当前位置:文档之家› 数学建模第二章作业答案章绍辉(新)

数学建模第二章作业答案章绍辉(新)

数学建模第二章作业答案章绍辉(新)
数学建模第二章作业答案章绍辉(新)

习题2作业讲评

1. 继续考虑

2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何. 刹车距离与车速的经验公式

20.750.082678d v v =+,速度单位为m/s ,距离单位为m )

解答

(1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号:

D ~ 前后车距(m );v ~ 车速(m/s );

于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取.

比较2

0.750.082678d v v =+与2D v =,得:

()0.082678 1.25d D v v -=-

所以当15.12 m/s v <(约合54.43 km/h )时,有d时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况.

另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).

v=(20:5:80).*0.44704;

d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,418

20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;

k1=0.75; k2=0.082678; K2=2; d1=[v;v;v].*k1; d=d1+d2;

plot([0,40],[0,K2*40],'k') hold on

51015

2025

303540

车速v (m/s )

距离(m )

图1

(2)用最大刹车距离除以车速,得到最大刹车距离所需要的尾随时间(表1),并以尾随时间为依据,提出更安全的“t秒准则”(表2)——后车司机根据车速快慢的范围,从前车经过某一标志开始,默数t秒钟之后到达同一标志.

d2=0.3048.*d2;

k1=0.75; k2=0.082678;

d=d2+[v;v;v].*k1;

vi=0:40;

plot([0,10*0.44704],[0,10*0.44704],'k',...

vi,k1.*vi+k2.*vi.*vi,'k:',...

[v;v;v],d,'ok','MarkerSize',2)

legend('t 秒准则','刹车距离理论值',...

'刹车距离的最小值、平均值和最大值',2)

hold on

plot([10,35]*0.44704,2*[10,35]*0.44704,'k',... [35,60]*0.44704,3*[35,60]*0.44704,'k',... [60,75]*0.44704,4*[60,75]*0.44704,'k') title('t 秒准则,刹车距离的模型和数据') xlabel('车速v (m/s )') ylabel('距离(m )') hold off

距离(m )

t 秒准则,刹车距离的模型和数据

4. 继续考虑2.3节“生猪出售时机”案例,假设在第t 天的生猪出售的市场价格(元/公斤)为

2()(0)p t p gt ht =-+ (1)

其中h 为价格的平稳率,取h =0.0002. 其它模型假设和参数取值保持不变.

(1) 试比较(1)式与(2.3.1)式,解释新的假设和原来的假设的区别与联系;

(2)在新的假设下求解最佳出售时机和多赚的纯利润; (3)作灵敏度分析,分别考虑h 对最佳出售时机和多赚的纯利润的影响;

(4)讨论模型关于价格假设的强健性. 解答一(用MATLAB 数值计算)

(1)比较(1)式与(2.3.1)式,(1)式表明价格先降后升,(2.3.1)式假设价格匀速下降,(1)式更接近实际(图3). 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小(图4). 绘图的程序

p=@(t)12-0.08*t+0.0002*t.^2; figure(1) n=400;

plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k') axis([0,400,0,20])

title('模型假设(1)式与(2.3.1)式的比较')

legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式') xlabel('t (天)')

ylabel('p (元/公斤) ') figure(2) n=20;

plot([0,n],[12,12-0.08*n],'k:',... 0:.1:n,p(0:.1:n),'k')

title('模型假设(1)式与(2.3.1)式的比较')

legend('p(0) - g t (1)式',... 'p(0) - g t + h t^2 (2.3.1)式') xlabel('t (天)'), ylabel('p (元/公斤) ')

模型假设(1)式与(2.3.1)式的比较

2468

101214161820

t (天)

p (元/公斤)

图4

(2)在(1)式和(2.3.1)式组成的假设下,多赚的纯利润为

()()23()(0)(0)(0)Q t rp gw c t hw gr t hrt =--+-+

保留h ,代入其他具体数值,得

()32()900.08 1.6Q t ht h t t =+-+

2代入为帮助理解,可用以下脚本绘制图5: figure(2) tp=0:250;

plot(tp,Q(tp,0.0002),'k') title('纯利润Q') xlabel('t (天)') ylabel('Q (元) ')

纯利润Q

Q (元)

和(,S Q Qh=@(t)-Q(t,0.0002*1.05); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.05 (-Qn-Q1)/Q1/0.05

Qh=@(t)-Q(t,0.0002*1.1); [tn,Qn]=fminbnd(Qh,0,30); (tn-t1)/t1/0.1 (-Qn-Q1)/Q1/0.1

表3 数值计算最佳出售时机t 对h 的灵敏度

答可以由(2.3.1)式导致的解答加上灵敏度分析所代替. 所以采用更为简单的(2.3.1)式作为假设更好.

具体分析如下:

由12()(,)g g t p t h -+?=,得

12(,)

1g p t h g gt

?-=-, 代入h =0.0002,t =13.82852279,g =0.08,得

0.034571g

g

?=-. 由于(,)t g S t g t g

??≈,根据课本2.3节,代入(,) 5.5S t g =-,t =10,算得11.901t t +?=,与t =13.829只相差两天.

用于以上分析计算的MATLAB 脚本: dg_g=(12-p(ts,0.0002))/ts/0.08-1 10+dg_g*10*(-5.5)

解答二(用MATLAB 的Symbolic Math Toolbox 的MuPAD 软件符号计算)

(1)运行以下MuPAD 语句,绘得图6和图7:

plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..400), plot::Function2d(12-0.08*t,t=0..150, LineStyle=Dashed));

plot(plot::Function2d(12-0.08*t+0.0002*t^2,t=0..20), plot::Function2d(12-0.08*t,t=0..20, LineStyle=Dashed),#O);

(1)式表明价格先降后升,在实际当中有一定道理. 而 (2.3.1)式假设价格匀速下降. 两个假设都满足(0)p g '=-,在最佳出售时机附近误差微小.

图6 假设(2.3.1)式与(1)式的比较

图7 假设(2.3.1)式与(1)式的比较

(2) 在(1)式和(2.3.1)式组成的假设下,保留h,代入其他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:

C:=t->32/10*t:

w:=t->90+t:

p:=(t,h)->12-8/100*t+h*t^2:

Q:=(t,h)-->expand(w(t)*p(t,h)-C(t)-90*12); plot(plot::Function2d(Q(t,0.0002), t=0..290));

算得2

23

(2)8

25

,905ht h h t Q t t t =+-+,绘得图8.

图8 (,0.0002)Q t 的图像

运行以下MuPAD 语句:

S:=solve(diff(Q(t,h),t),t) assuming h>0; t1:=S[1];

subs(t1,h=0.0002); t2:=S[2];

ts:=subs(t2,h=0.0002); Q2:=Q(t2,h);

Qs:=subs(Q2,h=0.0002);

由方程0Q

t

?=?,解得两根:

12t t =

=

代入h =0.0002,得12192.8381439, 13.82852279t t ==(天). 2t 符

润为 d (,)0.367739025d Q h

S Q h h Q

=

?=. 结论:h 的微小变化对t 2和Q 2的影响都很小. (4)同解答一

5. 继续考虑第2.3节“生猪出售时机”案例,假设在第t 天的生猪体重(公斤)为

()000()m

t m w w w t w w w e α-=

+- (2)

其中0(0)90w w ==(公斤),270m w =(公斤),其它模型假设和参数取值保持不变.

保持.

. 当

m w 重的线性递减函数,于是体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际(图9). 两个假设都满足(0)w r '=,在最佳出售时机附近误差微小(图10).

价格 p (元/公斤)

模型假设(2.3.2)式与(2)式的比较

2468

101214161820

t (天)

价格 p (元/公斤)

图10

(2) 在(2.3.1)式和(2)式组成的假设下,用MATLAB 函数fminbnd 计算,可以求得生猪出售时机为t =14.434天,多赚的纯利润为Q =12.151元.

(3) 编程计算(,)m m m

t t S t w w w ?=?和(,)m m m Q Q

S Q w w w ?=?,将

结论:m w 的微小变化对t 和Q 的影响都较小.

(4)模型假设(2)式导致的模型解答可以由(2.3.2)式导致的解答加上灵敏度分析所代替,所以实践中采用更为简单的(2.3.2)式作为假设即可. 具体分析过程见解答二之(4).

MATLAB 脚本:

%% (1) 绘图的程序

w=@(t)90*270./(90+180*exp(-t/60));

figure(1)

n=400;

plot([0,n],[90,90+n],'k:',...

0:.1:n,w(0:.1:n),'k')

axis([0,400,0,300])

legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',4) title('模型假设(2.3.2)式与(2)式的比较') xlabel('t(天)')

ylabel('价格 p(元/公斤) ')

figure(2)

n=20;

plot([0,n],[90,90+n],'k:',...

0:.1:n,w(0:.1:n),'k')

legend('p(0) - g t (2.3.2)式',... 'p(0) - g t + h^2 (2)式',2) xlabel('t(天)')

ylabel('价格 p(元/公斤) ')

%% (2) 最佳出售时机和多赚的纯利润

C=@(t)3.2*t;

w=@(t,m)90*m./(90+(m-90)*exp(-t/60)); p=@(t)12-0.08*t;

Q=@(t,m)p(t).*w(t,m)-C(t)-90*12;

Qh=@(t)-Q(t,270);

ts=fminbnd(Qh,0,30)

Qs=Q(ts,270)

%% (3) 灵敏度分析

Qh=@(t)-Q(t,270*1.01);

[tn,Qn]=fminbnd(Qh,0,30);

(tn-ts)/ts/0.01

(-Qn-Qs)/Qs/0.01

Qh=@(t)-Q(t,270*1.05);

[tn,Qn]=fminbnd(Qh,0,30);

(tn-ts)/ts/0.05

(-Qn-Qs)/Qs/0.05

Qh=@(t)-Q(t,270*1.1);

[tn,Qn]=fminbnd(Qh,0,30);

(tn-ts)/ts/0.1

(-Qn-Qs)/Qs/0.1

%% (4) 强健性分析

dr_r=(w(ts,270)-90)/ts-1

10+dr_r*10*6.5

解答二(用MATLAB 的Symbolic Math Toolbox 的MuPAD 软件符号计算)

(1)运行以下MuPAD 语句,算得160α=:

solve(subs(diff(90*270/(90+(270-90)*E^(-a*t)),t),

重的增长率是体重的线性递减函数. 于是,体重w 是时间t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于m w . 而(2.3.2)式0()w t w rt =+只假设体重匀速增加. 长时间来看,新假设比原假设更符合实际. 两假设都满足(0)w r '=,在最佳出售时机附近误差微小.

图11 假设(2.3.2)式与(2)式的比较

图12 假设(2.3.2)式与(2)式的比较

w,代入其(2)在由(2)式和(2.3.1)式组成的假设下,保留

m

他具体数值,计算多赚的纯利润. 运行以下MuPAD语句:

数学建模讲义第一章

第一章引言 众所周知,21世纪是知识经济的时代,所谓知识经济是以现代科学技术为核心,建立在知识和信息的生产、存储、使用和消费之上的经济;是以智力资源为第一生产力要素的经济;是以高科技产业为支柱产业的经济。知识创新和技术创新是知识经济的基本要求和内在动力,培养高素质、复合型的创新人才是时代发展的需要。创新人才主要是指具有较强的创新精神、创新意识和创新能力,并能够将创新能力转化为创造性成果的高素质人才。培养创新人才,大学教育是关键,而大学的数学教育在整个大学教育,乃至在人才的培养中都起着重要的奠基作用。正如著名的数学家王梓坤院士所说:“今天的数学兼有科学和技术两种品质,数学科学是授人以能力的技术。”数学作为一门技术,现已经成为一门能够普遍实施的技术,也是未来所需要的高素质创新人才必须要具有的一门技术。随着知识经济发展的需要,创新人才的供需矛盾日趋突现,这也是全社会急呼教学改革的根本所在。因此,现代大学数学教育的思想核心就是在保证打捞学生基础的同时,力求培养学生的创新意识与创新能力、应用意识与应用能力。也就是大学数学教育应是基于传授知识、培养能力、提高素质于一体的教育理念之下的教学体系。数学建模活动是实现这一改革目标的有效途径,也正是数学建模活动为大学的数学教学改革打开了一个突破口,近几年的实践证明,这一改革方向是正确的,成效是显著的。 1.1 数学建模的作用和地位 我们培养人才的目的主要是为了服务于社会、应用于社会,促进社会的进步和发展。而社会实际中的问题是复杂多变的,量与量之间的关系并不明显,并不是套用某个数学公式或只用某个学科、某个领域的知识就可以圆满解决的,这就要求我们培养的人才应有较高的数学素质。即能够从众多的事物和现象中找出共同的、本质的东西,善于抓住问题的主要矛盾,从大量的数据和定量分析中寻找并发现规律,用数学的理论和数学的思维方法以及相关的知识去解决,从而为社会服务。基于此,我们认为定量分析和数学建模等数学素质是知识经济时代人才素质的一个重要方面,是培养创新能力的一个重要方法和途径。因此,开展数学建模活动将会在人才培养的过程中有着重要的地位和起着重要的作用。 1.1.1 数学建模的创新作用 数学科学在实际中的重要地位和作用已普遍地被人们所认识,它的生命力正在不断地增强,这主要是来源于它的应用地位。各行各业和各科学领域都在运用数学,或是建立在数学基础之上的,正像人们所说的“数学无处不在”已成为不可争辩的事实。特别是在生产实践中运用数学的过程就是一个创造性的过程,成功运用的核心就是创新。我们这里所说的创新是指科技创新,所谓的科技创新主要是指在科学拘束领域的新发明、新创造。即发明新事物、新思想、新知识和新规律;创造新理论、新方法和新成果;开拓新的应用领域、解决新的问题。大学是人才培养的基地,而创新人才的培养核心是创新思想、创新意识和创新能力的培养。传统的教学内容和教学方法显然不足以胜任这一重担,数学建模本身就是一个创造性的思维过程,从数学建模的教学内容、教学方法,以及数学建模竞赛活动的培训等都是围绕着一个培养创新人才的核心这个主题内容进行的,其内容取材于实际、方法结合于实际、结果应用于实际。总之,知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现,这也正是数学建模的创新作用所在。 1.1.2 数学建模的综合作用 对于我们每一个教数学基础科的教师来说,在上第一堂课的时候,按惯例都会讲一下课

辐射剂量数学模型在医学影像学的应用及研究进展_刘潇

·综 述· 辐射剂量数学模型在医学影像学的应用及研究进展* 刘 潇综述,曾勇明△审校 (重庆医科大学附属第一医院放射科 400016) 关键词:辐射剂量;医学影像学;数学模型;蒙特卡洛;仿真人体体模 doi:10.3969/j.issn.1671-8348.2013.14.033文献标识码:A文章编号:1671-8348(2013)14-1650-03 随着医学的不断发展,现代医学影像技术越来越多的应用于临床实践中,尤其是在CT、DSA的临床应用呈逐年上升趋势,辐射剂量问题已引起全世界的关注。有效实施辐射剂量检测是保证医学影像学检查合理使用的基本要求。当前,临床上主要采用影像设备的剂量测试工具来获得辐射剂量数据,并评估患者的辐射剂量,但不能前瞻性的评价和预估某一放射学检查时的辐射水平。近年来,数学模型开始应用于医学影像学领域,对研究辐射剂量的科学实验带来便利。本文就辐射剂量数学模型的临床应用及进展综述如下。 1 辐射剂量数学模型 为了使描述更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。数学建模是用数学语言描述实际现象的过程,不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容[1]。 以蒙特卡洛(Monte Carlo)为代表的数学模拟方法是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此,只是在近些年才得到广泛推广。蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论[2]。 在医学影像学中,基于蒙特卡洛模拟技术开发的软件的临床应用近年来有较大发展,如Impact MC软件包(VAMP Gm-bH,Erlangen,Germany)功能独特,目前科研中,提供快速的三维剂量分布计算,该软件可以适用于多种任务,包括普通放射学、CT、C型臂(基于平板探测器)CT等。在科研中成功的剂量分布计算已经在30多个专业领域的国际刊物也有极好的反馈[3]。还有一些通用的软件工具常在实验研究中应用,如用来模拟辐射CT剂量沉积的基于蒙特卡洛的软件MCNPX ex-tended v2.6,在洛杉矶洛斯阿拉莫斯国家实验室执行模拟[4]。国内应用较广的免费软件,如Geant4[5-6]或MCNP EGS4[7],这些软件可执行辐射剂量估算。器官剂量估算软件PCXMC(STUK,Finland)是基于蒙特卡洛计算方法,用于估算人体器官所受吸收剂量(absorbeddose,AD)和全身有效剂量(effectivedose,ED)的常用计算软件[8]。 2 数学模型在CT检查中的应用 在CT检查中减少辐射剂量是医学影像研究的热点问题,常用于评价CT检查的ED通过剂量长度乘积(dose lengthproduct,DLP)乘以权重因子获得[9],但与利用仿真体模检测辐射剂量的方法比较,其值不够准确[10]。应用数学模型软件,模拟患者的辐射剂量,可避免不必要的重复照射。通过在软件中加入CT的扫描参数及患者的性别、体质量指数(BMI)、心率等因素,因而更具个性化。辐射剂量数学模型在CT的应用已越来越受到重视。 有研究采用数学模型评估冠状动脉造影患者接受的辐射剂量,模型模拟固定管电流下ED,与常规心电门控管电流自动调制技术接受的剂量相比较。可以得到心电门控管电流自动调制技术(预设100mAs)的ED为(7.1±2.1)mSv,而模拟固定管电流(100mAs)下肺组织的ED为(12.5±5.3)mSv;并证明应用心电门控管电流自动调制技术后辐射剂量减少了52%[11]。 Impact MC软件生成的三维剂量分布是其特点,可涉及到器官剂量的估算和计算患者个体风险的ED水平。在对每个采集的参数和重建的容积数据的基础上,进行了蒙特卡洛模拟,以计算每个像素的沉积与光子相互作用方面的剂量。它可模拟现代CT系统的所有参数,比如蝶形过滤器、管电流调制、双源CT设置和动态Z轴准直等。Impact MC软件的可视仿真体模(NVIDIA GPU)功能,模拟一个高精度的CT检查环境,因此Impact MC是最快最全面的蒙特卡洛模拟软件包之一。为了确保最好的结果,Impact MC已在三个不同的CT系统(西门子、GE、飞利浦公司产品)验证[12]。 MCNPX extended v2.6软件能模拟以1keV的低能量辐射剂量为基准的剂量,这种软件可使用120kVp、300mA的条件下模拟全身CT扫描。针对普通患者,扫描范围可扩大,从头顶的底部到耻骨随意调节。利用蒙特卡洛技术模拟的人体数学模型,以现场调查(与临床应用相适应)所得的CT技术参数和几何条件为输入参数,从理论上估算了成人CT冠状动脉检查所接受各器官组织的吸收剂量[4]。一些免费软件(如Geant4)缺乏灵活性,难以适应CT扫描技术的复杂多变,这些原因促进了开发以蒙特卡洛技术为仿真基础的应用于放射诊断的软件,尤其是与CT检查相关的应用软件[13-17]。 3 数学模型在介入治疗的应用 介入治疗是临床、医学与工程技术紧密结合,相互依存而发展起来的前沿学科,它具有微创、简便、安全等优点,为过去 0 5 6 1重庆医学2013年5月第42卷第14期 *基金项目:重庆市卫生局科研基金资助项目(2010-2-055)。 作者简介:刘潇(1981~),技师,在读硕士研究生,主要从事医学影像技术研究。 △ 通讯作者,Tel:13608338488;E-mail:zeng-ym@vip.sina.com。

数学建模第二章作业答案章绍辉(新)

习题2作业讲评 1. 继续考虑 2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何. 刹车距离与车速的经验公式 20.750.082678d v v =+,速度单位为m/s ,距离单位为m ) 解答 (1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号: D ~ 前后车距(m );v ~ 车速(m/s ); 于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取. 比较2 0.750.082678d v v =+与2D v =,得: ()0.082678 1.25d D v v -=- 所以当15.12 m/s v <(约合54.43 km/h )时,有d时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况. 另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).

v=(20:5:80).*0.44704; d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,418 20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2; k1=0.75; k2=0.082678; K2=2; d1=[v;v;v].*k1; d=d1+d2; plot([0,40],[0,K2*40],'k') hold on 51015 2025 303540 车速v (m/s ) 距离(m ) 图1

数学模型第二章习题答案要点

第二章(2)(2008年10月9日) 15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系. 解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=3 2 -T ML , [v ]=1 -LT ,[s ]=2L ,[ρ]=3 -ML ,这里T M L ,,是基本量纲. 量纲矩阵为: A=) ??????????---ρ()() ()()()()(001310013212s v P T M L 齐次线性方程组为: ?? ? ??=--=+=-++0 30 32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系 数,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1 ,[ρ]=L -3 MT 0 , [μ]=MLT -2 (LT -1L -1 )-1L -2 =MLL -2T -2 T=L -1 MT -1 ,[g ]=LM 0T -2 ,其中L ,M ,T 是基本量纲. 量纲矩阵为 A=) ()()()()()() (210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即 ??? ??==+=+0 2y -y - y -0 y y 0y y -3y -y 431 324321 的基本解为y=(-3 ,-1 ,1 ,1)

数学建模--杨桂元--第一章习题答案

第一章 1-1习题 1.设用原料A 生产甲、乙、丙的数量分别为131211,,x x x ,用原料B 生产甲、乙、丙的数量分别为232221,,x x x ,原料C 生产甲、乙、丙的数量分别为333231,,x x x ,则可以建立线性规划问题的数学模型: ?? ??? ??? ?? ?????=≥≤+--≤+--≥--≤+--≥--≤++≤++≤++++++++-+=) 3,2,1,(,00 5.05.05.004.0 6.06.00 15.015.085.008.02.02.006.06.04.012002500 2000..8.38.56.78.18.36.52.08.16.3max 33231332221232 22123121113121113332312322 21131211333231232221131211j i x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x S ij LINDO 求解程序见程序XT1-1-1。 求解结果: 1200 ,22.1482,33.473,0,78.1017,66.1526322212312111======x x x x x x 0,0,0332313===x x x ,24640max =S (元) 。 2.设用设备,,,,,32121B B B A A 加工产品Ⅰ的数量分别为54321,,,,x x x x x ,设备121,,B A A 加工产品Ⅱ的数量分别为876,,x x x ,设备22,B A 加工产品Ⅲ的数量分别为109,x x ,则目标函数为: 976321)5.08.2())(35.02())(25.025.1(max x x x x x x S -++-+++-= 4000 7200700011478340008625010000129731260001053005 1048397261x x x x x x x x x x ?-+?-+?-++?-+? -整理后得到: ??? ??? ?=≥=-=-+=--++≤≤+≤+≤++≤+-+-++---+=)10,9,8,7,6,5,4,3,2,1(,00;0;0;40007;7000114;400086; 100001297;6000105..2304.19256.15.03692.115.135.04474.0375.07816.075.0max 10987654321510483972611098765 4321j x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x x S j 整数 LINDO 求解的程序见程序XT1-1-2。 求解结果: 324,500,0,571,859,0,230,120010987654321==========x x x x x x x x x x 446.1155max =S 3.设自己生产甲、乙、丙的数量分别为312111,,x x x ,外协加工甲、乙、丙第数量分别为322212,,x x x (外协加工的铸造、机加工和装配的工时均不超过5000小时),则

第二章 系统的数学模型

第二章 系统的数学模型 2.3图中三图分别表示三个机械系统。求出他们各自的微分方程,图中xi 表示输入位移,xo 表示输出位移,假设输出端无负载效应。 解:(1)、对图(a )所示系统,有牛顿定律有 c 1(x i-x 0)-c 2x 0=m x 0 即 m x 0+(c 1-c 2) x 0= c 1x i (2)、对图(b )所示系统,引入一中间变量x ,并有牛顿定律有 (x i -x)k 1=c(x -x 0) c(x -x 0)=k 2x 0 消除中间变量有 c(k 1+k 2)x 0+k 1k 2x 0=ck 1x i (3)、对图(c )所示系统,有牛顿定律有 c(x i-x 0)+ k 1 (x i -x)= k 2x 0 即 c x 0+(k 1+k 2)x 0=c x i+ k 1x i 2.4 求出图(2.4)所示电网络图的微分方程。

解:(1)对图(a )所示系统,设i x 为流过1R 的电流,i 为总电流,则有 ?+ =i d t C i R u o 2 21 11i R u u o i =- dt i i C u u o i ?-= -)(11 1 消除中间变量,并化简有 i i i o o o u R C u C C R R u R C u R C u C C R R u R C 1 22 11 221122 112211 )(1)1(++ +=++ ++ (2)对图(b )所示系统,设i 为电流,则有 dt i C i R u u o i ?+ +=1 11 i R dt i C u o 2 2 1+= ? 消除中间变量,并化简有 i i o o u C u R u C C u R R 2 22 1 211)11()(+=+ ++ 2.5 求图2.5所示机械系统的微分方程。图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。 解:设系统输入为M (即M (t )),输出为θ(即θ(t )),分别对圆盘和质块进行动力学分析,列写动力学方程如下:

数学建模章绍辉版作业

数学建模章绍辉版作业集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第四章作业 第二题: 针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。 下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。 1、 问题假设 大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设 (1) 吸收室在初始时刻t=0时,酒精量立即为 32 D ;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ; (2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0; 在任意时刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与中心室的酒精含量成正比,比例系数为2k ; (3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量 无关。 2、 符号说明 酒精量是指纯酒精的质量,单位是毫克; 酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时); ()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克);

0~D 两瓶酒的酒精量(毫克); (t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升); 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升); ~V 中心室的容积(百毫升); 1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数); 2~k 酒精从中心室向体外排除的速率系数(假设其为常数); 3~k 在短时间喝下三瓶酒的假设下是指短时间喝下的三瓶酒的酒精总量除以中心室体 积,即03/2D V ;而在较长时间内(2小时内)喝下三瓶酒的假设下就特指03/4D V . 3、 模型建立和求解 (1) 酒是在很短时间内喝的: 记喝酒时刻为0t =(小时),设(0)0c =,可用()2113 212 ()k t k t k k c t e e k k --= --来计算血液中的酒精含量,此时12k k 、为假设中所示的常数,而033155.792D k V ?? == ??? . 下面用MATLAB 程序画图展示血液中酒精含量随时间变化并且利用fzero 函数和fminbnd 函数来得到饮酒驾车醉酒驾车对应的时间段,以及血液中酒精含量最高的时刻。 MATLAB 程序如下: k1=;k2=;k3=; c=@(t)(k1.*k3)./(k1-k2).*(exp(-k2.*t)-exp(-k1.*t)); f=@(t)c(t)-20; g=@(t)c(t)-80; h=@(t)-c(t); t1(1)=fzero(f,1);t1(2)=fzero(f,12), t2(1)=fzero(g,1);t2(2)=fzero(g,12) [t3,c3]=fminbnd(h,0,24) fplot(c,[0,20],'k') hold on plot([0,20],[20,20],'k',[0,20],[80,80],'k') hold off

数学建模第二章作业答案章绍辉

数学建模第二章作业答案章绍辉

习题2作业讲评 1. 继续考虑 2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何. 刹车距离与车速的经验公式 20.750.082678d v v =+,速度单位为m/s ,距离单位为m ) 解答 (1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号: D ~ 前后车距(m );v ~ 车速(m/s ); 于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取. 比较2 0.750.082678d v v =+与2D v =,得: ()0.082678 1.25d D v v -=- 所以当15.12 m/s v <(约合54.43 km/h )时,有d时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况. 另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).

v=(20:5:80).*0.44704; d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,418 20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2; k1=0.75; k2=0.082678; K2=2; d1=[v;v;v].*k1; d=d1+d2; plot([0,40],[0,K2*40],'k') hold on plot(0:40,polyval([k2,k1,0],0:40),':k') plot([v;v;v],d,'ok','MarkerSize',2) title('比较刹车距离实测数据、理论值和两秒准则') legend('两秒准则','刹车距离理论值',... '刹车距离的最小值、平均值和最大值',2) xlabel('车速v (m/s )') ylabel('距离(m )') hold off 51015 2025 303540 020406080100120 140160180比较刹车距离实测数据、理论值和两秒准则 车速v (m/s ) 距离(m ) 两秒准则 刹车距离理论值 刹车距离的最小值、平均值和最大值 图1

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,

精品文 (2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t. (4) 可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规

第二章 控制系统的数学模型

+ 第二章控制系统的数学模型 一.是非题 1.惯性环节的输出量不能立即跟随输入量变化,存在时间上的延迟,这是由于环节的惯性造成的。(√) 2.比例环节又称放大环节,其输出量与输入量之间的关系为一种固定的比例关系。(√) 3.积分环节的输出量与输入量的积分成正比。(√) 4.如果把在无穷远处和在零处的的极点考虑在内,而且还考虑到各个极点和零点的重复数,传递函数G (s )的零点总数与其极点数不等 (×) 二. 选择题 1.比例环节的传递函数为 (A ) A .K B 。K s C 。 τs D 。以上都不是 2.下面是t 的拉普拉斯变换的是 (B ) A . 1 S B 。 21S C 。2S D 。S 3.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相串联则总的传递函数是 (C ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。 () () 12G s G s

4.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相并联则总的传递函数是 (A ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。() () 12G s G s 三. 填空题 1.典型环节由比例环节,惯性环节, 积分环节,微分环节,振荡环节,纯滞后环节 2.振荡环节的传递函数为22 21k s s τζτ++ 3.21 2 t 的拉普拉斯变换为 3 1 s 4.建立数学模型有两种基本方法:机理分析法和实验辨识法 四.计算题 §2-1 数学模型 1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络 C r u R i dt di L u +?+? = c i C u =? c c c u u C R u C L +'??+''??=

数学建模数模第一次作业(章绍辉版)

1.(1) n=101; x1=linspace(-1,1,n); x2=linspace(-2,2,n); y1=[sqrt(1-x1.^2);-sqrt(1-x1.^2)]; y2=[sqrt(4-x2.^2);-sqrt(4-x2.^2);sqrt(1-(x2.^2)/4);-sqrt(1-(x2.^2)/4)]; plot(x1,y1) … hold on; plot(x2,y2) title('椭圆x^2/4+y^2=1的内切圆和外切圆') axis equal -2.5 -2-1.5-1-0.500.51 1.52 2.5 -2-1.5-1-0.500.511.5 2椭圆x 2/4+y 2=1的内切圆和外切圆 (2) x1=linspace(-2,2,101); / x2=linspace(-2,8); axis equal plot(exp(x1),x1,x1,exp(x1),x2,x2) title('指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称')

-2 -1 1 2 3 4 5 6 7 8 -2-101234567 8指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称 (3) hold on — q=input('请输入一个正整数q;') for i=1:q for j=1:i if rem(j,i) plot(j/i,1/i) end end end @

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 00.050.10.150.20.250.30.350.40.45 0.5 3.代码如下: n=input('请输入实验次数n=') k=0; for i=1:n 。 x=ceil(rand*6)+ceil(rand*6); if x ==3|x==11 k=k+1; elseif x~=2&x~=7&x~=12 y= ceil(rand*6)+ceil(rand*6); while y~=x&y~=7 y=ceil(rand*6)+ceil(rand*6); end if y==7 ; k=k+1; end end end

第1章数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

第二次数学建模作业

4. 根据表1.14 的数据,完成下列数据拟合问题: 表 1.14 美国人口统计数据(百万人) 年份1790 1800 1810 1820 1830 1840 1850 1860 人口 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 年份1870 1880 1890 1900 1910 1920 1930 1940 人口38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 年份1950 1960 1970 1980 1990 2000 人口150.7 179.3 204.0 226.5 251.4 281.4 解答:(1): (i)执行程序: t=1790:10:2000; x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.2,92.0,106.5,123.2,131.7,150.7,179.3,204 .0,226.5,251.4,281.4]; f=@(r,t)3.9.*exp(r(1).*(t-1790)); r=nlinfit(t,x,f,0.036) sse=sum((x-f(r,t)).^2) plot(t,x,'k+',1790:10:2000,f(r,1790:10:2000),'k') axis([1790,2000,0,300]),legend('测量值','理论值') xlabel('美国人口/(百万)'),ylabel('年份') title('美国人口指数增长模型图II') 运行结果: >> Untitled r = 0.0212 sse = 1.7433e+004 即,拟合效果:r =0.0212;误差平方和为:1.7433e+004. 拟合效果图(i):

第二章 动态数学模型

第二章控制系统的数学模型 控制系统的数学模型 本章主要内容: 引言 微分方程模型 传递函数模型 脉冲响应模型 方框图模型 信号流图模型 频域特性模型 数学模型的实验测定方法(辨识) 2.0 引言 主要解决的问题: 什么是数学模型 为什么要建立系统的数学模型 对系统数学模型的基本要求 2.0.1 什么是数学模型 控制系统的数学模型是描述系统内部各物理量(或变量)之间关系的数学表达式或图形表达式或数字表达式。 亦:描述能系统性能的数学表达式(或数字、图像表达式) 控制系统的数学模型按系统运动特性分为:静态模型

动态模型 静态模型:在稳态时(系统达到一平衡状态)描述系统各变量间关系的数学模型。 动态模型:在动态过程中描述系统各变量间关系的数学模型。 关系:静态模型是t时系统的动态模型。 控制系统的数学模型可以有多种形式,建立系统数学模型的方法可以不同,不同的模型形式适用于不同的分析方法。 2.0.2 为什么要建立控制系统的数学模型 控制系统的数学模型是由具体的物理问题、工程问题从定性的认识上升到定量的精确认识的关键!(这一点非常重要,数学的意义就在于此) 一方面,数学自身的理论是严密精确和较完善的,在工程问题的分析和设计中总是希望借助于这些成熟的理论。事实上凡是与数学关系密切的学科发展也是快的,因为它有严谨和完整的理论支持;另一方面,数学本身也只有给它提供实际应用的场合,它才具有生命力。“1”本身是没有意义的,只有给它赋予了单位(物理单位)才有意义。 建立系统数学模型的方法很多,主要有两类: 机理建模白箱实验建模(数据建模)黑箱或灰箱 系统辨识 2.0.3 对系统数学模型的基本要求 亦:什么样的数学表达式能用于一个工程系统的描述。 理论上,没有一个数学表达式能够准确(绝对准确)地描述一个系统,因为,理论上任何一个系统都是非线性的、时变的和分布参数的,都存在随机因素,系统越复杂,情况也越复杂。 而实际工程中,为了简化问题,常常对一些对系统运动过程影响不大的因素忽略,抓住主要问题进行建模,进行定量分析,也就是说建立系统的数学模型应该在模型的准确度和复杂度上进行折中的考虑。因此在具体的系统建模时往往考虑以下因素:

数学建模章绍辉版第四章作业

第四章作业 第二题: 针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。 下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。 1、 问题假设 大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设 (1) 吸收室在初始时刻t=0时,酒精量立即为 32 D ;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ; (2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时 刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与 中心室的酒精含量成正比,比例系数为2k ; (3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。 2、 符号说明 酒精量是指纯酒精的质量,单位是毫克; 酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时) ; ()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克) ; 0~D 两瓶酒的酒精量(毫克); (t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升) ; 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升); ~V 中心室的容积(百毫升) ; 1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数2.0079); 2~k 酒精从中心室向体外排除的速率系数(假设其为常数0.1855);

10424-数学建模-第一章 线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为

相关主题
文本预览
相关文档 最新文档