因此,养护维修对[h q]的要求严于乘坐舒适度的要求。综上分析,《暂规》建议,最小半径和括号中最小半径的[h q]值分别取70mm和90mm。

[h g],1996年德、法、日等6国专家对我国《高速铁路线桥隧设计参数的研究》报告评议时,德国专家介绍,德国客货共线高速铁路过超高控制在50~60 mm,其养护维修工作量很小。据了解,运行其上的货车牵引定数小,轴重轻,通过总重少;我国繁忙干线几十年的运营经验是,50~60mm过超高养护维修工作量大。据此,《线规》规定,Ⅰ级干线一般条件和困难条件下最小半径的[h g]分别为30mm和50mm;广深线运营经验表明,以客运为主的铁路,其[h g]取值可比《线规》取值适度放大。新建时速200km客货共线铁路的特点在总则第11015条文说明中有详细论述:“客运量所占比重大,但又有一定数量的货物列车和速度较低的跨线列车运行。”由此可以看出,它的特点不同于德国客货共线高速铁路,更不同于我国的繁忙干线铁路,相比之下,似与广深线较为近似。据此《暂规》建议,最小半径和括号中最小半径的过超高允许值取40 mm和60mm,是否合理有待实践检验。

Δh,理论分析表明,Δh涉及因素较多。可以根据这些因素绘制出一组图表,问题是,其中涉及的运营时实际的加权均方根速度在编制规范时难以确定,从而无法利用这组图表选取合理的Δh值。故《暂规》转而采用现场调研方法。《暂规》建议,最小半径和括号中最小半径的Δh值分别取10mm和20mm。

依据上述各项建议值,可以得到[h q+h g]的建议值:最小半径,100mm;括号中最小半径,130mm。

(3)最小曲线半径建议值

将各参数代入式(2),求得最小曲线半径为3540 m;括号中最小曲线半径为2723m。按跨线货物列车平均速度80km/h检算3500m和2800m半径,检算结果列于表1。

检算结果表明,最小半径可取3500m,括号中最小半径可取2800m。

?设计标准?

表1 最小半径检算

曲线半径/m h/mm h q/mm h g/mm 280080~8589~8453~58

350060~6575~7038~43

114 最大半径R max和括号中最大半径(R max)

R max和(R max)建议值的大小取决于轨检车所能达到的检测精度。目前,全路配备的最好轨检车属于世界上较为先进之列,当它们通过大于8000m半径的曲线时,轨检车常会打印出“F”标记,表示对检测结果有疑问,即检测大于8000m半径以上的曲线时,难以判断是曲线还是轨道不平顺。根据研发轨检车的专家们分析,在目前轨检车的基础上,采取一些改进措施,提高检测系统的处理功能,还是可以准确检测半径为12000m左右曲线的方向和曲率的。但是,更大半径的曲线,由于曲率太小,外界干扰信号可能大于测试信号,要准确提取真实信号有技术难度。根据以上讨论,《暂规》建议:最大半径取10000m,括号中的最大半径取12000m。这个建议标准与时速250、350km/h 高速客运专线的相关标准能够相互衔接。

2 缓和曲线长度

《暂规》对同一半径圆曲线的缓和曲线长度的划分和选用原则,以及缓和曲线长度的计算参数的取值方法均有别于《线规》。

缓和曲线长度的划分和选用原则与圆曲线半径的划分和选用原则相同,建议的出发点也一致。

211 计算公式

《暂规》建议的缓和曲线长度受超高时变率控制。其计算公式如下

L=

h

d h

d l

?

V max

316=

h

f

?

V max

316

 (m)(4)

U IC和我国工务部门判断缓和曲线长度是否合理,习惯以1/(x×V max)表示,相应的计算缓和曲线长度的公式为

L=V max?h?x

1000

 (m)(5) 212 计算参数的选择

(1)超高h的计算值

最小半径和括号中最小半径的h,应选取圆曲线超高日后可能调整到的上限值,以便工务部门在调整圆曲线超高时不致受到缓和曲线长度的控制。这也是既有干线提速过程中所遇到的一个突出的线路改造问题。其余半径圆曲线超高计算值的选用原则是:使列车通过圆曲线时的欠、过超高均能维持在一个令人满意的水平之上,并稍留有调整裕量。

(2)f值(或x值)

推荐长度,缓和曲线应属于易于养护维修之列;旅客的乘坐感觉应是平缓的、满意的。建议f=25mm/ s,与其对应的超高顺坡为1/11V max。

最小长度,建议f=31mm/s,与其对应的超高顺坡为1/9V max。广深线经验表明,1/9V max对应的曲线养护维修难度和工作量适度。但《暂规》对应的列车运行速度高于广深铁路。因此,其养护维修难度和工作量必有所增加,增加幅度有待日后观察取证,需慎用。

括号中最小长度,《维规》第31713条规定,在困难条件下,容许速度大于120km/h的线路超高顺坡不得大于1/8V max。时速350km京沪高速铁路暂规,困难条件下超高顺坡取1/9V max。两者列车最高时速相差一倍有余,超高顺坡只差一个1/V max。时速200 km的速度居于其间,偏向时速120km。在这种情况下,《暂规》只宜采用《维规》建议,而无法顾及随列车最高速度明显提高,超高顺坡理应有所放缓的原理。因此,《暂规》强调必须严格控制其使用频次,只能作为个别情况处理。

3 区间直线段线间距及曲线地段加宽规定

时速200km的铁路,列车空气动力学问题突显其重要性。在线路主要平面标准方面,线间距是唯一一项与其密切相关的标准。这项标准要求深入研究: (1)会车压力波的主要特性;(2)合理确定会车压力波最大值的允许值[ΔP max]。

311 会车压力波主要特性

邻线列车头部对与之交会列车侧壁车窗高度处产生的会车压力波最大,其峰峰值称为会车压力波最大值,记为ΔP max。

(1)ΔP max与邻线通过列车速度的平方成正比[3~6]。文献[7~8]认为,ΔP max与两交会列车相对速度的平方成正比,这一观点是错误的。

(2)在一对交会运行的列车中,速度较低的列车上受到的会车压力波最大值恒大于速度较高列车上受到的会车压力波最大值,且与速度较高列车等速交会时的会车压力波最大值相近。其极端情况,即停在线路上的列车受到邻线列车通过时产生的会车压力波最大值约为邻线通过列车等速交会时产生的会车压力波最大值的(018~019)倍。这一特性进一步证实文献[7~8]的观点不能成立。

(3)ΔP max与两交会运行列车相邻侧壁间净距Y 成反比[3~6],ΔP max的无量纲系数ΔC p与Y之间关系

?设计标准?

的试验拟合曲线见图1[3]。

图1 ΔC p Y的试验拟合曲线

 

(4)列车车头流线形程度越高,它对邻线与之交会的列车产生的ΔP max就越小,见图1。图1中上面一条曲线是钝形SS8牵引列车对邻线与之交会列车侧壁车窗高度处产生的ΔC p的试验拟合曲线;下面一条曲线是由X2000流线形摆式列车的试验数据结合西南交通大学数值研究成果拟合而成。

312 [ΔP max]

[ΔP max]取值是否能够与国情、路情相符,对合理确定线间距标准建议值至关重要。近10年来,我国几大干线提速经验表明,列车速度提至140km/h,未见因会车造成列车车门、车窗玻璃破损的报告,也没有货车因会车出现货物破损的报告。但当SS8或DF11牵引客车提速至160km/h时,与之交会的普速客车和准高速客车的门、窗玻璃时有破损报告,且有破碎玻璃伤及旅客之事发生。

鉴于我国大量普速客车跨线运行的可能性较大,为保证普速客、货列车在时速200km铁路上运行的安全性,《暂规》建议,以Y=0.9m、时速140km列车在明线直线段上运行时,所产生的ΔP max作为[ΔP max]的取值标准。查图1上面一条试验拟合曲线, [ΔP max]取019kPa。

313 区间明线直线地段线间距标准D的建议值

D=Y+1

2

(B1+B2) (m)(6)

式中,B1、B2分别为两交会运行的列车宽度。我国目前客车车宽为3.1m,代入式(6),D=4.4m。如果时速200km动车组宽度达到314m,按D=414m 检算,ΔP max略大于110kPa,其值相当于钝形列车按150km/h等速交会运行时产生的ΔP max值,其值似尚可接受。如[ΔP max]仍维持019kPa,D需放宽至4155 m,其值与我国铁路线间距标准系列不相协调,且数值偏宽。综上分析讨论,《暂规》建议,区间直线地段线间距标准取414m。314 区间曲线地段线间距加宽问题

时速200km铁路的曲线地段线间距加宽值与曲线半径、内外侧线路实设超高差和ΔP max有关。R是确定的;内外侧实设超高在编制规范时只能估算;曲线地段的ΔP max值会受到列车安全运行所允许的自然侧风的影响,其影响程度目前在编制规范时无法预知。

经初步分析判断,《线规》中内外侧线路实设超高差似乎留有一定裕量;[ΔP max]已包含了曲线地段自然侧风的部分附加影响值。有鉴于此,《暂规》建议,设计速度在140~200km/h路段,曲线地段线间距加宽值暂按《线规》中140km/h规定办理;在小于140 km/h地段,按《线规》相应速度办理。

315 关于隧道内线间距问题

时速200km列车在隧道内会车会产生复杂的气动效应,我国时速200km客货共线铁路的隧道气动力危害问题较国外更为突出,主要是因为大量的普速客、货列车可能与时速200km列车在隧道内会车。普速客、货列车的安全应对措施有待进行系统的研究工作。目前,可先按以下两种方案进行比选。

(1)修建两条单线隧道。这一方案可以避免洞内会车造成的复杂气动力问题,为普速客、货列车安全运行和列车救援抢险提供良好条件。

(2)在复线隧道地段限速运行,以大大降低复杂的气动力对普速客、货列车造成的危害,确保各类列车安全和较为舒适地通过隧道。

参考文献:

[1] 孙 翔.世界各国的高速铁路[M].成都:西南交通大学出版社,

1992.128.

[2] 王厚雄,朱文升,黄建苒.广深线160km/h线路最小曲线半径及

200km/h高速线路试验段平、纵断面参数的研究[R].北京:铁道

科学研究院,1995.

[3] 王厚雄,何德昭,徐鹤寿.钝形、流线形列车会车压力波的试验对

比研究[J].中国铁道科学,2000,21(2):6771.

[4] S.R.Ahmed,R.G.G awthorpe and P.A.Mackrodt.Aerodynamics

of Road and Rail Vehicles[J].Vehicle System Dynamics,1989,

(14):.319392.

[5] 雷 波.明线上高速列车风和会车压力波研究[D].[博士论文].

成都:西南交通大学,1995.

[6] 王厚雄,何德昭,徐鹤寿.列车侧向气动效应的试验研究[M].北

京:中国铁道出版社,2000.129133.

[7] 田红旗,梁习锋.准高速列车会车空气压力波试验研究[J].铁道

学报,1998,(4):3742.

[8] 田红旗,卢执中.列车交会压力波的影响因素分析[J].铁道学报,

2001,(4):1720.

?设计标准?

RAI LWAY STANDARD DESIG N

No.7,2004

Abstracts and Keywords

The N ecessity of200km/h Mixed P assenger and F reight R ail w ay and In2 terim Design Provisions

Xu Heshou

Abstract A brief analysis was made of the necessity of speed increase of mixed passenger and freight railway,especially increase of existing railway to

200km/h.A comparison was made of three interim design provisions and the difference of respective technical conditions.K ey technical problems were

raised needing test and research in design of200km/h mixed passenger and

freight railway.

K eyw ords mixed passenger and freight railway,200km/h railway,de2 sign standard,doublestack container trans port,necessity

The”Main Line R ail”in Interim Design Provisions f or a New200km/h Mixed Passenger and Freight Railway

Zeng S hugu

Abstract An introduction and interpretation is given to terms concerning rail in Interi m Design Provisions f or a New200km/h Mixed Passenger and Freight Railw ay(T J SH[2003]No.439),and analysis and selection was made of relevant technical parameters.An appropriate design standard

for a new200km/h mixed passenger and freight railway was put forward,

including steel rail,sleepers,type of rail fastening,structure of track,and requirement for laying of jointless track,etc.

K eyw ords 200km/h railway,new railway,main line track,trans2sec2 tional jointless track,main line turnout

B asis for Determining the Stand ard for Circular Curve R adius,Length of

T ransition Curve,and Distance betw een C enters of T racks

W ang Houxiong

Abstract An introduction is given to principles for determining three pri2 mary line plan design standards in Interi m Design Provisions f or a New200 km/h Mixed Passenger and Freight Railw ay(the Interim Provisions),and

thoughtway for computation method and parameter selection.The Interim

Provisions are expected to improve the line plan quality and reduce mainte2 nance,thus meet the requirement for safety,riding comfort,and non2inter2 rupted operation.

K eyw ords 200km/h railway,mixed passenger and freight railway,circu2 lar curve radius of line,distance between centers of tracks,length of transi2 tion curve

Main Characteristics and Content of R evised Acceptance Standard f or Con2 struction Quality of Railway Electric Traction Power Supply Engineering W ang Zuoxiang,Yang Jianguo,L u Haixiang

Abstract For realization of leaping2forward development of Chinese railway and to enhance acceptance of construction quality,the new version of Accep2 tance Standard f or Const ruction Quality of Railw ay Elect ric Traction Power S upply Engineering has come into effect on Jan.1,2004.An intro2 duction is given to main characteristics and content of this revision for better

understanding and use of this standard by designers,construction workers, supervising engineers and clients.

K eyw ords railway electric traction,acceptance standard,revision

U nderstanding of R ail w ay B ridge Development at the Turn of the C entury Qiao Jian,Xin Xuez hong

Abstract Railway bridges at the turn of the century featured high piers, long span,high speed,and high durability.An introduction is given to sig2 nificant achievements obtained in bridge construction with respect to spans, permissible passing speed,new materials,and durability.The construction of bridges on passenger dedicated railways,Y iWan Railway,and FuXia Railway,and many bridges crossing over Y angtze River will have impact on world bridge construction.

K eyw ords railway bridge,spanning capability,durability,permissible passing speed

Several Issues Concerning R ail w ay Tunnel Construction

Zhao Yong

Abstract According to the specific situation of railway tunnel construction in China,an analysis was made of sensitive issues including tunnel geological work,whether selecting single tunnel double track or dual tunnel single track for super long tunnels,type of track bed,principles for waterproof and drainage,informationization design,and construction management mode, etc.Opinions were raised for open discussion.

K eyw ords railway tunnel,construction geology,informationization de2 sign,ballastless track,construction management mode

Management of T rack R egularity in Speed Increase of Existing P assenger R ail w ay to200km/h

W u W angqing

Abstract A brief introduction is given to speed increase of mixed passenger and freight railway in foreign countries,and detailed description is made of technical data and experience accumulated from previous speed increase test in China in respect to track irregularity management.In the meantime,top2 ics for further study were put forward from the angle of track regularity con2 trol.

K eyw ords existing railway line,speed increase,track management,track irregularity,management value

Subgrade Compaction Stand ard E vd in R elevant R ail w ay Code and its Char2 acteristics

L i N uf ang

Abstract An introduction is given to history and current situation of dy2 namic deformation modulus E vd as subgrade compaction standard,and the development process of E vd in China from study,application to including into railway code.A description is given to the application of E vd to high2speed passenger dedicated railway,new railway,and speed increase of existing railway,and the prospect of E vd in China.

K eyw ords railway subgrade,compaction standard,dynamic deformation modulus E vd,subgrade coefficient K30,porosity n

A R esearch over the Limit V alue Stand ard for T ransversal Deform ation of R ail w ay

B ridges

Ke Zaitian,Zhang Duan

Abstract The transversal rigidity of railway bridges is generally embodied through transversal deformation limit value,standard of which is a com plex issue,and the issue becomes highlighted with increase of train speed,espe2 cially freight train.A limit value standard for transversal deformation of rail2 way bridges on a new mixed passenger(200km/h)and freight(120km/h) railway was given by analyzing latest relevant standards in foreign countries and live load test data of bridges in China.

K eyw ords railway bridge,transversal rigidity,deformation,transversal vibration

A Summ ary of

B ridges on Q inShen P assenger Dedicated R ail w ay and Pon2 dering over B ridge Construction for H igh2speed R ail w ay

L iu Jiaf eng,L iu Chunyan

Abstract Qinhuangdao2Shenyang Passenger Dedicated Railway is the first passenger dedicated railway ever built in China reaching the speed of200 km/h,and was put into operation in October2003.Many new bridge struc2 tures were adopted,for example,the extensive use of ballasted deck simple support box girder,the use of steel2concrete composite continuous girder for specific purpose,and the use of ballastless track PC girder at certain sec2 https://www.doczj.com/doc/0111886986.html,pared to conventional railway bridges,the new structures increase the longitudinal and transversal rigidity of bridges,and improve the durabili2 ty and reduce maintenance.In the meantime,heavy duty bridge girder erecting equipment and bridge fabrication machine were successfully used for erection of20230m single track and double track box girder,a breakthrough in conventional method of girder erection after track laying.Relevant sug2 gestions about structural design of bridges for high2speed railway and its con2 struction were raised,and a prospect of bridge construction technology for high2speed railway and passenger dedicated railway in China was given.

K eyw ords Passenger Dedicated Railway;High2speed Railway;Railway Bridge;Design;Construction

缓和曲线计算公式

缓和曲线计算公式 缓和曲线计算公式: 缓和曲线参数: 0=A L R ? 缓和曲线长度R A L ÷=20 缓和曲线半径÷=2A R 0L 所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A 及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

缓和曲线

緩和曲綫 缓和曲线【transition curve 】指的是平面线形中,在直线与圆曲线,圆曲线与圆曲线之间设置的曲率连续变化的曲线。缓和曲线是道路平面线形要素之一,它是设置在直线与圆曲线之间或半径相差较大的两个转向相同的圆曲线之间的一种曲率连续变化的曲线。 一、缓和曲线的作用及其几何特征 行驶于曲线轨道的机车车辆,出现一些与直线运行显著不同的受力特征。如曲线运行的离 心力,外轨超高不连续形成的冲击力等。为使上述诸力不致突然产生和消失,以保持列车曲线运行的平稳性,需要在直线与圆曲线轨道之间设置一段曲率半径和外轨超高度均逐渐变化的曲线,称为缓和曲线。当缓和曲线连接设有轨距加宽的圆曲线时,缓和曲线的轨距是呈线性变化的。概括起来,缓和曲线具有以下几何特征: 1. 缓和曲线连接直线和半径为R 的圆曲线,其曲率由零至1/R 逐渐变化。 2. 缓和曲线的外轨超高,由直线上的零值逐渐增至圆曲线的超高度,与圆曲线超高相连接。 3. 缓和曲线连接半径小于350m 的圆曲线时,在整个缓和曲线长度内,轨距加宽呈线性递增,由零至圆曲线加宽值。 因此,缓和曲线是一条曲率和超高均逐渐变化的空间曲线。 二、缓和曲线的几何形位条件 图2-9所示为一段缓和曲线。其始点与终点用ZH 与HY 表示。要达到设置缓和曲线的目的, 根据如图所取直角坐标系,缓和曲线的线形应满足以下条件: 1.为了保持连续点的几何连续性,缓和曲线在平面上的形状应当是:在始点处,横坐标x = 0,纵坐标y = 0,倾角φ = 0;在终点处,横坐标 x =x 0,纵坐标y =y 0 ,倾角φ =φ0 。 2.列车进入缓和曲线,车体受到离心力 J 的作用,为保持 列车运行的平稳性,应使离心力不突然产生和消失,即在缓和曲线始点处,J =0,在缓和曲线终点处 Ρ=R 。 3.缓和曲线上任何一点的曲率盈余外轨超高相吻合。 在纵断面上,外轨超高顺坡的形式有两种形式。一种形式是,如图2-10(a )所示;另一 种形式是曲线形,如图2-10(b )所示。 图 2-9缓和曲线坐标图

(完整word版)缓和曲线计算原理

1.2道路线形的基本介绍 道路运输在整个国民经济生活中起着重要作用。道路的新建和改建,测量工作必须先行,所以公路施工测量所承担的任务也是非常大的,为了更好的进行道路施工工作,下面就道路线形进行一下简单的介绍。 一般所说的路线,是指道路中线的空间位置。中线在水平面上的投影称作路线的平面;沿中线竖直剖切再行展开则是路线的纵断面;中线上任一点法向切面是道路在该点的横断面。 无论是铁路、公路还是地铁隧道和轻轨,由于受到地形、地物、地质及其他因素的限制,经常要改变线路前进的方向。当线路方向改变时,在转向处需用曲线将两直线连接起来。因此,线路工程总是由直线和曲线所组成。曲线按其线形可分为:圆曲线、缓和曲线、复曲线和竖曲线等。 公路中线应满足的几何条件是:线形连续平滑;线形曲率连续(中线上任一点不出现两个曲率值);线形曲率变化率连续(中线上任一点不出现两个曲率变化值)。考虑上述几何条件,顾及计算与敷设方便,现代公路平面线形要素由直线、圆曲线和缓和曲线构成,称之为平面线形三要素。其中缓和曲线的曲率半径是从∞逐渐变到圆曲线半径R 的变量。在与直线连接处半径为∞,与圆曲线连接处半径为R ,曲线上任一点的曲率半径与该点至起点的曲线长成反比。 目前公路线形设计已开始使用非对称线形(成为非对称平曲线)设计,特别是在互通立交匝道和山区高速高速公路线形设计中,这种线形设计使用得较多。非对称线形分为完全非对称线形和非对称非完整线形两种,所谓“完全非对称曲线”的含义就是第一缓和曲线和第二缓和曲线起点处(ZH 或HZ )的半径为∞,圆半径为R ,第一缓和曲线长1s l ,第二缓和曲线长为2s l ,12s s l l ≠。所谓“非完整”的含义是第一缓和曲线和第二缓和曲线的半径不是∞,而是1 R 、2 R 。而坐标法成为高速公路放样的主要方法,坐标法放样 线路中线的这个操作过程中,最重要的一部就是计算线路放样点的坐标。 2 路线中桩坐标计算原理 在实际工程中,线路的设计由专门的设计方完成,在线路完成设计得到审批后设计方便把所设计线路的线路要素(或者称为曲线要素)提供给施工方。所提供的曲线要素一般包括:线路中各曲线段的起点坐标、起点里程、起点半径、终点坐标、终点里程、终点半径、交点坐标、曲线参数、转角(包括用一定的符号表示左右转)、两条切线长(起点与终点各所对应的两条切线)、曲线长。当然不同的工程项目所提供的曲线要素也不一样,以上所述的要素是大多数设计方会提供的,有的设计方在提供上述要素的前提下,还提供曲线段的外距、中点坐标、弦长或者走向方位角等要素,供施工方在计算

道路工程测量(圆曲线缓和曲线计算)

内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设 一、道路工程测量概述 分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。 (一)勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey) 1、初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone) 和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量 (road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。 本章主要论述中线测量和纵、横断面测量。 二、中线测量 (center line survey) 1、平面线型:由直线和曲线(基本形式有:圆曲线、缓和曲线)组成。 2、概念:通过直线和曲线的测设,将道路中心线的平面位置测设到地面上,并测出其里程。即测设直线上、圆曲线上或缓和曲线上中桩。

缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ

计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

铁路轨道曲线正矢计算(修正)

第一讲:曲线正矢计算 一、曲线的分类: 目前我段主要曲线类型有: 1、由两端缓和曲线和圆曲线组成的曲线,如正线曲线。容许行车速度高。 2、由圆曲线构成的曲线。如道岔导曲线、附带曲线。 二、圆曲线正矢的计算 1、曲线头尾正好位于起终点桩上 F C=L2/8R L=20M时,F C=50000/R F ZY=F YZ= F C/2 2、曲线头尾不在起终点桩上 ZY前点:Fμ=(FC/2)*(δ/10)2 ZY后点:Fη=FC-{(FC/2)*(τ/10)2} FC:圆曲线正矢δ:ZY点到后点的距离τ:ZY点到前点的距离 三、缓和曲线上整点正矢的计算(起始点正好是测点) (1)缓和曲线头尾的计算: F0=F1/6(缓和曲线起点)F终= F C-F0(缓和曲线终点)(2)缓和曲线中间点正矢的计算: F1=F S= F C/N (N=L0/B:缓和曲线分段数) F2=2 F1 F3=3F1 F I=IF1(I为中间任意点) 四、半点(5米桩)正矢的计算: a)ZH点后半点正矢的计算: F后=25/48*F1 因为ZH点正矢f0=f1/6,很小一般为1~2MM,其前半点很小(小于1MM)因此不作计算。 b)HY(YH)点前半点计划正矢的计算 F前=1/2{[L03+(L0-15)3]/6R L0+[5L0+25]/2R}-(L0-5)3/6R L0 c)HY(YH)点后半点计划正矢的计算 F后=1/2{[ (L0-5)3 -L03]/6R L0+[5L0+175]/2R} d)中间点(5米桩)正矢的计算

F中=(F前+F后)/2 五、测点不在曲线始终点时缓和曲线计划正矢的计算 a)缓和曲线始点(ZH点)处相邻测点的计划正矢 Fμ=αυF S(直缓点外点) αυ=1/6(δ/B)3 Fη=αηF S(直缓点内点) αη=1/6[(1+δ/B)3-(δ/B)3] (2) 缓圆点处相邻测点的计划正矢 Fφ=F C-αυF S (缓圆点外点,缓和曲线之外) Fθ= F C-αηF S (缓圆点内点,缓和曲线之内) (αυ、αη查纵距率表《曲线设备与曲线整正》附表二) (3)缓和曲线中间点各点计划正矢的计算 F I=(F C/L0)L I(I为中间任意点) 说明:B:半弦长δ:缓和曲线内点到ZH、HY(YH)距离 L0:缓和曲线长F C:圆曲线正矢 第二讲:曲线拨道 一、绳正法基本原理 1、基本假定: (1)假定拨道前后两端切线方向不变,或起始点位置不变,即曲线终点拨量为零。 (2)假定曲线上某点拨动时,其相邻点不随之发生移动,拨后钢轨总长不变。 2、由以上假定得出以下基本原理: (1)用等长的弦测量圆曲线正矢,正矢必相等; (2)拨动曲线时,某点的正矢增(减)X,其前后两点的正矢各减少(增加)X/2。 (3)只要铺设时曲线圆顺,养护维修中无论拨成任何不规则曲线,其正矢总和不变,即拨道前后量得的正矢总和相等。

轨道曲线拨道计算(修正版)

绳正法曲线拨道计算 一、基本原则 1. 为了保证曲线两端的直线在拨道后方向不变,既使曲线的转角不变,在整个曲线上的实量正矢之和应该与计划正矢总和相等。既: ① 实量正矢和=计划正矢和。 ② 实量正矢-计划正矢=正矢差,正矢差的总和应该等于0,由此得到的拨道最后的一点正矢差累计也应该等于0。 2. 保证曲线两端的直线位置不变,即:使曲线或拨道控制点的头尾半拨量和拨量通过修正等于0。使正矢实量总和与计划正矢总和相等是调整以及安排计划正矢的唯一依据;使曲线的首尾拨道量等于0是计算拨道量时的基本要求。 二、整正曲线时的两个基本要求 1. 拨量要小 在整正计算的过程中,要考虑现场以及劳力的实际情况尽量减少拨道量和拨道点数量,一般情况下两者成反比,既调整点数越少拨量越大,调整点数越多拨量越小。在桥梁护轨、路堤、路堑、缺碴地段、信号墩台处所应事先调查好可以的拨道量和点号作为调整和计算的依据。在困难条件下一般不得大于40毫米,电气化铁路不得大于30毫米,超过该标准的应根据《安规》要求设置防护和慢行计划。 2. 拨后的曲线要圆顺 拨后的正矢应该符合《维规》中对缓和曲线正矢差、圆曲线连续差和最大最小差的要求,即拨后缓和曲线正矢要尽量的递增递减一致,圆曲线正矢尽量均匀一致。 三、曲线整正计算 ⑴曲线中央点位置(QZ ): ? ? ?? ? ? ? ? ?= +==∑∑∑∑=-i n i i i i f f i f f f QZ 1 1)(现场正矢合计现场正矢到累计合计,i 为测点号,n 为总测点数

⑵圆曲线平均正矢(p f ): 已知曲线半径,R f p 50000= (20米弦)或R f p 12500 =(10米弦) 不知曲线半径,n f f i p ∑= = 测量正矢的测点数 现场正矢合计 式中,n 为相对应的正矢测点数。 ⑶圆曲线分段数M : p i f f M ∑= =圆曲线平均正矢 现场正矢合计 ⑷圆曲线长度(y L ):m M L y 10?= ⑸圆曲线头尾位置(ZY ,YZ ): 2M QZ ZY - = 2M QZ YZ += ⑹缓和曲线的分段数(m ): 10 10h L m == 缓和曲线长度 如不知缓和曲线的长度,可根据公式max 9Hv L h =先求缓和曲线长度。 式中 h L -------缓和曲线长度 H -------曲线超高值 m ax v ------线路容许速度 ⑺缓和曲线始终点位置(ZH ,HY ,YH ,HZ ) 2m ZY ZH - =,2m ZY HY += 2m YZ YH -=,2m YZ HZ += 说明:在圆曲线上设缓和曲线,是将缓和曲线长度的一半放在圆曲线上,另一半放在直线上。所以,圆曲线的直圆点和圆直点分别是两个缓和曲线的中央点。 ⑻无缓和曲线时,整桩上圆曲线始终点正矢:

缓和曲线、圆曲线测设计算例题

已知曲线半径R=6000,缓和曲线长度l 0=280,交点JD27坐标及相邻方位角已在图中给出,ZH点里程为DK2+100。请计算: 1、曲线要素中的切线长T、曲线长L、外矢距E; 2、HY、QZ、YH、HZ的里程; 3、ZH点坐标及其左边桩3米的坐标; 4、DK2+180的坐标及右边桩2米的坐标; 5、DK2+660的坐标及右边桩35米的坐标。永州(DK2+100)H YHZ YH QZ .080-17-52=2α=232- 附公式: m为缓和曲线切垂距,m= l - l 03 /(240R2)p为缓和曲线内移距,P= l 02 /(24R)- l 04 /(2688R3)缓和曲线方程式:

X=h - h5/(40R2l2)+ h9/(3456 R4l4) Y=h3/(6Rl)- h7/(336 R3l3)+ h11/(42240 R5l5)解: 1、转向角α=α 2-α 1=7°18′ 05.9″ 切线长T=(R+P)tg(α/2)+m= 522.863 曲线xxL=(Rαπ)/180+l 0= 1044.626 外矢距E=(R+P)sec(α/2)-R= 12.746 式中m为缓和曲线切垂距,m= l - l 03 /(240R2 )= 139.9974 p为缓和曲线内移距,P= l

/(24R)- l 04 /(2688R3 )= 0.5444 2、HY点里程为DK2+100+280=DK2+380;QZ点里程为; HZ点里程为DK2+100+ 1044.626=DK3+ 144.626; YH点里程为DK3+ 144.626-280=DK2+ 864.626 3、JD27到ZH点的方位角α JD27到ZH点的坐标增量为: △x=T×cosα △y =T×sinα 于是ZH点坐标为yZH= Y JD27+△y = 1415.299mHZ35-13.

缓和曲线要素及公式介绍

11.2.1 带缓和曲线的圆曲线的测设 为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。 目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。数学表达为: ρ∝1/l 或ρ·l = k ( k为常数) 若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有: ρ·l = R·l0 = k 目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R , 铁路缓和曲线的长度为:l0 = 0.09808V3/R 。 11.2.2 带缓和曲线的圆曲线的主点及主元素的计算 带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。

带缓和曲线的圆曲线的主元素及计算公式: 切线长 T h = q+(R+p)·tan(α/2) 曲线长 L h = 2l0+R·(α-2β0)·π/180° 外矢距 E h = (R+p)·sec(α/2)-R 切线加长 q = l0/2-l03/(240R2) 圆曲线相对切线内移量 p = l02/(24R) 切曲差 D h = 2T h -L h 式中:α为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。 11.2.3 缓和曲线参数推导 dβ = dl/ρ = l/k·dl 两边分别积分,得: β= l2/(2k) = l/(2ρ)

当ρ = R时,则β =β0 β0 = l0/(2R) 若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则: dx = dl·cosβ = cos[l2/(2k)]·dl dy = dl·sinβ = sin[l2/(2k)]·dl 考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线 长度l为参数的缓和曲线方程式: X = l-l5/(40R2l02)+…… Y = l3/(6Rl0)+…… 通常应用上式时,只取前一、二项,即: X = l-l5/(40R2l02) Y = l3/(6Rl0) 另外,由图可知, q = X HY-R·sinβ0 p = Y HY-R(1-cosβ0) 以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2) p = l02/(24R) 若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为: Xi = R·sinψi+q Yi = R·(1-cosψi)+p 11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核

铁路轨道曲线正矢计算修正

第一讲:曲线正矢计算 一、曲线的分类: 目前我段主要曲线类型有: 1、由两端缓和曲线和圆曲线组成的曲线,如正线曲线.容许行车速度高。 2、由圆曲线构成的曲线。如道岔导曲线、附带曲线. 二、圆曲线正矢的计算 1、曲线头尾正好位于起终点桩上 F C=L2/8R L=20M时,F C=50000/R FZY=FYZ= F C/2 2、曲线头尾不在起终点桩上 ZY前点:Fμ=(FC/2) *(δ/10)2 ZY后点:Fη=FC—{(FC/2)*(τ/10)2} FC:圆曲线正矢δ:ZY点到后点的距离τ:ZY点到前点的距离 三、缓和曲线上整点正矢的计算(起始点正好是测点) (1)缓和曲线头尾的计算: F0=F1/6(缓和曲线起点) F终= FC—F0(缓和曲线终点)(2)缓和曲线中间点正矢的计算: F1=F S=FC/N (N=L0/B:缓和曲线分段数) F2=2 F1 F3=3F1FI=IF1(I为中间任意点) 四、半点(5米桩)正矢的计算: a)ZH点后半点正矢的计算: F后=25/48*F1 因为ZH点正矢f0=f1/6,很小一般为1~2MM,其前半点很小(小于1MM)因此不作计算。 b)HY(YH)点前半点计划正矢的计算 F前=1/2{[L03+(L0-15)3]/6R L0+[5L0+25]/2R}-(L0-5)3/6R L0 c)HY(YH)点后半点计划正矢的计算 F后=1/2{[ (L0-5)3 -L03]/6R L0+[5L0+175]/2R}

d)中间点(5米桩)正矢的计算 F中=(F前+F后)/2 五、测点不在曲线始终点时缓和曲线计划正矢的计算 a)缓和曲线始点(ZH点)处相邻测点的计划正矢 Fμ=αυF S (直缓点外点)αυ=1/6(δ/B)3 Fη=αηF S (直缓点内点)αη=1/6[(1+δ/B)3—(δ/B)3](2)缓圆点处相邻测点的计划正矢 Fφ=F C—αυF S (缓圆点外点,缓和曲线之外) Fθ= F C-αηF S (缓圆点内点,缓和曲线之内) (αυ、αη查纵距率表《曲线设备与曲线整正》附表二) (3)缓和曲线中间点各点计划正矢的计算 FI=(FC/L0)L I(I为中间任意点) 说明:B:半弦长δ:缓和曲线内点到ZH、HY(YH)距离 L0:缓和曲线长FC:圆曲线正矢 第二讲:曲线拨道 一、绳正法基本原理 1、基本假定: (1)假定拨道前后两端切线方向不变,或起始点位置不变,即曲线终点拨量为零。 (2)假定曲线上某点拨动时,其相邻点不随之发生移动,拨后钢轨总长不变。 2、由以上假定得出以下基本原理: (1)用等长的弦测量圆曲线正矢,正矢必相等; (2)拨动曲线时,某点的正矢增(减)X,其前后两点的正矢各减少(增加)X/2。 (3)只要铺设时曲线圆顺,养护维修中无论拨成任何不规则曲线,其正矢总

缓和曲线的计算步骤

缓和曲线的计算步骤 在缓和曲线的计算中,首先要判断缓和曲线的完整性。判断公式为 L 0=C/R 上式中,L 0为缓和曲线的计算长度,C 为缓和曲线参数,C =A 2,A 也是缓和曲线的一个参数,R 为设计给的缓和曲线起、终点半径中的最小值。若计算出来的L 0与设计给的缓和曲线长度l 一样,那么该曲线即是完整的,若L 0比设计给的缓和曲线长度要大,那么设计给的缓和曲线就不是完整的。 下面就完整缓和曲线与不完整缓和曲线的计算方法作一个说明。 一、完整缓和曲线的计算方法: 完整缓和曲线有一个特征,就是它的起点或终点半径中有一个是无穷大(该点不是ZH 点就一定是HZ 点),我们称的“缓和曲线起点”就从这个半径为无穷大的点开始的。 计算过程如下: 1、根据交点(JD )的桩号推求直缓点、缓圆点、曲中点、圆缓点、缓直点的桩号。有时设计已经给出这些数据。 2、 建立切线坐标系,求曲线中线点的切线坐标。 切线坐标系,即以ZH 点(或HZ )为原点、以该点切线方向为X1轴的坐标系。为了使第一缓和曲线和第二缓和曲线具有通式,我们在ZH 点和HZ 点采用同样的左手坐标系(图1)。 在缓和曲线段,中线点切线坐标 X 1=l -l 5/40C 2+l 9/3456C 4+… Y 1=l 3/6C- l 7/336C 3+l 11/42240C 5+… (1) 式中 l 为ZH 或HZ 至所求点的曲线长。 (1)式是第一缓和曲线和第二缓和曲线的计算通式,仅注意在计算第二缓和曲线时计算的方向相反,C 的符号也相反。 在通常情况下,(1)式取前两项即可满足精度要求;但是当曲线半径过小时,必须顾及第三项,例如匝道或试车场以及山区公路可能有这种情况。

铁路曲线要素的测设

铁路曲线要素的测设、计算与精度分析 摘要 铁路线路平面曲线分为两种类型:一种是圆曲线,主要用于专用线和行车速度不高的线路上,另一种是带有缓和曲线的圆曲线,铁路干线上均用此种曲线。曲线的五大要素,ZH(直缓点)、 HY(缓圆点)、QZ(曲中点)、 YH(圆缓点)、 HZ(缓直点),是曲线的重要线形特征 铁路曲线测设一般分两步进行,先测设曲线主点,然后依据主点详细测设曲线上的任意点。结合本人的工作经验,就铁路圆曲线和缓和曲线上任一点坐标的计算及法向方位角的计算进行实例解析。 绪论 一、工程测量学概述 工程测量学是研究各种工程在规划设计、施工建设和运营管理阶段进行的各种测量工作的学科。工程测量的特点是应用基本的测量理论、方法、技术及仪器设备,结合具体的工程特点采川具有特殊性的施测工绘方法。它是大地测量学、摄影测量学及普通测量学的理论与方法在程工中的具体应用。 工程建设一般可分为:勘测设计、建设施工、生产运营三个阶段。 勘测设计阶段的测量主要任务是测绘地形图。测绘地形图是在建立测绘控制网的基础上进行大比例尺地面测图或航空摄影测量。 建设施工阶段的测量主要任务是按照设计要求,在实地准确地标定建筑物或构筑物各部分的平而位置和高程,作为施工安装的依据(简称为标定);是在建立仁程控制网的基础上,根据工程建设的要求进行的施工几测量。 生产运营阶段的测量主要任务是竣工验收测量和变形监测等测量工作。 工程测量按所服务的工程种类,可分为建筑工程测量、线路工程测量、桥梁与隧道工程测量、矿石工程测量、城市工程测量、水利工程测量等。此外,还将用于大型设备的高精度定位和变形监测称为高精度工程测量;将摄影测量技术应用于工程建设称为工程摄影测量;而将自动化的全站仪或摄影仪在计算机控制下的测量系统称为三维工业测量。测量学是研究地球的形状和大小以及确定地而(包含空中、地表、地下和海底)物体的空间位置,井将这些空间位置信息进行处理、存储、管理、应用的科学。它是测绘学科重要的组成部分,其核心问题是研究如何测定点的空间位置。 测量学研究的内容分为测定和测设两部分。测定是指使用测量仪器和工具,通过测量和计算,得到一系列测量数据,或把地球表面的地形按一定比例尺、规定的符合缩小绘制成地形图,供科学研究和工程建设规划设计使用;测设是指把图纸上规划设计好的建筑物、构筑物的位置在地而上标定出来,作为施工的依据。 二、现代测量技术概述

圆曲线要素及计算公式

圆曲线要素及计算公式

前言 《礼记》有云:大学之道,在明德,在亲民。在提笔撰写我的毕业设计论文的时候,我也在向我的大学生活做最后的告别仪式。我不清楚过去的一切留给现在的我一些什么,也无从知晓未来将赋予我什么,但只要流泪流汗,拼过闯过,人生才会少些遗憾! 非常幸运能够加入水利工程这个古老而又新兴的行业,即将走向工作岗位的时刻,我仿佛感受到水利行业对我赋予新的历史使命,水利是一项以除害兴利、趋利避害,协调人与水、人与大自然关系的高尚事业。水利工作,既要防止水对人的侵害,更要防止人对水的侵害;既要化解自然灾害对人类生命财产的威胁,又要善待自然、善待江河、善待水,促进人水和谐,实现人与自然和谐相处。这种使命,更让我用课堂中的知识用于实际生产中来。特别是这两个月来的毕业设计,我越发感觉到学会学精测量基础知识对于我贡献水利是多么的重要。所以,我越发不愿放弃不多的大学时光,努力提高自己的实践动手能力,而本学期的毕业设计,为我提供了绝好的机会,我又怎能放弃?

刚刚从老师那里得到毕业设计的题目和任务时,我的心里真的没底。作为毕业设计的主体工作,我们主要运用电子水准仪对某幢建筑物进行变形观测与计算,布设控制点进行平面控制测量和高程控制测量;用全站仪进行了中心多边行角度和距离的测量,并用条件平差原理进行平差,通过控制点的放样来计算土的挖方量,还有圆曲线的计算与测设。而我研究的毕业课题是圆曲线测设。 大学的最后一个学期过得特别快,几乎每天扛着仪器,奔走在校园的每个角落,生活亦很有节奏。今天我提笔写毕业论文,我的毕业设计也接近尾声。不管成果如何,毕竟心里不再是没底了,挑着两个多月的辛苦换来的数据和成果,并不断的完善他们,心里感觉踏实多了。 在本次毕业设计论文的设计中要感谢水利系为我们的工作提供了测量仪器,还有各指导老师的教导和同学的帮助。 摘要:在公路、铁路的路线圆曲线测设中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。本文通过仪器安置

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

高速铁路缓和曲线设计研究

-33- 科苑论谈 高速铁路缓和曲线设计研究 赵海燕 (铁道第二勘察设计院昆明院,云南昆明650000) 摘本:通过对高速铁路缓和曲线主要线形、长度计算主要参数选择的初步研究,探讨了高速铁路设计时缓和曲线的选择和长度的合理使用。关键词:高速铁路$缓和曲线$研究 高速铁路的主要特征为高速、高架、电气化。铁路高速化后,行车速度越高,平面曲线和竖曲线半径增幅也越大。此外,列车通过缓和曲线时产生的超高时变率和欠超高时变率也随列车的速度成正比增加,从而影响乘车的舒适性。因此,缓和曲线要有足够的长度,使线性过渡平缓,以保证列车运行平稳和旅客乘坐的舒适性,但过长的缓和曲线控制着平面选线和纵断面变坡点设置的灵活性,并引起工程数量的增大。因此,缓和曲线设计是高速铁路设计的重要参数之一。 1缓和曲线的主要线性 缓和曲线线性基本上可以归纳为两种基本类型:一种是线性缓和曲线,其超高和曲率变化成线性变化,如三次抛物线形;第二种是非线性缓和曲线,比如三次抛物线园、余弦改善形、半波正弦形、五次代数式、七次四项式、一波正弦式等。 缓和曲线线性的选择,主要从保证列车运行平稳和曲线上旅客乘坐的舒适性来考虑。从各种研究和实测结果表明,只要缓和曲线长度达到一定要求,各种线形的缓和曲线都能保证高速行驶安全和旅客乘坐舒适度的要求,国外高速铁路的运营实践也表明了这一点。由于传统的三次抛物线形简单、设计方便,平立面有效长度长,现场应用、养护经验丰富等特点,我国目前设计的高速铁路仍以三次抛物线形缓和曲线为首选线形。 2缓和曲线长度的计算 缓和曲线长度是高速铁路平面设计的主要参数之一,为保证列车运行的安全和旅客舒适度的要求,缓和曲线应该有足够的长度。但过长的缓和曲线将影响平面选线和纵断面设计的灵活性,引起工程投资的增加。所以,长度的选择要合理选用,结合现场实际,从长到短选择。缓和曲线长度的计算,主要取决于以下几个因素: 2.1超高顺坡率允许值 缓和曲线地段,由于外轨超高使车轮处于三点只承状态,必须限制超高顺坡率的最大值。这个值主要由转向架轴距、前后转向架中心距、轮缘高度来决定。国外(日、英、德)规定的超高顺坡率最大值分别为1/200~1/400不等,我国现行规定的最大超高顺坡率为不大于2‰即1/500。据此,三次抛物线形缓和曲线车辆脱轨安全因素决定的缓和曲线长度L1为 L1≥h/imax=0.5h 由上式可以看出,对于缓和曲线普遍较长的高速铁路,由脱轨安全要求计算的缓和曲线长度显然不起控制作用。故高速铁路缓和曲线长度主要取决于其他两个条件,即: 2.1.1乘坐舒适度允许的未被平衡横向加 速度时变率(即欠超高时变率限值[β])要求的缓和曲线长度L2 L2≥(Vmax.α未)/(3.6[β ])=(Vmax.hq.g)/(3.6[β ].S)式中:hq—圆曲线上计算的欠超高值(mm); Vmax—设计速度目标值(km/h); [β ]—未被平衡横向加速度时变率允许值 从相关试验得出的未被平衡横向加速度 在不同变率下舒适感觉概率表明,当[β ]=0.015g/sec时,旅客平均舒适指数为0.5,96%的乘客感觉在“轻微感觉”内;当[β]=0.025g/sec时,旅客平均舒适指数为1.0,80%的乘客感觉在“轻微感觉”内,20%的乘客感觉在“明显感觉”内;当[β]=0.034g/sec时,旅客平均舒适指数为1.3,“轻微感觉”与“明显感觉”的旅客各占一半。 2.1.2乘坐舒适度允许的车体倾斜角速度(即超高时变率限值[f])要求的缓和曲线长度 L3 L3≥(Vmax.h)/(3.6[f])=k.Vmax.h式中:k—1/(3.6[f]); h—圆曲线上的设计超高值(mm);[f]—超高时变率允许值(mm/s) 日本东海道采用半波正弦形缓和曲线,[f]=34mm/sec,k平=8.2,fmax=53mm/sec时,kmax=5.2。法国TGV线采用三次抛物线改善形缓和曲线,设计速度目标为300km/h时,f=25~56mm/sec,k=11~5,设计速度目标为350km/h时,f=29~50mm/sec,k=9.5~5.5。我国现行规范规定,[f]一半条件下取25mm/sec,困难条件下取31mm/sec。 3小结 经计算分析,对于高速铁路而言,多以计算出的L3作为控制缓和曲线长度,把[f]代入L3的计算公式后可以简化为: 一般条件:L3≥11×10-3Vmax.h困难条件:L3≥9×10-3Vmax.h 可以看出,对于某一个曲线而言,Vmax为定值,故影响缓和曲线长度的要素只是设计超高h的取值问题,h值越大,缓和曲线越长,反之则短。因此在铁路选线和设计中,要综合考虑现场的实际情况,结合工程量大小、 投资等综合因素确定合理的缓和曲线长度。 责任编辑:杨帆

铁路缓和曲线计算

、缓和曲线的作用及其几何特征 行驶于曲线轨道的机车车辆,出现一些与直线运行显著不同的受力特征。如曲线运行的离 心力,外轨超高不连续形成的冲击力等。为使上述诸力不致突然产生和消失,以保持列车曲线运行的平稳性,需要在直线与圆曲线轨道之间设置一段曲率半径和外轨超高度均逐渐变化的曲线,称为缓和曲线。当缓和曲线连接设有轨距加宽的圆曲线时,缓和曲线的轨距是呈线性变化的。概括起来,缓和曲线具有以下几何特征: 1. 缓和曲线连接直线和半径为R 的圆曲线,其曲率由零至1/R 逐渐变化。 2. 缓和曲线的外轨超高,由直线上的零值逐渐增至圆曲线的超高度,与圆曲线超高相连接。 3. 缓和曲线连接半径小于350m 的圆曲线时,在整个缓和曲线长度内,轨距加宽呈线性递增,由零至圆曲线加宽值。 因此,缓和曲线是一条曲率和超高均逐渐变化的空间曲线。 二、缓和曲线的几何形位条件 图2-9所示为一段缓和曲线。其始点与终点用ZH 与HY 表示。要达到设置缓和曲线的目的,根据如图所取直角坐标系,缓和曲线的线形应满足以下条件: 1.为了保持连续点的几何连续性,缓和曲线在平面上的形状应当是:在始点处,横坐标x = 0,纵坐标y = 0,倾角φ = 0;在终点处,横坐标 x =x 0,纵坐标y =y 0 ,倾角φ = φ 0 。 2.列车进入缓和曲线,车体受到离心力 J 的作用,为保 持列车运行的平稳性,应使离心力不突然产生和消失,即在缓和曲线始点处,J =0,在缓和曲线终点处 Ρ=R 。 3.缓和曲线上任何一点的曲率盈余外轨超高相吻合。 在纵断面上,外轨超高顺坡的形式有两种形式。一种形式是,如图2-10(a )所示;另一 种形式是曲线形,如图2-10(b )所示。 列车经过直线顺坡的缓和曲线始点和终点时,对外轨都会产生冲击。在行车速度不高,超高顺破相对平缓时,列车对外轨的冲击不大,可以采用直线形顺坡,即可满足曲率与超高相配合的要求。 当行车速度较高,为了消除列车对 外轨的冲击,应采用曲线形超高顺坡。 其几何特征是缓和曲线始点及终点处 图 2-9缓和曲线坐标图 图 2-10 超高顺坡

圆曲线测设实习心得

圆曲线测设实习心得 11道铁2班廖军敏20110110010223 令人难忘的两周测量实习结束了。通过这两周的圆曲线测设实习,让我学到了很多实实在在的东西,如对实验仪器的操作更加熟练,,学会了施工放样,基本知道了怎么测设圆曲线,提升了对课堂知识的理解认识,很大程度上提高了我动手的能力,同时也拓展了与同学的交际、合作的能力,知道了团队合作的重要性。 开始测量的时候,我的心里还一阵阵的发愁:该如何把任务进行下去。当动手的时候,发现其实并不难,听别人一说或者翻阅一下课本,然后自己动手操作一遍,就基本掌握了方法,要想提高效率和测量精度,还要经常练习,这样才能做到举一反三。这次测量实习中,放样可能会导致出现很多问题,比如初次定点的不准确导致后期中桩位置出现偏差,还有就是点与点之间的不通视导致距离以及角度测量出现较大误差。为了减少误差的出现,开始定点前我们必须做好充分的准备,进行实地观察后再确定点的位置。本次放样由于准备充分,过程较为顺利,但由于放样的曲线长度较大且圆曲线半径相对较大,所以所需的范围较大,中途出现了树木遮挡造成点与点之间的不通视,通过加测临时站点的方法有效成功解决了问题,这些问题的出现并解决充分锻炼了我们分析问题和解决问题的能力。 一次测量实习要完整的做完,单靠一个人的力量和构思是远远不够的,只有小组的合作才能让实习快速而高效的完成,每个人的一个

粗心,一个大意,都会直接影响工程的进度,实习过程中我们必须时刻保持小心严谨。这次测量实习培养了我们小组的分工协作的能力,增进了同学之间的感情。我们完成这次实习的原则也是让每个组员都学到知识而且会实际操作,而不是抢时间,赶进度,草草了事收工。我们每个组员都分别进行了独立的观察并进行计算,做到步步有“检核”,这样做不但可以防止误差的积累,及时发现错误,更可以提高测量的效率。我们怀着严谨的态度,错了就返工,决不马虎。直至符合测量要求为止。 我很珍惜学校为我们安排这一理论与现实相结合的实习机会,相比于以往的教学型实习,真正的实习显然能够更好的体会所学到的知识。事实也确实是如此,通过这次实习,我真正的体会到了理论联系实际的重要性。不仅理解了基本测绘工作的全过程,系统的掌握测量仪器操作、实测、计算等基本技能,而且为以后的工作打下了基础。

铁路缓和曲线超高设置的分析

铁路缓和曲线超高设置的分析 【摘要】针对目前铁路缓和曲线直缓(或缓直)、缓圆(或圆缓)点超高设置不合理的做法,按照铁路相关设计规范要求,在直线型超高顺坡的基础上,通过对缓和曲线外轨断面的设置,改善轮轨接触状态,提高动力响应。 【关键词】超高顺坡;竖曲线;缓和曲线超高设置 【 Abstract 】 In view of the present railway easement curve straight slow (or slow straight), slow (slow) or circle point ultra-high set unreasonable, in accordance with the relevant railway design specification requirements, on the basis of linear high slope, through to the easement curve rail profile Settings, improving the wheel/rail contact state, improving the dynamic response。 【 Key words 】 Ultra high slope; Vertical curve; Detente curve ultra high setting 1 概述 行驶在曲线轨道的机车车辆,出现一些与直线运行显著不同的受力特征,如转向力、离心力等。为了上述力不至于突然产生和消失,需要在直线与圆曲线轨道之间设置一段曲率半径和外轨超高逐渐变化的曲线,我们称这段曲线为缓和曲线。曲线超高是确定缓和曲线长度及曲线线间距加宽值等平面标准的主要参数,曲线超高的取值将对平面标准产生重要影响;影响列车行车速度、旅客舒适度和钢轨磨耗,甚至影响行车安全。 2 曲线超高与超高顺坡 2.1 确定超高 在线路曲线地段,应根据曲线半径和实测行车速度,在外股钢轨合理设置超高(允许速度大于120 km/h的线路宜按旅客的舒适条件进行检算和调整超高值)。超高按下列公式计算: 实设超高在满足欠超高、过超高容许范围的条件下,货物列车较多时,宜减

相关主题
文本预览
相关文档 最新文档