当前位置:文档之家› 聚丙烯酰胺特性黏度的测定及分子量计算

聚丙烯酰胺特性黏度的测定及分子量计算

聚丙烯酰胺特性黏度的测定及分子量计算
聚丙烯酰胺特性黏度的测定及分子量计算

聚丙烯酰胺特性黏度的测定及分子量计算

根据中国国家标准GB12005.聚丙烯酰胺的分子量用特性黏度法测定;水解度用中和法测定;残余单体的含量大于0.01%吋用气相或液相色谱法测定.大于0.5%时用溴化法测定。

(1)特性黏度的测定及分子量计算

①测定原理:按规定条件制备浓度为0.0005-0.OOlg/mL的试样溶液,该溶液以氯化钠溶液为溶.c(NaCl)=1.00mol/L。用气承液柱式乌式毛细管黏度计分别测定溶液和溶剂的流经时间.根据测得值计算特性黏度。本方法适用于不同聚合方法制备的粉状和胶状非离子型聚丙烯酰胺和阴离子型聚内烯酰胺。

②仪器

a、玻璃毛细管黏度计:采用GB1632规定的稀释型乌氏毛细管黏度计,如图4.73所示,阳离子聚丙烯酰胺

技术要求如下:

i、应使浓度为lmol/L的氯化钠水溶液在30°下的流经时间在

100-130s范围内;

ii、型号为4-0.55和4-0.57,其中4表示定量球6的容积(单位mL).0.55和0.57表示毛细管内径(单位mm)。

b、恒温水浴:控温精度士0.05°C。

c、秒表:分度值0.Is。

d、分析天平:感量0.OOOlg。

e、容量瓶:容积25mL、50mL、100mL、200mL。阳离子聚丙烯酰胺厂家

f、移液管:容积5mL、10mL、50mL?

g、具塞锥形瓶:容积250mL。

h、玻璃砂芯漏斗:G-2型。

i、烧杯:容积lOOmL。

j、量筒:容积50mL。

k、注射器、乳胶管洗耳球等。

③试剂和溶液:本分析方法所用的试剂和水,均为分析纯试剂和蒸馏水。

a、氯化钠溶液:将氣化钠用蒸馏水配制成c(NaCl)=l.OOmol/L和

c(NaCl)=2.OOmol/L的溶液。

b、铬酸洗液。阳离子聚丙烯酰胺厂家

④试样溶液的配制

a、粉状聚丙烯酰胺:在lOOmL容量瓶中称人0.05-0.lg均匀的粉状试样,准确至0.OOOlg。加人约48mL的蒸馏水,经常摇动容量瓶。待试样溶解后,用移液管准确加人50mL浓度2.00mol/L的氯化钠溶液,放在(30±0.05)°C水浴中。恒温后,用蒸馏水稀释至刻度,摇匀,用于燥的玻璃砂芯漏斗过滤,即得试样浓度约

0.0005-0.001g/mL 且氯化钠浓度为l.OOmol/L的试样溶液,放在恒温水浴中备用。

b、胶状聚丙烯酰胺:在已准确称量的lOOmL烧杯中,称人固含量为8%-30%的胶状试样0.66-1.25g.精确至0. OOOlg。加入50mL蒸馏水.搅拌溶解后,转移入200mL容量瓶中。加人lOOmL浓度为2.00mol/L 的氯化钠溶液.放在恒温水浴中。恒温后,用蒸馏水稀释至刻度.摇匀,用千燥的玻璃砂芯漏斗过滤,即得试样浓度约为0.

0005-0.001g/mL,且氯化钠浓度1.00mol/L的试样溶液,放在恒温水浴中备用。阳离子聚丙烯酰胺厂家

ii、论哪种试样,各点的相对黏度应在1.2-2.5范围内。

⑤测定步骤

a、将恒温水浴的温度调节在(30±0.05)度:。

b、在恒温水浴中固定一个250mL具寒锥形瓶,在其中加入经干燥的玻璃砂芯漏斗过滤的浓度l.OOmol/L的氯化钠溶液.恒温30min备用。

c、在乌氏黏度计的管2、管3的管口接上乳胶管。将黏度计垂直固定在怛温水浴中,水面应高过缓冲球2cm。

d、用移液管吸取I0mL试样溶液.由管1加人黏度计,应使移液管口对准管1的中心,避免溶液挂管壁上。待溶液自然流下后,静止10S,用洗耳球将最后一滴吹人黏度计,恒温lOmin。

e、紧闭管3上的乳胶管,慢慢用注射器将溶液抽人球6,待液面升至球4—半时,取下注射器.先放开管3上的乳胶管,再放开管2上的乳胶管,让溶液自由下落。阳离子聚丙烯酰胺厂家

f、当液面下降至刻线5时,启动秒表,至刻线7时,停止秒表,记录时间。启动和停止秒表的时刻,应是溶液弯月面的最低点与刻线相切的瞬间,观察时应平视。

g、按e和f重复测定三次,各次流经时间的差值应不超过0.2s。取三次测定结果的算术平均值为该溶液的流经时间t

h、用移液管从锥形瓶中吸取5mL已经恒温的l.OOmol/L的氯化钠溶液,由管1加人黏度计。紧闭管3的乳胶管,用洗耳球从管2打气鼓泡3-5次,使之与原来的10mL溶液混合均匀。并使溶液吸上,压下三次以上。此时溶液的浓度为C0的2/3,按e、f测得流经时间t2

i、按⑧再逐次加人5mL、10mL、10mL浓度1.OOmol/L的氯化钠溶液。分別测得浓度为1/2c。,1/3Co ,1/4c。时的流经时间t3,t4和t5。j、洗净黏度计。干燥后,在其中加人经干燥的玻璃砂芯漏斗过滤的,浓度为l.OOmol/L 的氣化钠溶液10-15mL。恒温lOmin后,按e、f 测得流经时间f0。阳离子聚丙烯酰胺厂家

⑥黏度计的洗涤和干燥,在使用黏度计前后以及在测定中出现读数相差大于0.2s又无其他原因时,应按如下步骤清洗黏度计:a.自来水冲洗;b.铬酸洗液清洗;c.蒸馏水冲洗。将洗净的黏度计置于烘箱内干燥。

⑦结果表示

a、按式(4.162)和式(4.163)计算试样溶液的相对黏度和增比黏度:

粘度法测分子量实验报告(精)

高聚物相对分子量的测定 一、实验目的 1、了解黏度法测定高聚物分子量的基本原理和分子。 2、测定聚乙二醇的黏均分子量。 3、掌握用乌贝路德黏度的方法。 4、用Origin或Excel处理实验数据 二、实验原理 分子量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不一,一般在10~10之间,所以通常所测高聚物的分子量是平均分子量。测定高聚分子量的方法很多,对线型高聚物,各方法适合用范围如下; 10 端基分析〈3*4 10 沸点升高,凝固点降低,等温蒸馏〈3*4 10~10 渗透压46 10~10 光散射47 10~10 起离心沉降及扩散47 10~10 黏度法47 其中黏度发设备简单,操作方便,有相当好的实验精度,但黏度发不是测分子量的绝对方法,因为此法中所有的特征黏度与分子量的经验方程是要用其他方法来确定的,高聚物不同,溶剂不同,分子量范围不同,就要用不同的经验方程式。 高聚物在稀溶液中的黏度,主要反映了液体在流动是存在着内摩檫。在测高聚物溶液黏度求分子量时,常用到下面一些名词。 如果高聚物分子的分子量越大,则它与溶剂间的接触表面之间的经验关系为; 式中,M为粘均分子量;K为比例常数;a是与分子形状有关的经验参数。K与a植a与温度、高聚物]溶剂性质及分子量大小有关。K植受温度的影响较明显,而a值主要取决与高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与a的值可以通过其它的实验方法确定,例如渗透压法、光散射大等,从黏度法只能测定得[ɡ] 根据实验,在足够稀的溶液中有: 这样以及对C作图得两条直线,外推到这两条直线在纵坐标轴上想叫与一点,可求出数值。为了绘图方便,引进相对浓度,即。其中,C表示溶液的真实浓度,表示溶液的其始浓度,由图可知,其中A为截距 黏度测定中异常现象的近似处理。在特定性黏度测量过程中,有时并非操作不慎,而出现对图与对图外推到时,在纵坐标轴上并不相交于一点的异常现象。在式中和

聚丙烯酰胺

聚丙烯酰胺 1、定义 丙烯酰胺聚合物是丙烯酰胺的均聚物及其共聚物的统称。工业上凡是含有50%以上的丙烯酰胺(AM)单体结构单元的聚合物,都泛称聚丙烯酰胺。其他单体结构单元含量不足5%的通常都视为聚丙烯酰胺的均聚物。 聚丙烯酰胺,polyacrylamide(PAM),CAS RN:[9003-05-8],结构式为: n是聚合度。n的范围很宽,数量级为102~105,相应的相对分子质量由几千到上千万。 分子量是PAM的最重要参数。按其值得大小有低分子量(<100×104)、中等分子量(100×104~1000×104)、高分子量(1000×104~1500×104)和超高分子量(>1700×104)四种。不同分子量范围的PAM有不同的使用性质和用途。 2、分类 聚丙烯酰胺按在水溶液中的电离性可分为非离子型、阴离子型、阳离子型、两性型。 非离子型聚丙烯酰胺(NPAM)的分子链上不带可电离基团,在水中不电离;阴离子型聚丙烯酰胺(APAM)的分子链上带有可电离的负电荷基团,在水中可电离成聚阴离子和小的阳离子;阳离子型聚丙烯酰胺(CPAM)的分子链上带有可电离的正电荷基团,在水中可电离成聚阳离子和小的阴离子;两性的聚丙烯酰胺(AmPAM或ZPAM)的分子链上则同时带有可电离的负电荷基团和正电荷基团,在水中能电离成聚阴离子和聚阳离子,ZPAM的电性依溶液体系的PH值和何种类型的电荷基团多寡而定。 PAM的电性称谓和所带的电荷基团解离后的电性称谓相同。 按照聚合物分子链的几何形状可把PAM分为线型、支化型和交联型。PAM分子链的形状一般是线型结构。但是在丙烯酰胺自由基聚合反应的过程中会发生链转移反应。

粘度法测分子量

粘度法测定聚合物的粘均分子量 线型聚合物溶液的基本特性之一,是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。 一、 实验目的 掌握粘度法测定聚合物分子量的原理及实验技术。 二、基本原理 聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式 2[][]sp k c c ηηη =+ --------------------------------------- (1) 在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。另一个常用的式子是 2[][]ln r c c ηβηη =--------------------------------------- (2) 式中k 与β均为常数,其中k 称为哈金斯参数。对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。从(1)式和(2)式看出,如果用sp c η或ln r c η对c 作图并外 推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为 特性粘度[η],如图1-1所示 0ln lim lim []sp r c c c c ηηη→→== ----------------------------------------(3) 图1-1

聚丙烯酰胺特性黏度的测定及分子量计算

聚丙烯酰胺特性黏度的测定及分子量计算 根据中国国家标准GB12005.聚丙烯酰胺的分子量用特性黏度法测定;水解度用中和法测定;残余单体的含量大于0.01%吋用气相或液相色谱法测定.大于0.5%时用溴化法测定。 (1)特性黏度的测定及分子量计算 ①测定原理:按规定条件制备浓度为0.0005-0.OOlg/mL的试样溶液,该溶液以氯化钠溶液为溶.c(NaCl)=1.00mol/L。用气承液柱式乌式毛细管黏度计分别测定溶液和溶剂的流经时间.根据测得值计算特性黏度。本方法适用于不同聚合方法制备的粉状和胶状非离子型聚丙烯酰胺和阴离子型聚内烯酰胺。 ②仪器 a、玻璃毛细管黏度计:采用GB1632规定的稀释型乌氏毛细管黏度计,如图4.73所示,阳离子聚丙烯酰胺

技术要求如下: i、应使浓度为lmol/L的氯化钠水溶液在30°下的流经时间在 100-130s范围内; ii、型号为4-0.55和4-0.57,其中4表示定量球6的容积(单位mL).0.55和0.57表示毛细管内径(单位mm)。 b、恒温水浴:控温精度士0.05°C。 c、秒表:分度值0.Is。 d、分析天平:感量0.OOOlg。 e、容量瓶:容积25mL、50mL、100mL、200mL。阳离子聚丙烯酰胺厂家 f、移液管:容积5mL、10mL、50mL? g、具塞锥形瓶:容积250mL。 h、玻璃砂芯漏斗:G-2型。 i、烧杯:容积lOOmL。

j、量筒:容积50mL。 k、注射器、乳胶管洗耳球等。 ③试剂和溶液:本分析方法所用的试剂和水,均为分析纯试剂和蒸馏水。 a、氯化钠溶液:将氣化钠用蒸馏水配制成c(NaCl)=l.OOmol/L和 c(NaCl)=2.OOmol/L的溶液。 b、铬酸洗液。阳离子聚丙烯酰胺厂家 ④试样溶液的配制 a、粉状聚丙烯酰胺:在lOOmL容量瓶中称人0.05-0.lg均匀的粉状试样,准确至0.OOOlg。加人约48mL的蒸馏水,经常摇动容量瓶。待试样溶解后,用移液管准确加人50mL浓度2.00mol/L的氯化钠溶液,放在(30±0.05)°C水浴中。恒温后,用蒸馏水稀释至刻度,摇匀,用于燥的玻璃砂芯漏斗过滤,即得试样浓度约 0.0005-0.001g/mL 且氯化钠浓度为l.OOmol/L的试样溶液,放在恒温水浴中备用。 b、胶状聚丙烯酰胺:在已准确称量的lOOmL烧杯中,称人固含量为8%-30%的胶状试样0.66-1.25g.精确至0. OOOlg。加入50mL蒸馏水.搅拌溶解后,转移入200mL容量瓶中。加人lOOmL浓度为2.00mol/L 的氯化钠溶液.放在恒温水浴中。恒温后,用蒸馏水稀释至刻度.摇匀,用千燥的玻璃砂芯漏斗过滤,即得试样浓度约为0. 0005-0.001g/mL,且氯化钠浓度1.00mol/L的试样溶液,放在恒温水浴中备用。阳离子聚丙烯酰胺厂家

粘度法测定高聚物分子量

实验五粘度法测定水溶性高聚物分子量 一.实验目的 1. 测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,相对分子质量不同,高聚物的性能差异很大。所以不同材料,不同的用途对分子质量的要求是不同的。测定高聚物的相对分子质量对生产和使用高分子材料具有重要的实际意义。本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一。它是一种无臭、无味、白色固体物质,易溶于近沸点的热水中,相对分子质量是2∽8×104范围内,选用它来做实验是合乎要求的。 线型高分子可被溶剂分子分散,在具有足够的动能下相互移动,成为黏度态,η是可溶性的高聚物在稀溶液中的黏度,是它在流动过程中所存在内摩擦的反映,这种摩擦主要有:溶剂分子与溶剂分子之间的内摩擦,也就是纯溶剂的黏度,记作η0;还有高分子与高分子之间的内摩擦以及高分子与溶剂分子之间的内摩擦,三者总和表现为高聚物溶液的黏度,记作η。 在同一温度下,高聚物的黏度一般都比纯溶剂的黏度大,即η>η0,这些黏度增加的分数,叫做增比黏度,记作ηsp,即 式中,ηr 称为相对黏度,这指明溶液黏度对溶剂黏度的相对值,仍是整个溶液的黏度行为;ηsp则意味着已经扣除了溶剂分子之间的内摩擦效应。 溶液的浓度可大可小,显然,浓度越大,黏度也就越大,为了便于比较,将单位浓度下所显示的黏度,即引入ηsp/c,称作比浓黏度,其中c是浓度,采用单位为g/mL。 为了进一步消除高聚物分子之间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不记。这时溶液所呈现出的粘度行为基本上反映了高分子与溶剂分子之间的内摩擦。这一粘度的极限值记为: [η]被称为特性粘度,其值与浓度无关。实验证明,当聚合物、溶剂和温度确定以后,[η]的数值只与高聚物平均相对分子质量M有关,它们之间的半经验关系可用Mark Houwink 方程式表示:

实验二--乌氏粘度计测定聚合物的特性粘度

实验二--乌氏粘度计测定聚合物的特性粘度

实验二乌氏粘度计测定聚合物的特性粘度 一、实验目的 粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。 通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。 二、实验原理 分子量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量。测定高聚分子量的方法很多,本实验采用粘度法测定高聚物分子量。 高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。在测高聚物溶液粘度求分子量时,常用到下面一些名词。 如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为: 式中,M 为粘均分子量;K为比例常数;alpha是与分子形状有关的经验参数。K和alpha值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K 值受温度的影响较明显,而alpha值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解与0.5~1 之间。K 与alpha 的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。 在无限稀释条件下 因此我们获得[η]的方法有二种;一种是以ηsp/C对C 作图,外推到C→0 的截距值;另一种是以lnηr/C对C作图,也外推到C→0 的截距,两根线会合于一点。方程为:

测定粘度的方法主要有毛细管法、转筒法和落球法。在测定高聚物分子的特性粘度时,以毛细管流出发的粘度计最为方便若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶公式计算粘度。 (m=1)。 对于某一只指定的粘度计而言,(4)可以写成下式 省略忽略相关值,可写成: 式中,t 为溶液的流出时间;t0为纯溶剂的流出时间。 可以通过溶剂和溶液在毛细管中的流出时间,从(6)式求得ηr,再由图求得[η]。 三、实验主要仪器设备和材料 主要仪器:恒温玻璃水浴(包括电加热器、电动搅拌器、温度计、感 温元件和温度控制仪)、三管乌式粘度计、秒表、洗 耳球、 250ml 三角烧瓶、20ml移液管、40 ml砂芯 漏斗 主要原料:溶剂(分析纯)和聚合物自选 四、实验方法、步骤及结果测试 1. 试样准备: 按溶剂选择原则选择待测高聚物的溶剂。从手册查所选高聚物/溶剂对在特定温度下Mark-Houwink方程中的K和α值。 预先在容量瓶内配制精确体积的溶液。浓度选择要使溶液和纯溶剂流经乌氏粘度计上两刻度线之间C球的时间比约为1.2~2.0。 2. 温度调节:

(完整版)实验8--SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量

实验8 SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的相对分子量Mr 原理 蛋白质在聚丙烯酰胺凝胶电泳中,蛋白质的迁移率取决于它所带净电荷及分子的大小和形状。 在聚丙烯酰胺凝胶系统中加入阴离子去污剂十二烷基磺酸钠(sodium dodecyl sulfate,简称SDS)和还原剂(如巯基乙醇)处理蛋白质样品,则蛋白质分子中的二硫键被还原,1g 蛋白质可定量结合1.4g SDS。由于SDS呈解离状态,使蛋白质亚基带上大量的负电荷,其数值大大超过蛋白质分子原有的电荷量,因而掩盖了不同种类蛋白质间原有的电荷差别。各种蛋白质-SDS复合物表现出相等的电荷密度,在聚丙烯酰胺凝胶上电泳时,它们纯粹按照分子的大小由凝胶的分子筛效应来进行分离,有效迁移率与相对分子量的对数成很好的线性关系。 用这种方法测定蛋白质的Mr,简便、快速,只需要廉价的设备和μg量的蛋白质样品。所得的结果,在Mr为15000~200000的范围内,与用其他方法测得的Mr相比,误差一般在±10%以内。因此SDS测定Mr的方法,已得到非常广泛的应用和迅速的发展。现在经SDS-聚丙烯酰胺凝胶研究过的蛋白质已经有很多种了。 实验证明,在蛋白质溶液中加入SDS和巯基乙醇后,巯基乙醇可使蛋白质分子中的二硫键;SDS能使蛋白质的氢键、疏水键打开,并结合到蛋白质分子上形成蛋白质-SDS复合物。在一定的条件下,SDS与大多数蛋白质的结合比为1.4gSDS/1g蛋白质。由于十二烷基硫酸根带负电,使各种蛋白质的SDS复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原有的电荷量,因而掩盖了不同种类的蛋白质间原有的电荷差别。 在用SDS-凝胶电泳法测定蛋白质的Mr时,应注意以下几个问题: 1.如果蛋白质-SDS复合物不能达到1.4gSDS/1g蛋白质的比率并具有相同的构象,就不能 得到准确的结果。影响蛋白质和SDS结合的因素主要有以下3个:⑴二硫键是否完全被还原:只有在蛋白质分子内的二硫键被彻底还原的情况下,SDS才能定量地结合到蛋白质分子上去,并使之具有相同的构象。一般以巯基乙醇作为还原剂。在有些情况下,还需要进一步将形成的巯基烷基化,以免在电泳过程中重新氧化而形成蛋白质聚合体。⑵溶液中的SDS浓度:溶液中SDS的总量,至少要比蛋白质的量高3倍,一般需达10倍以上。⑶溶液的离子强度:溶液的离子强度应很低,最高不能超过0.26,因为SDS在溶液中是以单体和分子团的混合体而存在的,SDS结合到蛋白质分子上的量,仅决定于平衡时SDS单体的浓度而不是总浓度,在低离子强度的溶液中,SDS具有较高的平衡浓度。 2.不同的凝胶浓度适用于不同的Mr范围,Weber 的实验指出,在5%的凝胶中, Mr25000~200000的蛋白质,其Mr的对数与迁移率呈直线关系;在10%的凝胶中,10000~70000Mr蛋白质呈直线关系;在15%的凝胶中,10000~50000Mr的蛋白质呈直线关系;3.33%(以上各种浓度的凝胶,其交联度都是2.6%)的凝胶可用于Mr更高的蛋白质。 可根据所测Mr范围选择最合适凝胶浓度,并尽量Mr范围和性质与待测样品相近的蛋白质做标准蛋白质。标准蛋白质的相对迁移率(蛋白质的电泳迁移距离除以染料迁移距离即为相对迁移率)最好在0.2~0.8之间均匀分布。 在凝胶电泳中,影响迁移率的因素较多,而在制胶和电泳过程中,很难每次都将各项条件控制的完全一致,因此,用SDS-凝胶电泳法测定Mr,每次测定样品必须同时做标准曲线,而不得利用另一次电泳的标准曲线。 3.有许多蛋白质,由亚基(如血红蛋白)或两条以上肽链(如α-胰凝乳蛋白酶)组成的, 它们在SDS与巯基乙醇的作用下,解离成亚基或单条肽链。因此,对于这一类蛋白质,SDS-凝胶电泳测定的只是它们的亚基或单条肽链的Mr而不是完整分子的Mr。为了得到

黏度法测高聚物分子量(最终版)

华 南 师 范 大 学 实 验 报 告 学生姓名 平璐璐 学 号 20132401179 专 业 化学(师范) 年级、班级 13级一班 课程名称 物理化学实验 实验项目 黏度法测定水溶性高聚物分子量 实验类型 □验证□设计□综合 实验时间 2016 年 4 月 7 日 实验指导老师 林晓明 实验评分 一、实验目的 1.测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二、实验原理 高聚物摩尔质量不仅反映了高聚物分子的大小,而且直接关系到它的物理性能。与一般的无机物或低分子的有机物不同,高聚物多是摩尔质量大小不同的大分子混合物,所以通常所测高聚物的分子量是一种统计的平均分子量。 用粘度法测定的分子量称“黏均分子量”记作M η 高聚物稀溶液的黏度(η)是流体在流动时摩擦力大小的反映,这种流动过程中的内摩擦力主要有:纯溶剂间的内摩擦,也就是纯溶剂的粘度,记作η0,高聚物分子与溶剂分子间的内摩擦,以及高聚物分子间的内摩擦。这三种内摩擦的综合成为高聚物溶液的黏度η 实验证明,在相同温度下,η> η0,相对于溶剂,其溶液粘度增加的分数,称为增比粘 度,记作 sp η, 0sp r 00 11 ηηη ηηηη-= =-=- r η称为相对粘度,即溶液粘度对溶剂粘度的相对值。 高聚物溶液的ηsp 往往随浓度增加而增大,为了便于比较,定义单位浓度的增比黏度ηsp /c 为比浓黏度,定义ln ηsp /c 为比浓对数黏度。当溶液溶液无限稀释,高聚物分子彼此相隔甚远,其相互作用可以忽略不计。此时比浓粘度趋近于一个极限值,即: [η]称为特性粘度,在足够稀的溶液中,比浓黏度ηsp /c 和比浓对数黏度ln ηsp/c 与溶液的浓度有以下的关系(关系公式):

(推荐)粘度法测定水溶性高聚物分子量实验报告

黏度法测定水溶性高聚物分子量 一.实验目的 1. 测定水溶性高聚物聚乙烯醇的相对分子质量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一, 由于高聚物分子量大小不一,故通常测定高聚物分子量都是利用统计的平均分子量。常用的测定方法有很多,如粘度法、端基分析、沸点升高、冰点降低、等温蒸馏、超离心沉降及扩散法等,其中,用粘度法测定的分子量称“黏均分子量”,记作。 增比黏度: 特性粘度:

时间与粘度的关系 N=n/n0=t/t0 (3-84) 三、仪器与试剂 恒温槽 1 套乌式黏度计 1支 1/10 秒表 1只聚乙烯醇 四、实验步骤 1.洗涤黏度计 取出一只黏度计,先用丙酮灌入黏度计 中,浸洗去留在黏度计中的高分子物质, 黏度计的毛细管部分,要反复用丙酮流 洗。方法是:用约 10 mL 丙酮至大球中, 并抽吸丙酮经毛细管 3 次以上,洗毕,

倾去丙酮倒入回收瓶中,再重复一次,然 后用吹风机吹干黏度计备用。 2.测定溶剂流出时间 在铁架台上调节好黏度计的垂直度和高度,然后将黏度计安放在恒温水浴中。用移液管吸取10mL 纯水,从A 管注入。于37℃恒温槽中恒温5min。进行测定时,在 C管上套上橡皮管,并用夹子夹住,使其不通气,在 B 管上用橡皮管接针筒,将蒸馏水从 F 球经 D 球、毛细管、E球抽到G球上(不能高出恒温水平面),先拔去针筒并解去夹子,使 C管接通大气,此时 D 球内液体即流回 F 球,使毛细管以上液体悬空。毛细管以上液体下流,当液面流经 a刻度时,立即按停表开始记录时间,当液面降到b刻度时,再按停表,测得刻度a、b之间的液体流经毛细管所需时间,重复操作两次,记录留出时间且误差不大于1-2s,取两次平均值为 t0, 3.溶液流出时间的测定 取出黏度计,倾去其中的水,加入少量的丙酮溶液润洗,经过各个瓶口流出,以达到洗净的目的。同上法安装调节好黏度计,用移液管吸取 10mL 溶液小心注入黏度计内(注意不能将溶液黏在黏度计的管壁上),在溶液恒温过程中,应用溶液润洗毛细管后再测定溶液的流出时间t。然后一次分别加入 2.0mL、3.0 mL、5.0 mL、10.0 mL 蒸馏水,按上述方法分别测量不同浓度时的t 值。每次稀释后都要将溶液在F 球中充分搅匀(可用针筒打气的方法,但不要将溶液溅到管壁上),然后用稀释液抽洗黏度计的毛细管、E 球和 G 球,使黏度计内各处溶液的浓度相等,而且须恒温。 五、数据处理及结论 1.数据整理(恒温槽温度:37℃) 为了作图方便,假定起始相对浓度是1,根据原理中的公式计算所得数据记录如下表 表一数据记录表

聚丙烯酰胺PAM

PAM申华原料规格: 申华化学工业有限公司 原料规格表M40-RAD-01 RAW MATERIAL SPECIFICATION 1、原料名称(Material) 原料编号(Code No.)M-4030 版别:1.0 原料名称(Material)聚丙烯酰胺(部分水解)〖Polyacrylamide (PAM)〗 2、规格项目(Specifications) 规格项目(Specifications)指标(Limits)测试方法(Test Method) Appearance White Grain Total Solid / % ≥90 Solubilization Speed / hr ≤1.5 Anion Content / % 20-30 即水解度 Free Monomer / % ≤0.05 3、分子式(Formula) ?[?CH2?CH?]m?[?CH2?CH?]n? ∣∣ C=O C=O ∣∣ NH2O Na 4、分子量(Molecular Weight):3000,000-13000,000 聚丙烯酰胺(cpolyacrylamids)简称PAM,是一种线型高分子聚合物,是水溶性高分子化合物中应用最为广泛的品种之一,聚丙烯酰胺和它的衍生物可以用作有效的絮凝剂,增稠剂,纸张增强剂,以及液体的减阻剂等,广泛应用于水处理、造纸、石油、煤矿、矿冶、地质、轻纺,建筑等工业部门。 一、市售产品规格及主要技术指标 技术指标名称PAM 阴离子PAM 非离子PAM 阳离子PAM 复合离子 外观白色或微黄色粉末 粒径,mm < 2 固含量(%) ≥ 88 溶速(mim) ≤ 1.5 不溶物(%) ≤ 2 分子量(万) 500-2400 300-600 300-800 800-1500 水解度(%) 13-30 5-15 离子度5-50 10-20 注:根据用户要求,分子量控制在表格所定指标的范围内根据市场价格面议 加强混凝作用 ⑴聚合氯化铝(PAC)聚合氯化铝又名碱式氯化铝或羟基氯化铝。它是以铝灰或含铝矿物作为原料,采用酸溶或碱溶法加工制成。其分子式为[Al2(OH)nCl6-n]m ,其中m为聚合度,单体为铝的羟基配合物Al2(OH)nCl6-n ,通常n=1~5,m≤10。聚合氯化铝溶于水后,即

粘度法测分子量

一、实验目的 1、掌握用粘度法测定高分子化合物相对分子量的原理。 2、用乌氏粘度计测定聚乙烯醇溶液的特性粘度,计算其粘均相对分子量。 二、实验原理 高分子化合物相对分子量对于高分子化合物溶液的性能影响很大,是个重要的基本参数。一般高分 子化合物是相对分子量大小不同的大分子的混合物,相对分子量常在103~107之间,所以通常所测高分 子化合物相对分子量是平均相对分子量。 测定高分子化合物相对分子量的方法很多,不同方法所测得的平均相对分子量有所不同。粘度法是 常用的测定相对分子量的方法之一,粘度法测得的平均相对分子量称为粘均相对分子量。 高分子化合物溶液的粘度比一般较纯溶剂的粘度大得多,其粘度增加的分数称为增比粘度, 其定义为: 式中,称为相对粘度。增比粘度随粘液中高分子化合物的浓度c增加而增加。为了便于比较,定 义单位浓度的增比粘度/c为比浓粘度,它随溶液浓度c改变而改变。当浓度c趋于零时,比浓粘度的 极限值为[],[]称为特性粘度,即: 式中溶液浓度c习惯上取质量浓度(单位为或)。特性粘度[η]可以作为高分子化合 物的平均相对分子量的度量。根据实验结果证明,任意浓度下比浓粘度与浓度的关系可以用经验公式表 示如下: 因此,利用/c对c作图,用外推法可求出[η]。 当c趋近于0时,(ln)/ c的极限值也等于[η],可以证明如下: 当溶液浓度c很小时,忽略高次项,则得: 当溶液浓度较小时,(ln)/c对c作图,也得一条直线,其截距也等于[η],见图S3-1。

[η]单位和数值,随溶液浓度的表示法不同而异,[η]的单位为浓度单位的倒数。 在一定温度和溶剂条件下,特性粘度[]与高聚物的相对分子质量M间关系通常用下列经验方程式表 达:式中K和α 是与温度、溶剂及高聚物本性有关的常数。通常对于每种高聚物溶液,要用已 知平均相对分子量的高聚物求得K、α值。然后,用此K、α值及同种待测高聚物溶液的特性粘度实验值, 可求得此待测高聚物的粘均相对分子量。在确定K、α值时,已知的平均相对分子量是用其他方法测得的。 对于许多高聚物溶液,在有关手册或书中可查得它们的K、α值。 测定高聚物溶液的粘度,最方便是使用毛细管粘度计。本实验中采用乌氏粘度计,其结构如图S3-2 所示,乌氏粘度计的最大优点是粘度计中的溶液体积不影响测定结果。因此,可在粘度计中用逐步稀释 法得到不同浓度溶液的粘度。乌氏粘度计毛细管K的直径、长度和球E体积是根据溶剂的粘度选定的,要 求溶剂的流过的时间不小于100s。但毛细管直径不宜小于0.5mm,否则测定或洗涤时容易堵塞。球F的容 积应为B管中a刻度至球F底体积的8~10倍,则在测定过程中可以使溶液稀释至起始浓度的五分之一左右。 为使球F不致过大,球E的体积以4~5mL为宜。此外球D至球F底端的距离,应尽量小些。由于粘度计由玻 璃吹制而成,其三根支管很容易折断,使用时应特别小心。 液体在毛细管粘度计中因重力作用而流动时遵守泊索利方程。当考虑动能的影响,更完全的公式可写为: 式中m为毛细管末端校正系数,是一个接近于1的仪器常数,视毛细管两端处液体流动情况而异,通 常m值约为1.12。对于指定的粘度计,上式中许多参数是一定的,则此式可写为下列形式:

聚丙烯酰胺

阴离子聚丙烯酰胺(PAMA)根据不同用途和用户对产品性能的要求可选用不同分子量使用,可用作:1、工业废水处理;2、饮用水处理;3、淀粉厂及酒精厂的流失淀粉及洒槽的回收;4、三次采油的驱油剂;5、调剖堵水剂;6、造纸助剂阳离子聚丙烯酰胺(PAMC)是由乙烯基阳离子单体和丙烯酰胺共聚而成,是一种线型高分子聚合物,可用于:1、污泥脱水;2、生活污水和有机废水的处理;3、自来水厂的高效絮凝剂;4、造纸增强剂;5、油田化学助剂 非离子聚丙烯酰胺(PAMN)是由丙烯酰胺均聚而成,纯度高,离子化成度低,性能好,用途广。可用作:1、各种改性聚丙烯酰胺的基础原料;2、纺织工业助剂; 3、污水处理剂; 4、堤坝、地基、隧道等堵水的化学灌浆剂; 5、固沙剂; 6、土壤改良剂; 7、油田调剖堵水剂; 8、建筑业、建筑胶水,内墙涂料等方面。 两性离子聚丙烯酰胺(PAMCA)是由乙烯酰胺和乙烯基阳离子单体丙烯酰胺单 体水解共聚而成、经红外光谱分析,该产品链结上不但有丙烯酰胺水解后的“羧基阴电荷,而且还有乙烯基阳电荷。”因此,构成了分子链上既有阳电荷,又有阴电荷的两性离子不规则聚合物。可用作:1、调剖堵水剂;2、最新型水处理剂;3、污泥脱水剂;4、造纸化学助剂

聚丙烯酰胺简称PAM,亦称三号凝聚剂,分子式为,是线状水溶性高分子聚合物,分子量在 300-1800万之间,外观为白色粉末状或无色粘稠胶体状,无臭、中性、溶于水,温度超过120℃时易分解。 聚丙烯酰胺分子中具有阳性基因(-CONH2),能于分散于溶液中的悬浮粒子吸咐和架桥,有着极强的絮凝作用,因此广泛用于水处理及电力、采矿、选煤、石棉制品、石油化工、造纸、纺织、制糖、医药、环保等。 名称分子量(万) 离子度(%) 高效PH 固含量% 残单% 外观 阳离子聚丙烯酰胺 CPAM 300-1200 10-50 1-14 ≥90 0.05 白色干粉 名称分子量(万) 水解度(%) 高效PH 固含量% 残单% 外观 阴离子聚丙烯酰胺 APAM 300-1800 10-50 7-14 ≥90 0.05-0.15 白色颗粒粉末 名称分子量(万) 离子度(%) 高效PH 固含量% 残单% 外观 非离子聚丙烯酰胺 NPAM 200-600 ≤3 1-8 ≥90 ≤0.05 白色颗粒粉末 名称分子量(万) 阳离子度% 阴离子度% PH 固含量% 外观 两性离子聚丙烯酰胺 NPAM 1000-6000 5-50 8-25 1-14 ≥90 白色粉末 1.阴离子:结构式〔 CH2 CH 〕n CONH2 非离子:结构式:[—CH—CH2—CH—CH2—]n CONH2 CONH2 阳离子:结构式:[—CH—CH2—CH—CH2]n CONH2 CONHCH2N(CH3)2 2.物理特性;本产品为胶体和粉剂。胶体产品为无色透明、无毒性、无腐蚀。粉剂为白色粒状或细粉末状固体,两者均能溶于水。吸水速度随衍生物离子特性的区别而不同。但几乎不溶于一般溶剂(苯、甲苯、乙醇、乙醚、丙酮、酯类等),仅在乙二醇、甘油、冰醋酸、甲酰胺、乳酸、丙烯酸等溶剂中能溶解1%左右。不同品种,不同分子量的产品有不同的性质。 3.用途:主要用于采油、制糖、洗煤、选矿、造纸、涂料、湿法冶金,纺织、石料切割、化工、农药、医药以及污水处理等等。胶体及粉剂聚丙烯酰胺可根据用户提供的产品质量要求生产含量、分子量、水解度各异的产品。 PAM絮凝剂由于应用范围十分广泛,而各种应用对其所要求的性能各不相同,为满足各类用途的需要,世界各国研制了非常复杂的品种和规格,现已形成了

粘度法测高聚物分子量

实验5 粘度法测定聚合物的粘均分子量 一. 实验目的 1.加深理解粘均分子量的物理意义。 2.学习并掌握粘度法测定分子量的实验方法。 3.学会用“一点法”快速测定粘均分子量。 二. 实验原理 由于聚合物的分子量远大于溶剂,因此将聚合物溶解于溶剂时,溶液的粘度(η)将大于纯溶剂的粘度(η0)。可用多种方式来表示溶液粘度相对于溶剂粘度的变化,其名称及定义如表8-1所示。 表8-1 溶液粘度的各种定义及表达式 名称 定义式 量纲 相对粘度 0 ηηη= r 无量纲 增比粘度 100 ?=?=r sp ηηηηη 无量纲 比浓粘度(粘数) C C r sp 1?= ηη 浓度的倒数(dl/g ) 比浓对数粘度(对数粘数) C C sp r ) 1ln(ln ηη+= 浓度的倒数(dl/g ) 溶液的粘度与溶液的浓度有关,为了消除粘度对浓度的依赖性,定义了一种特性粘数,其定义式为: C C r C sp C ηηηln lim lim ][0 →→== (8-1) 特性粘数又称为极限粘数,其值与浓度无关,其量纲也是浓度的倒数。 特性粘数取决于聚合物的分子量和结构、溶液的温度和溶剂的特性,当温度和溶剂一定时,对于同种聚合物而言,其特性粘数就仅与其分子量有关。因此,如果能建立分

子量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到聚合物的分子量。这就是用粘度法测定聚合物物分子量的理论依据。 根据式8-1的定义式,只要测定一系列不同浓度下的粘数和对数粘数,然后对浓度作图,并外推到浓度为零时,得到的粘数或对数粘数就是特性粘数。 实验表明,在稀溶液范围内,粘数和对数粘数与溶液浓度之间呈线性关系,可以用两个近似的经验方程来表示: C C sp 2][][ηκηη+= (8-2) C C r 2][][ln ηβηη?= (8-3) 式8-2和式8-3分别称为Huggins 和Kraemer 方程式。 当溶剂和温度一定时,分子结构相同的聚合物,其分子量与特性粘数之间的关系可以用MH 方程来确定,即: αηKM =][ (8-4) 在一定的分子量范围内,K , α是与分子量无关的常数。这样,只要知道K 和α的值,即可根据所测得的[η]值计算试样的分子量。 在用MH 方程计算分子量时,由于不同的聚合物有不同的K , α值,因此在测定某种聚合物的分子量之前,必须事先订定K 、α值。订定的方法是:制备若干个分子量均一的样品,下面又称为标样。然后分别测定每个样品的分子量和极限粘数。其分子量可用任何一种绝对方法进行测定。由式8-4两边取对数,得: M K lg lg ]lg[αη+= (8-5) 以各个标样的lg[η]对logM 作图,所得直线的斜率是α,而截距是lgK 。 事实上,前人已对许多聚合物溶液体系的K 、 α值做了订定并收入手册,我们需要时可随时查阅,很多情况下,并不需要我们自己订定。但在选用K 、α值时,一定要注意聚合物结构、溶剂、温度的一致性,以及适用的分子量范围。此外,值得提醒的是,以前溶液的单位常以g/dl 为单位,因此使用时可先将溶液的单位进行换算。 溶液的粘度一般用毛细管粘度计来 测定,最常用的是乌氏粘度计,其结构如图8-1所示。其特点是毛细管下端与大气连通,这样,粘度计中液体的体积对测定没有影响。

粘度法测定高聚物分子量

粘度法测定高聚物分子量 ——东华大学 一、实验目的 高聚物的分子量就是高分子材料最基本的结构参数之一。在科学研究与生产实践中,高聚物分子量对其加工成型以及产品的物理性能有着极其密切的联系,因此高聚物分子量的测定就是鉴定高聚物性能的一个重要项目。 通过本实验应达到以下目的: 1、理解稀释粘度法测定高聚物分子量的基本原理; 2、掌握本测定的方法; 3、学会外推法作图求[η]、K H 、K K 值: 4、掌握测定粘度的动能校正方法 二、实验原理 高聚物的分子量具有多分散性,无论用何种方法所测得的分子量,均为平均分子量。测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法与粘度法等。由于粘度法的设备简单,操作方便,因此应用最为普遍。但粘度法并非绝对的测定方法,根据大量的实验证明,马克(Mark)提出更符合于实验结果的非线形方程式: []αηKM =(1) 该式实用性很广,式中K 、α值主要依赖于大分子在溶液中的形态。无规线团形状的大分子在不良溶剂中呈十分蜷曲的形状,α为0、5~0、8;在良的溶剂中,大分子因溶剂化而较为舒展,α为0、8~l;而对硬棒状分子,α>1。关于某一高聚物溶剂系的K 、α值的具体测量,可将(1)式两边取对数,得: []M K lg lg lg αη+= (2) 此为直线方程。从直线的斜率可求出,从截距可求出K 。一般采用的方法就是将样 品经分级,测定其各分级的[η],用直接方法 (如渗透压法、光散射法、超速离心法等)测定相应分子量就可作出lg[η]与lgM 的线性关系图,如图1所示。由直线的截距,斜率lgK 可求出K 与α值。 若干高聚物溶剂体系的K 、α值,文献上发表很多,对涤纶在苯酚/四氯乙烷(1:1)体系中,温度25oC 时: []82.04101.2M -?=η (3) 用(3)式计算涤纶分子量中,必需用实验求出溶液的特性粘度[η] 。其定义就是当溶液 M lg[

聚丙烯酰胺

阴离子聚丙烯酰胺(PAM) 已阅:1897 2010-3-13 聚丙烯酰胺是一种线性的高分子聚合物,分子式为 (CH2CHCONH2)n, 简称PAM.它易溶于水,几乎不溶于苯、酯类和 丙酮等一般的有机溶剂,其水溶液几近透明的粘稠液体,属非危险 品;固体PAM热稳定性好,加热到100℃稳定性良好,但在150℃ 以上时会分解。聚丙烯酰胺及其衍生物可以用作有效的絮凝剂、增 稠剂、纸张增强剂和减阻剂等,广泛应用于水处理、造纸、石油、 煤炭、地质和建筑等行业。 主要优点:絮凝性:PAM能使悬浮物体通过电中和,架桥吸附作用起絮凝作用。粘和性:能通过机械的、物理的、化学的作用起粘和作用。降租性:PAM能有效地降低流体的磨擦阻力,可降租50-60%。增稠性:PAM在中性和酸性条件下有增稠作用。 主要产品:驱油用新型聚丙烯酰胺项目指标 产品用途: 水解度%≤25 驱油剂:在三次采油时,在单一的水驱中加入聚丙烯酰胺能使水增粘,从而增加原油产量,降低含水率,提高驱油效率.固含量%≥89 残留单体含量%≤0.1 不容物含量%≤0.2 滤过比%≤2.0容解时间≤2小时表面粘度≥11.0mpa.s分子量(百万)17-25 . 阴离子聚丙烯酰胺: 本产品为水溶性高分子聚合物。不溶于大多数有机溶剂,具有良好的絮凝性,可以降低液体之间的摩擦阻力。 应用范围: 1、主要用于污泥脱水,降低污泥含水率。 2、可用于工业废水、生活污水的处理。 3、用于造纸工业,可提高纸张的干湿强度,提高细小纤维及填料的保留率。 质量指标:

1、外观:白色细砂状粉末或无色透明胶体。 2、离子度:0~100% 3、分子量:800万~1500万。 使用方法及注意事项: 1、产品配成0.1%浓度的水溶液,以不含盐的中性水为宜。 2、溶解时,将本产品均匀撒入搅拌的水中,适当加温(<60℃)可加速溶解。 3、通过小试,确定本产品的最佳用量。 4、固体产品用聚丙稀编织袋包装,内衬塑料袋,每袋25公斤;胶状体用纤维桶包装,内衬塑料袋,每桶50公斤或200公斤。 5、本产品有吸湿性,要密封存放在阴凉干燥处,温度要低于35℃。 6、固体产品避免撒在地上,以防产品吸潮后使地变滑。 阳离子聚丙烯酰胺(PAM) 已阅:1651 2010-3-11 聚丙烯酰胺是一种线性的高分子聚合物,分子式为 (CH2CHCONH2)n, 简称PAM.它易溶于水,几乎不溶于苯、酯类和 丙酮等一般的有机溶剂,其水溶液几近透明的粘稠液体,属非危险 品;固体PAM热稳定性好,加热到100℃稳定性良好,但在150℃ 以上时会分解。聚丙烯酰胺及其衍生物可以用作有效的絮凝剂、增稠剂、纸张增强剂和减阻剂等,广泛应用于水处理、造纸、石油、煤炭、地质和建筑等行业。 主要优点:絮凝性:PAM能使悬浮物体通过电中和,架桥吸附作用起絮凝作用。粘和性:能通过机械的、物理的、化学的作用起粘和作用。降租性:PAM能有效地降低流体的磨擦阻力,可降租50-60%。增稠性:PAM在中性和酸性条件下有增稠作用。

粘度法测定聚合物的分子量

实验十 粘度法测定聚合物的分子量 一、 实验目的 掌握用乌氏粘度计测定高分子溶液粘度的方法并计算粘均分子量M η。 二、 实验原理 高分子溶液具有比纯溶剂高得多的粘度,其粘度大小与高聚物分子的大小、形状、溶剂性质以及溶液运动时大分子的取向等因素有关。因此,利用高分子粘度法测定高聚物的分子量基于以下经验式: Mark 经验式: 式中:[η]-特性粘数 M -粘均分子量 K -比例常数 α-与分子形状有关的经验参数 K 和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K 值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与α的数值可通过其它绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定得[η]。 粘度除与分子量有密切关系外,对溶液浓度也有很大的依赖性,故实验中首先要消除浓度对粘度的影响,常以如下两个经验公式表达粘度对浓度的依赖关系: []α ηKM =(10-2) (10-3) (10-1)

式中:r η-相对粘度 sp η-增比粘度 sp η/c -比浓粘度 c -溶液浓度 βκ,-均为常数 1-=r sp ηη(10-5) 式中:t -溶液流出时间,0t -纯溶剂流出时间 显然 ][η即是聚合物溶液的特性粘数,和浓度无关,由此可知,若以c sp /η和c sp /ln η分别对c 作图, 则它们外推到0→c 的截距应重合于一点,其值等 于][η。 ln r ηsp C η或 C 图1 外推法求[η]值 图10-1 外推法求][η值 三、仪器和试剂 试剂:聚乙烯醇,蒸馏水 []c c r c sp c ηηηln lim lim 0 →→==(10-4) (10-6)

如何正确选择聚丙烯酰胺(PAM)的类型

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/003913103.html,)如何正确选择聚丙烯酰胺(PAM)的类型 聚丙烯酰胺号称百业助剂,在很多行业都有应用,其主要的功效就是污水处理过程做絮凝剂、沉淀剂和污泥脱水剂使用;其实,聚丙烯酰胺除做污水絮凝剂使用外,在制造领域应用也相当广泛,在制香、建筑行业做增稠剂;洗煤选矿领域做浮选剂、澄清剂;纺织上浆做上浆剂、整理剂;造纸行业做造纸分散剂、造纸助留助滤剂;蛋白提取剂;明胶澄清剂、漆雾凝聚剂等领域。 聚丙烯酰胺是水溶性高分子聚合物,固体聚丙烯酰胺在使用前要溶解到自来水中配成胶水状的液体才能使用,在配置固体聚丙烯酰胺的过程其实也是聚丙烯酰胺的熟化过程,这样才能使其分子链展开,才能最大功效的发挥其强大的凝聚效果。要充分的溶解其实并不容易,在溶解过程要注意以下事项: 1、须用干净的水(如自来水)溶解 2、溶解时浓度建议控制在0.1%—0.3%。 3、溶解时聚丙烯酰胺缓慢均匀地加入到带有搅拌的水相中,搅拌速度不应强烈(搅拌叶未端线速度控制在8米/秒以下)以免造成聚丙烯酰胺减切力下降;加料过快亦结成团,形成“鱼眼”。 4、水温不超过60℃ 5、溶解液不要用铁质溶解防止降解

注意以上几点,可以使聚丙烯酰胺更有效的发挥其功用。 其次,聚丙烯酰胺在环保领域被越来越广泛使用特别是工业污水和生活污水应用越来越广泛,在市政污水处理厂、工业污水处理厂、造纸行业,食品行业,纺织行业、酿酒行业、石油化工行业、皮革制造业污水、油田废水处理领域都有应用。 聚丙烯酰胺按离子特性可分为非离子、阴离子、阳离子和两性型聚丙烯酰胺四种类型。按分子量来分有不同规格的分子量,离子度等衍生出很多型号,面对市场杂乱的规格体系,针对自己的污水体系优选最佳聚丙烯酰胺型号确实难度很大,如何几招搞定污水或污泥聚丙烯酰选型的常见问题。 一、了解污泥的来源 污泥是污水处理中的必然产物,首先我们应该了解污泥的来源,性质,成分及固含量。按照污泥含有的主要成分不同,污泥可分为有机污泥和无机污泥。 一般来说阳离子聚丙烯酰胺用于处理有机污泥,阴离子聚丙烯酰胺用于处理无机污泥,碱性很强时不易用阳离子聚丙烯酰胺,而酸性很强时不宜用阴离子聚丙烯酰胺,污泥的固含量高时通常聚丙烯酰胺的用量较大。 二、聚丙烯酰胺的离子度选择 针对所要脱水的污泥,可用不同离子度的絮凝剂通过小实验

相关主题
文本预览
相关文档 最新文档