当前位置:文档之家› 1项针对蒙特卡罗质子传输算法的Fano型腔测试结果

1项针对蒙特卡罗质子传输算法的Fano型腔测试结果

1项针对蒙特卡罗质子传输算法的Fano型腔测试结果
1项针对蒙特卡罗质子传输算法的Fano型腔测试结果

A Fano cavity test for Monte Carlo proton transport algorithms

1项针对蒙特卡罗质子传输算法的Fano型腔测试结果

本文章为德国慕尼黑质子治疗中心RPTC专项质子照射法临床效果研究, 目的是为了分析与介绍1项针对蒙特卡罗质子传输算法的Fano型腔测试结果

Abstract摘要

Purpose:目的

在放射治疗的参考剂量范围中, 蒙特卡罗(MC)模拟法被广泛地使用来准确地计算电离室剂量的反应.

有关传输算法的不确定性可以被检验进行自我一致性的测试, 如所谓的Fano(法诺)型腔测量.

法诺型腔测试是基于法诺定理的, 它叙述了在带电粒子的平衡条件下, 只要横截面是均匀的, 那么带电粒子通量是不依赖于介质的质量密度的.

然, 对模拟质子传输的蒙特卡罗代码来说, 这样的测试至今还未有进行.

本研究的目的在于为质子蒙特卡罗而设计1种新式的法诺型腔测试, 以及在两项蒙特卡罗代码中执行该方法, 即:

◆Geant4, 以及,

◆扩展及质子的PENELOPE (PENH)

Methods:方法

新式的法诺测试被设计来评估质子传输的准确性.

本研究传输了带有E0能量真实存在的粒子与1项Σρ质量宏观截面, 其具有在每项相互作用后生成E0动能质子及得到恢复的能力, 从而提供了质子的平衡效应.

为执行测试, 本研究使用了1项简化的模拟模型并严格证明了计算型腔剂量的每入射通量必须等于ΣE0ρ, 这正如经典法诺测试要求的那样.

本测试于Geant4及PENH代码中被执行完毕. 测试采用的几何形状为1种10x10cm(2)平行虚像照射野以及1水幻影中尺寸(大小为2×2×0.2cm(3))大到足以确保质子平衡的型腔.

Results:结果

对于保守型用户定义的模拟参数(导致小步长)来讲, Geant4与PENH通过了0.1%以内的法诺型腔测试.

然, 在采用大步长为条件时, 0.6%及0.7%的差异性分别在此2项中有出现到. 对PENH代码来说, 该差异被认为是因利用了随机铰链方法的缘故, 因其在步长不够小的情况下引起了1种零散的人工能量效应.

Conclusions:结论

在采用保守用户定义的模拟参数条件下, 就有关质子传输而言, PENH及Geant4代码皆通过了法诺型腔的测试.

在考虑到蒙特卡罗代码能够跟踪带电粒子的情况下, 本研究的方法对任何形式的带电粒子来说皆是可执行的.

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

蒙特卡洛方法

蒙特卡洛方法 1、蒙特卡洛方法的由来 蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。 第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。 蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。如今MC方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。 2、蒙特卡洛方法的核心—随机数 蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。由该分布抽取的简单子样ξ1,ξ2ξ3……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。 实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。 无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。 人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。称这些序列为拟随机数序列。伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。 3、蒙特卡洛方法的原理 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等

蒙特卡罗 算法

1、蒙特卡罗定位 足球机器人中自定位方法是由Fox提出的蒙特卡罗定位。这是一种概率方法,把足球机器人当前位置看成许多粒子的密度模型。每个粒子可以看成机器人在此位置定位的假设。在多数应用中,蒙特卡罗定位用在带有距离传感器的机器人设备上,如激光扫描声纳传感器。只有一些方法,视觉用于自定位。在足球机器人自定位有些不同,因为机器人占的面积相对比较小,但是机器人所在位置的面积必须相当准确的确定,以便允许同组不同机器人交流有关场地物体信息和遵守比赛规则。这种定位方法分为如下步骤,首先所有粒子按照一起那机器人的活动的运动模型移动。概率pi取决于在感知模型的基础上所有粒子在当前传感器上的读数。基于这些概率,就提出了所谓的重采样,将更多粒子移向很高概率的采样位置。概率平均分布的确定用来表示当前机器人的位置的最优估计。最后返回开始。 2、蒙塔卡罗 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 工作过程 蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

蒙特卡洛模拟方法作业及答案(附程序)

蒙特卡洛习题 1.利用蒙特卡洛计算数值积分 () ()() 1280ln 1tan x x x xe dx +++? clear all ;clc;close all ; n=1000; count=0; x=0:0.01:1; y=log((1+x).^2+(tan(x).^8)+x.*exp(x)); plot(x,y,'linewidth',2) hold on for i=1:n x1=rand; y1=rand*y(end); plot(x1,y1,'g*') pause(0.01) if y1

2.分别用理论计算和计算机模拟计算,求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。 clear all;clc;close all; count=0; n=100000; for i=1:n x=floor(rand*6+1); y=ceil(rand*6); if x+y>6&&x>y count=count+1; end end P=count/n 3.

clear all;clc;close all; count=0; n=2000; ezplot('x^2/9+y^2/36=1'); hold on ezplot('x^2/36+y^2=1'); hold on ezplot('(x-2)^2+(y+1)^2=9') for i=1:n x=rand*12-6; y=rand*12-6; plot(x,y,'gh','linewidth',2) pause(0.01) if x^2/9+y^2/36<1&&x^2/36+y^2<1&&(x-2)^2+(y+1)^2<9

蒙特卡罗也称统计模拟方法

蒙特卡罗也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·罗方法正是以概率为基础的方法。与它对应的是确定性算法。 蒙特卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。有一个例子可以使你比较直观地了解蒙特卡罗方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡罗方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。 工作过程 在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。 用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。 计算步骤 使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的: ① 使用随机数发生器产生一个随机的分子构型。 ②对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。 ③计算新的分子构型的能量。 ④比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。 若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数。

WSN定位蒙特卡洛方法MCL的MATLAB

clear; clc; %初始化工作 Ns = 20; Nn = 200; Vmax = 20; Xrange = 200; Yrange = 200; tr = 50; step = 20; N = 20; Nf = 3; %采样盒子确定时,估计位置要扩大圆面积 ns_range = 200; %每个采样盒子的最大采样次数 for i = 1:Ns Xseed(1,i)=rand(1,1)*Xrange; Yseed(1,i)=rand(1,1)*Yrange; end for i = 1:Nn Xnode(1,i)=rand(1,1)*Xrange; Ynode(1,i)=rand(1,1)*Yrange; Xnode_g(1,i)=Xnode(1,i); %MCL估计位置,初始值设置为真实位置 Ynode_g(1,i)=Ynode(1,i); end %初始时刻的粒子群,for every node for i = 1:Nn for j = 1:N lx(i,j,1) = Xnode_g(1,i); ly(i,j,1) = Ynode_g(1,i); end end %figure(1); %plot(Xseed,Yseed,'bo',Xnode,Ynode,'k*'); %节点们开始运动,每次定位完成才开始下一次运动,这里假设这个定位过程耗时非常短%仿真步数 for k=2:step %新的时刻,节点们先运动一下,RWP模型 for i = 1:Ns r = rand(1,1)*Vmax; thita = rand(1,1)*2*pi; Xseed(k,i) = Xseed(k-1,i) + r*cos(thita);

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

题目蒙特卡洛算法的设计和实现

题目:蒙特卡洛算法的设计和实现 班别:12accp2班 组员姓名:蔡添来杨善挺 时间:2013.6.28

应用数学二期末考核 项目设计说明书 项目名称:蒙特卡洛算法的设计和实现 人员情况 (注:写上组员的姓名、学号) 蔡添来-010******* 杨善挺-010******* 人员分工情况 (注:写上每个组员完成那个部分的详细情况) N-S图和代码蔡添来负责编写,杨善挺参与讨论,杨善挺负责写摘要问题分析、问题总结以及饼状图的代码编写及处理等等,主要结果及其分析讨论部分由蔡添来写,该部分一些问题杨善挺参与讨论。 蒙特卡洛算法的设计和实现 摘要 (注:请写上你对本项目题目的基本认识和介绍,解决该问题用的的方法和算法的基本思想和原理,以及本问题的主要结论及对结论的简单总结和分析) 本文根据蒙特卡洛算法以实验为基础阐述其算法的设计思路和实现过程,可以通过反复多次的实验,利用数学的的N-S算法,以及MATLAB编程等,并联系实际生活情况,分析蒙特卡洛算法给现实世界带来的各种好处,并提出合理的的建议。 针对本项目问题,首先从抽奖的本质出发,分析该问题到底能让哪方获益,估算抽奖者得到各种结果的概率,以及设奖者受益情况。首先从硬币的分值来分析,列出抽取10枚硬币的总和,再计算每种情况出现的概率,再给予一定的奖罚,这样才能即吸引抽奖者,又可以让设奖者盈利,让抽奖者的损失尽可能少。既可以达到娱乐的效果,又可以得到大家都认可。 最后总结蒙特卡洛算法在数学方面的运用以及对现代社会的经济等方面的推动作用,并给出一些建议。

关键词:模拟概率大量统计 蒙特?卡罗的背景介绍和发展 (注:请介绍你对本项目的背景和发展历史等相关内容) 蒙特?卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。 蒙特卡洛算法对于本身就具有随机性质的问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 蒙特卡罗方法的验证需要次数较多的实验和多次的验证。实验越接近理想状态,所得到的实验结果才越精确。所谓理想的实验次数,就是实验次数尽可能的多和用同样的验证方法验证多次,并取他们的平均值,以便减少误差。而且蒙特卡罗方法每次得到的结果具有随机性,因此,现实生活中该算法又可以为人们的生活娱乐带来乐趣,又可以为商家带来赚钱对的好机会。 当实验对象是某种随机事件出现的概率时,或者是某个随机变量的期望值时,可以进行反复“实验”,以这种事件出现的频率估计这一随机事件的概率,并计算全部概率的均值,或者得到这个随机变量的某些数字特征,并将其作为问题的解。以便减少实验误差。 对于本项目的实验对象,利用蒙特卡罗方法以同样的方法反复实验,方便快捷可以得到我们想要的结果,,这是典型的蒙特卡罗方法的运用,而近代也有不少科学家解决同样的问题。例如:1777年,法国数学家布丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。而这被认为是蒙特卡罗方法的起源。 利用蒙特.卡罗方法对该抽签将活动模拟问题分析和数学模型 (注:请介绍你对本项目的解决方法的思路和方法,要求:必须具有对问题解决方法的数学模型(数学模型:数学表达式或算法)的介绍和为什么使用该模型?若问题能求出理论解,在此地方必须给出理论解) 利用N-S图分析思路,再利用MATLAB程序代码运行得到具体结果,结合高中数学的组合运算,因涉及概率等等问题,以及局限于我们的知识,我们只有利用高中的组合运算和大学一年级的N-S图来分析问题,并且利用这几个经典的数学方法,我们可以轻松的解决这个抽奖问题。

1蒙特卡罗算法举例

MC方法计算阴影部分面积 计算阴影部分面积。 一个古人要求一个图形的面积,他把图形画在一块方形布上,然后找来一袋豆子,然后将所有豆子洒在布上,落在图形内豆子的重量比上那块布上所有豆子的重量再乘以布的面积就是他所要求的图形的面积。 两种编程思路来计算这个面积: 方法一:将整个坐标轴看成一个边长为12的正方形,然后均匀的这个正方形分成N(N的大小取决于划分的步长)个点,然后找出N个点中有多少个点是属于阴影部分中,假设这个值为k,则阴影部分的面积为:k/N*12^2 方法二:将整个坐标轴看成一个边长为12的正方形,然后在(-6,6)中随机出N(N越大越好,至少超过1000)个点,然后找出这N个点中有多少个点在阴

影区域内,假设这个值为k,则阴影部分的面积为:k/N*12^2。然后重复这个过程100次,求出100次面积计算结果的均值,这个均值为阴影部分面积。 对比分析:以上两个方法都是利用蒙特卡罗方法计算阴影部分面积,只是在处理的细节有一点区别。前者是把豆子均匀分布在布上;后者则是随机把豆子仍在布上。就计算结果的精度而言,前者取决点的分割是否够密,即N是否够大;后者不仅仅通过N来控制精度,因为随机的因素会造成单次计算结果偏高和偏小,所以进行反复多次计算最后以均值来衡量阴影部分面积。 附上MATLAB程序: 方法一: clear x=-6:0.01:6; y=x; s=size(x); zs=s(1,2)^2; k=0; for i=1:s(1,2) for j=1:s(1,2) a1=(x(i)^2)/9+(y(j)^2)/36; a2=(x(i)^2)/36+y(j)^2; a3=(x(i)-2)^2+(y(j)+1)^2;

第二章 蒙特卡罗方法

第二章蒙特卡罗方法(又统称:统计试验方法) 在第一章我们看到了关于解决反问题在概率分布模型空间最普遍的方案,当它的概率分布唯一时,在模型空间是非常简单的,(例如,它仅有一个最大值),可以用分析技术来表示。 对于一般的概率分布,需要在模型空间上广泛的探索,除去维数较小的,因为这样不能系统概括,(根据位数空间大量的点群)设计好随机(或非随机)可以探索解决了许多复杂的问题,这些随机方法被洛斯阿拉莫斯团队开玩笑的叫 做“蒙特卡洛方法”,Metropplis抽样算法,现在已经建立被叫做“蒙特卡罗”。 2.1 介绍 几个世纪前蒙特卡罗(即随机的)方法就被用于计算,例如,可以用蒙特卡罗方法来估算π:对于一个普通的楼层,等同宽度W的钢带,抛出长为W/2的针, 这个针相交的凹槽,在地板上的概率等于1(勒克莱尔,乔治.路易伯爵布冯 [1907至88年])。以50为一系列做观察,做100次试验,在1850年由沃尔夫在苏黎世导致对3.1596±0.0524π的值。在数值方法中,针的行进被替换一个随机生成的数字,由计算机的代码一个域, 其中蒙特卡罗计算是平时对于数值计算大维空间积分:函数在一个普通的系统评价网格是不可能的(太多了点就被要求),并在蒙特卡罗采样功能可以提供的结果的估计值,连同误差的估计值(见附录6.9或了解更多详情,卡洛什和惠特洛克,1986)。对于反问题的解决方案采用蒙特卡罗方法是由开始Borok andYanovsk(1967)和出版社(1968,1971)。最近的Keilis-ava int是安德森和Seneta(1971,1972),罗斯曼(1985年,1985年b,rks erestingwo 1986)和J e n s e n 1的等(1998)。这本书,过参数,其中概率分布的透视空 D a h- 间是核心,我们面临着如何使用它们的问题。对“中心估计”的定义(如均值或中位数)的“分散的估计”(如协方差和矩阵)缺乏通用性,因为它是很容易找到的例子(如多模态分布在高维空间),其中这些估计不能有任何有趣的含义。当一个概率分布已被定义在低维空间(比方说,从一维到四维),我们可以直接表示关联概率密度。这是微不足道的一维或两维。它很容易在三维空间中,并且一些花样可以允许我们表示了四维概率分布。此外,事件A的概率可直接通过一个整体的,使用标准来评价(非随机的)数值方法。图2.1。的采样 ,概率密度使我们在计算中引入了概率理论(计算一个事件的概率使用估计某些时刻,等)简单的统计。

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.doczj.com/doc/006570156.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.doczj.com/doc/006570156.html, Eric Haskin haskin@https://www.doczj.com/doc/006570156.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

蒙特卡洛算法详讲

Monte Carlo 法 §8.1 概述 Monte Carlo 法不同于前面几章所介绍的确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。 普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。 Monte Carlo 方法的应用有两种途径:仿真和取样。仿真是指提供实际随机现象的数学上的模仿的方法。一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。这就是数值积分的Monte Carlo 方法。MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。 任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。Monte Carlo 计算方法需要有可得的、服从特定概率分布的、随机选取的数值序列。 §8.2 随机数和随机变量的产生 [5]-[10]全面的论述了产生随机数的各类方法。其中较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。以某种方法选取 0x ,并按照)(1k k x g x =+产生下一个随机数。最一般的方程)(x g 具有如下形式: m c ax x g mod )()(+= (8.1) 其中 =0x 初始值或种子(00>x ) =a 乘法器(0≥a ) =c 增值(0≥c ) =m 模数

蒙特卡罗方法的计算程序

关于蒙特卡罗方法的计算程序已经有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEANT 等。这些程序大多经过了多年的发展,花费了几百人年的工作量。除欧洲核子研究中心(CERN)发行的GEANT主要用于高能物理探测器响应和粒子径迹的模拟外,其它程序都深入到低能领域,并被广泛应用。就电子和光子输运的模拟而言,这些程序可被分为两个系列:1.EGS4、FLUKA、GRANT 2.ETRAN、ITS、MCNP 这两个系列的区别在于:对于电子输运过程的模拟根据不同的理论采用了不同的算法。EGS4和ETRAN分别为两个系列的基础,其它程序都采用了它们的核心算法。 ETRAN(for Electron Transport)由美国国家标准局辐射研究中心开发,主要模拟光子和电子,能量范围可从1KeV到1GeV。 ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes )是由美国圣地亚哥(Sandia)国家实验室在ETRAN的基础上开发的一系列模拟计算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它们的主要差别在于几何模型的不同。TIGER研究的是一维多层的问题,CYLTRAN研究的是粒子在圆柱形介质中的输运问题,ACCEPT是解决粒子在三维空间输运的通用程序。 NCNP(Monte Carlo Neutron and Photo Transport Code)由美国橡树林国家实验室(Oak Ridge National Laboratory)开发的一套模拟中子、光子和电子在物质中输运过程的通用MC 计算程序,在它早期的版本中并不包含对电子输运过程的模拟,只模拟中子和光子,较新的版本(如MCNP4A)则引进了ETRAN,加入了对电子的模拟。 FLUKA 是一个可以模拟包括中子、电子、光子和质子等30余种粒子的大型MC计算程序,它把EGS4容纳进来以完成对光子和电子输运过程的模拟,并且对低能电子的输运算法进行了改进。

蒙特卡洛方法模拟小例子

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点. 经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮. 现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。 使用蒙特卡洛方法模拟50次打击结果: function [out1 out2 out3 out4]=Msc(N) % N开炮次数 % out1射中概率 % out2平均每次击中次数 % out3击中敌人一门火炮的射击总数 % out4击中敌人2门火炮的射击总数 k1=0; k2=0; k3=0; for i=1:N x0=randperm(2)-1; y0=x0(1); if y0==1 fprintf('第%d次:指示正确||',i); x1=randperm(6); y1=x1(1); if y1==1|y1==2|y1==3 fprintf('第%d次:击中0炮||',i); k1=k1+1; elseif y1==4|y1==5 fprintf('第%d次:击中1炮||',i); k2=k2+1; else

fprintf('第%d次:击中2炮||',i); k3=k3+1; end else fprintf('第%d次:指示错误,击中0炮||',i); k1+1; end fprintf('\n'); end out1=(k2+k3)/N; out2=(0*k1+k2+2*k3)/20; out3=k2/N; out4=k3/N; 运行: 1.[out1 out2 out3 out4]=Msc(50) 结果: 1.第1次:指示正确||第1次:击中2炮|| 2.第2次:指示错误,击中0炮|| 3.第3次:指示错误,击中0炮|| 4.第4次:指示正确||第4次:击中0炮|| 5.第5次:指示错误,击中0炮|| 6.第6次:指示正确||第6次:击中1炮|| 7.第7次:指示正确||第7次:击中0炮|| 8.第8次:指示错误,击中0炮|| 9.第9次:指示正确||第9次:击中2炮|| 10.第10次:指示正确||第10次:击中1炮|| 11.第11次:指示正确||第11次:击中1炮|| 12.第12次:指示正确||第12次:击中2炮|| 13.第13次:指示错误,击中0炮|| 14.第14次:指示正确||第14次:击中1炮|| 15.第15次:指示错误,击中0炮|| 16.第16次:指示错误,击中0炮|| 17.第17次:指示正确||第17次:击中0炮|| 18.第18次:指示错误,击中0炮||

相关主题
文本预览
相关文档 最新文档