当前位置:文档之家› 全国中考数学二次函数的综合中考真题汇总含答案

全国中考数学二次函数的综合中考真题汇总含答案

全国中考数学二次函数的综合中考真题汇总含答案
全国中考数学二次函数的综合中考真题汇总含答案

全国中考数学二次函数的综合中考真题汇总含答案

一、二次函数

1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .

(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;

(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;

(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ?为直角三角形的点P 的坐标.

【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)

(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】

分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;

(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;

(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.

详解:(1)依题意得:1203b a a b c c ?-=-??++=??=??

,解得:123a b c =-??=-??=?,

∴抛物线的解析式为223y x x =--+.

∵对称轴为1x =-,且抛物线经过()1,0A ,

∴把()3,0B -、()0,3C 分别代入直线y mx n =+,

得303m n n -+=??=?,解之得:13m n =??=?

, ∴直线y mx n =+的解析式为3y x =+.

(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,

∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).

(3)设()1,P t -,又()3,0B -,()0,3C ,

∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,

②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,

③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=,2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2??+- ? ???或3171,2??-- ? ???

. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.

2.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封

闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:

2y mx 2mx 3m =--(m <0)的顶点.

(1)求A 、B 两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;

(3)当△BDM 为直角三角形时,求m 的值.

【答案】(1)A (,0)、B (3,0).

(2)存在.S △PBC 最大值为2716 (3)2m 2

=-

或1m =-时,△BDM 为直角三角形. 【解析】

【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.

(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值. (3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.

【详解】

解:(1)令y=0,则2mx 2mx 3m 0--=,

∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.

∴A (,0)、B (3,0).

(2)存在.理由如下:

∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),

把C (0,32-

)代入可得,12

a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22

--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23

327p 4216

--+().

∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716

. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),

∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+. ∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:

当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,

解得:1m 1=-,2m 1=(舍去) .

综上所述,2m 2

=-或1m =-时,△BDM 为直角三角形.

3.如图,在平面直角坐标系中,直线483y x =-

+与x 轴,y 轴分别交于点A 、B ,抛物线24y ax ax c =-+经过点A 和点B ,与x 轴的另一个交点为C ,动点D 从点A 出发,以每秒1个单位长度的速度向O 点运动,同时动点E 从点B 出发,以每秒2个单位长度的速度向A 点运动,设运动的时间为t 秒,0﹤t ﹤5.

(1)求抛物线的解析式;

(2)当t 为何值时,以A 、D 、E 为顶点的三角形与△AOB 相似;

(3)当△ADE 为等腰三角形时,求t 的值;

(4)抛物线上是否存在一点F ,使得以A 、B 、D 、F 为顶点的四边形是平行四边形?若存在,直接写出F 点的坐标;若不存在,说明理由.

【答案】(1)抛物线的解析式为228833y x x =-

++; (2)t 的值为

3011或5013; (3)t 的值为103或6017或258

; (4)符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8).

【解析】

相关主题
文本预览
相关文档 最新文档