当前位置:文档之家› 氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物
氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物

山东药品食品职业学院张慧婧

第一部分氨基酸、多肽及蛋白质基本知识

一、蛋白质基本知识

蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。

这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。

1.生物催化作用

作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。

2.结构功能

第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。

3.运动收缩功能

另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。

4.运输功能

有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。

5.代谢调节功能

执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。

6.保护防御功能

细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一些非免疫性疾病的预防和治疗。

7.其他功能

在动、植物中有些蛋白质主要是作为营养贮藏物,如植物种子中的谷蛋白、动物的卵清蛋白及牛奶中的酪蛋白等。还有一些蛋白质具有特殊的功能,如一种非洲植物中产生的蛋白质具有浓郁的甜味,称为应乐果甜蛋白;一些南极鱼类的血浆中含有抗冻蛋白,可以防止血液在极低温度下冻结。

不同来源的蛋白质其分子大小可能不同,但是其元素组成、数量却大致相似。除了含有碳、氢、氧、氮元素外,大部分还含有硫。有些蛋白质还含有其他元素,特别是磷、铁、锌及铜。多数蛋白质含氮量相对固定,约为16%,这是蛋白质的一个重要特点。因为氮元素容易通过凯氏定氮法进行测定,故蛋白质的含量可以由氮的含量乘以6.25(100/16)计算得到。

二、氨基酸基本知识

蛋白质的相对分子质量非常大,但是在酸、碱或酶的作用下可以被逐渐降解成相对分子质量的肽段,最终生成α-氨基酸,因此α-氨基酸是蛋白质分子组成的基本单位。

氨基酸是指含有氨基的羧酸,通常由5种元素组成,即碳、氢、氧、氮和硫。在自然界中,已经发现的氨基酸种类非常多,但其中常见的组成蛋白质的氨基酸只有20种,除甘氨酸外均为L-α-氨基酸,其中脯氨酸是一种L-α-亚氨基酸。

甲硫氨酸、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸人体不能合成或合成速度不足以满足人体需要,必须由体外补充,称为必需氨基酸。另外,精氨酸和组氨酸人体虽能合成,但通常不能满足正常的需要,或疾病时也需额外供给,因此,又被称为半必需氨基酸或条件必需氨基酸。婴幼儿生长期精氨酸和组氨酸是必需氨基酸。人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。

氨基酸的主要作用:

1.合成蛋白质

蛋白质在胃肠道经多种消化酶作用,分解为低分子的多肽或氨基酸后,在小肠内被吸收,沿肝门静脉进入肝脏。一部分氨基酸在肝脏内进行分解或合成蛋白质;另一部分氨基酸继续伴随血液分布到各个组织器官,合成各种特异性的组织蛋白。在正常情况下氨基酸进入血液速度与其输出速度几乎相等,正常人血液中动态氨基酸含量相当恒定。

2.氮平衡作用

每日膳食中蛋白质的质和量适宜时,摄入的氮量与由粪、尿和皮肤排出的氮量相等,称之为氮总平衡,实际上是蛋白质和氨基酸之间不断合成与分解的平衡。

3.转变为糖或脂肪

氨基酸分解代谢后的α-酮酸,可以再次合成氨基酸、转化为糖或脂肪,或者进入三羧酸循环彻底氧化分解。

4.参与酶、激素及部分维生素的组成

酶的本质是蛋白质(氨基酸构成),如淀粉酶、胃蛋白酶、胆碱酯酶、碳酸酐酶、转氨酶等。含氮激素的成分是蛋白质或其衍生物,如生长激素、促甲状腺激素、肾上腺素、胰岛素、促肠液激素等。有的维生素是由氨基酸转变或与蛋白质结合存在。

三、多肽基本知识

多肽是α-氨基酸以肽键连接在一起而形成的化合物,它也是蛋白质水解的中间产物。

由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等,一直到九肽。通常由10~100个氨基酸分子脱水缩合而成的化合物叫多肽;也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽),10~50个氨基酸组成的肽称为多肽,由50个以上的氨基酸组成的肽就称为蛋白质。通常来说蛋白质具有更复杂的空间结构,蛋白质由一条或两条以上多肽组成的大分子,其结构分为一级、二级、三级、四级。而多肽只能是一条肽链,通常也就是二级结构。习惯上将胰岛素(51个氨基酸组成,分子量5733)视为多肽和蛋白质的界限。

目前生物医学在人体中已发现了1000多种具有活性的多肽,仅脑中就存在近40种,它们在生物体内的浓度很低,但生理活性很强,在神经、内分泌、生殖、消化、生长等系统中发挥着不可或缺的生理调节作用。人们比较熟悉的有谷胱甘肽(3肽)、催产素(9肽)、加压素(9肽)、脑啡肽(5肽)、β-内啡肽(31肽)、P物质(10肽)等。

第二部分氨基酸类药物

一、氨基酸类药物的分类

氨基酸是构成蛋白质的基本单位,是具有高度营养价值的蛋白质的补充剂,广泛应用于医药、食品、动物饲料和化妆品的制造。氨基酸在医药上主要用来制备复方氨基酸输液,也可用作治疗药物和用于合成多肽类药物。目前用作药物的氨基酸有100多种。

1.治疗消化道疾病的氨基酸及其衍生物

主要有谷氨酸及其盐酸盐、谷氨酰胺、乙酰谷氨酰胺铝、甘氨酸及其铝盐、磷酸甘氨酸铁等

2.治疗肝病的氨基酸及其衍生物

主要有精氨酸盐酸盐、谷氨酸钠、甲硫氨酸、瓜氨酸等。

3.治疗脑及神经系统疾病的氨基酸及其衍生物

主要有谷氨酸钙盐及镁盐、氢溴酸谷氨酸、色氨酸、5-羟色氨酸及左旋多巴等。

4.用于肿瘤治疗的氨基酸及其衍生物

主要有偶氮丝氨酸、氯苯丙氨酸、磷天冬氨酸及重氮氧代正亮氨酸等。

5.其他氨基酸药物的临床应用

天冬氨酸的钙、镁盐可用于缓解疲劳,治疗低钾症心脏病、肝病、糖尿病等。组氨酸可扩张血管、降低血压,可用于心绞痛和心功能不全等疾病的治疗。

二、氨基酸类药物的生产

氨基酸的一般生产方法有水解法、微生物发酵法、化学合成法以及酶合成法等。除酪氨酸、胱氨酸、羟脯氨酸用水解法外,其他氨基酸已采用产量大、成本低、现代化水平高的发酵法和化学合成法生产,也采用前体发酵和酶合成法。

1.水解法

水解法是最早发展起来的生产氨基酸的基本方法。它是以蛋白质为原料,经酸、碱或蛋白质水解酶水解后,再分离纯化各种氨基酸的工艺过程,分酸水解法、碱水解法和酶水解法

2.微生物发酵法

最早应用微生物发酵法制造氨基酸始于l956年,采用淀粉作原料,直接发酵获得了谷氨酸。到了20世纪60年代初期,阐明了氨基酸生物合成路线及其代谢调节机制以后,用营养缺

陷型和抗代谢类似物育种新方法,有目的地增育产酸率高的新菌种,是氨基酸发酵的第二个突破。很多国家都纷纷研究并实现工业化生产,现已有多种氨基酸可以用发酵法生产或试生产,如赖氨破、色氨酸、亮氨酸、异亮氨酸、苯丙氨酸、苏氨酸、缬氨酸、甲硫氨酸、组氨酸、精氨酸、丝氨酸、天冬氨酸、丙氨酸等。

3.化学合成法

氨基酸都是低分子化合物,采用化学合成手段制造氨基酸占有一定的地位,特别是以石油化工产品为原料时,成本低,适合工业化生产。但是化学合成制造的氨基酸都是DL型消旋体,需要进行拆分才能得到L型产品。化学合成方法具有收率高、成本低和周期短的优点,可采用多种原料和多条路线。生产的品种有甲硫氨酸、甘氨酸、色氨酸、苏氨酸,谷氧酸、赖氨酸、苯丙氧酸、丙氨酸等。

4.酶合成法

酶合成法是以化学合成法配制基质,利用酶促反应(即酶的水解、裂解、合成作用)直接制备各种氨基酸,特别是固定化酶和固定细胞等技术的迅速发展,解决了酶合成法中较为突出的缺点,从而促进了在生产实际中的应用。

三、典型氨基酸类药物

(一)单一氨基酸制剂

1.用于肝脏疾病的氨基酸

治疗肝病的氨基酸有精氨酸盐酸盐、磷葡精氨酸、鸟氨酸、天冬氨酸、谷氨酸钠、蛋氨酸、乙酰蛋氨酸、赖氨酸盐酸盐及天冬氨酸等。

蛋氨酸和乙酰蛋氨酸是体内胆碱合成的甲基供体,可促进磷脂酰胆碱的合成,用于慢性肝炎、肝硬化、脂肪肝、药物性肝障碍的治疗。

精氨酸能在人体内参与鸟氨酸循环,促进尿素的形成,使人体内产生的氨经鸟氨酸循环变成无毒的尿素,并通过尿液排出,从而降低血氨浓度。本品有较高浓度的氢离子,有助于纠正肝性脑病时的酸碱平衡。

2.用于消化道疾病的氨基酸

此类氨基酸及其衍生物有谷氨酸及其盐酸盐、谷氨酰胺、乙酰谷酰胺铝、甘氨酸及其铝盐、硫酸甘氨酸铁、组氨酸盐酸盐等。

谷氨酸、谷氨酰胺、乙酰谷酰胺铝主要通过保护消化道或促进黏膜增生,而达到防治综合性胃溃疡病、十二指肠溃疡、神经衰弱等疾病的作用。

甘氨酸及其铝盐、谷氨酸盐酸盐主要是通过调节胃液酸碱度实现治疗作用。

3.用于脑病的氨基酸

谷氨酸可被脑组织氧化,能作为脑组织的“能源”,是脑组织代谢作用较活跃的成分,故用来作为神经衰弱患者的中枢神经及大脑皮质的补剂,有改善神经系统功能的作用。

γ-氨基丁酸(γ-氨酪酸)是中枢神经突触的抑制性递质,能激活脑内葡萄糖代谢,促进乙酰胆碱合成。恢复脑细胞功能并有中枢性降血压作用,用于治疗记忆障碍、语言障碍、脑外伤后遗症等。

4.用于心血管病的氨基酸

天冬氨酸又称门冬氨酸,分子中含两个羧基和一个氨基,属酸性氨基酸,广泛存在于所有蛋白质中。天冬氨酸是草酰乙酸前体,在三羧酸循环、鸟氨酸循环及核苷酸合成中都起重要作用。它对细胞亲和力很强,可作为载体使钾离子、镁离于易于进入胞浆和线粒体内,以维持神经组织、心肌、平滑肌等细胞的正常兴奋性和内环境的稳定。向心肌输送电解质,促进肌细胞去极化,维持心肌收缩能力,同时可降低心肌耗氧量,在冠状动脉循环障碍引起缺氧时,对心肌有保护作用。天冬氨酸参与鸟氨酸循环,促进尿素生成,降低血液中氨和二氧化碳含量,增强肝脏功能。

5.用于呼吸系统的氨基酸

6.用于肿瘤治疗的氨基酸

氨基酸衍生物已广泛用作抗肿瘤药物,其应用形式有:

(1)作为抗肿瘤药物的载体增加药物的溶解性,如苯丙氨酸芥子气,L-缬氨酸、L-谷氨酸、L-赖氨酸与苯二胺氮芥共结合物。

(2)作为肿瘤细胞所需氨基酸的结构类似物抑制细胞增殖,如S-氨甲酰-L-半胱氨酸。

(3)作为酶抑制剂中断嘧啶核苷酸的合成途径,如N-磷酸乙酰-L-天门冬氨酸是一个天门冬氨酸转氨甲酚基酶的过渡状况抑制剂,利用这个抑制剂可中断嘧啶核苷酸的合成途径达到抗肿瘤目的。

(4)作为使癌细胞逆转的氨基酸衍生物,提高对肿瘤细胞的靶向性等。现已发现偶氮丝氨酸、E-羟基甘氨酸、N-甲基酪氨酸、N-氮乙基胺基-L-苯丙氨酸等抗肿瘤活性大于自力霉素。

(二)复方氨基酸制剂

成人必需氨基酸的需求量约为蛋白质需求量的20%~37%。中国肠外肠内营养学分会指南建议健康成人氨基酸基本需要量是一日0.8~1.0g/kg,在严重分解代谢、明显的蛋白质丢失或重度营养不良时需要适当加一些补充量。如无特殊代谢情况的限制,可选用所含氨基酸种类完整的平衡型氨基酸溶液。对于需要肠外营养支持的重症患者,推荐在肠外营养配方中添加谷氨酰胺双肽。目前作为药用的氨基酸有100多种,其中包括构成蛋白质的氨基酸20种和构成非蛋白质的氨基酸100多种氨基酸按照一定比例配成复方氨基酸注射液,可用于维持营养需求和疾病的治疗。

1.平衡型氨基酸制剂(包括成人型和小儿型)

2.治疗型氨基酸制剂

肝病适用型氨基酸制剂,如复方氨基酸注射液(3AA、6AA、20AA)等。肝病氨基酸输液中富含支链氨基酸,能调节血浆支链氨基酸/芳香族氨基酸的比例。肝脏是机体分解、转化各种氨基酸最重要器官,除支链氨基酸外,几乎所有其他氨基酸均主要在肝内进行氧化分解,因此对肝功能不良病人的营养支持方面,氨基酸制剂若选择不当,可导致肝昏迷。目前应用的一些肝病适用型氨基酸制剂,主要用于肝硬化、重症肝炎和肝昏迷的治疗,但用量偏大时仍能加重肝昏迷。

肾病适用型氨基酸制剂,如复方氨基酸注射液(9AA)等。肾病氨基酸输液系由8种必需

氨基酸和组氨酸构成。在慢性肾衰时,体内大多数必需氨基酸血浆浓度下降,而大多数非必需氨基酸的血浆浓度正常或升高,因此给予必需氨基酸可使下降的必需氨基酸的血浆浓度恢复。如同时供给足够能量,可使同化作用加强,蛋白质不被作为能源分解利用,不会产生或极少产生氮的终末代谢产物,对减轻尿毒症十分有利。临床用于急性和慢性肾功能不全患者的肠道外支持治疗;大手术、外伤或脓毒血症引起的严重肾功能衰竭;急慢性肾功能衰竭,纠正因肾病引起的必需氨基酸不足。应用此类氨基酸输液的病人应给予低蛋白、高热量饮食。

第三部分多肽和蛋白质类药物

一、多肽和蛋白质药物的特点和分类

多肽及蛋白质类药物,主要指用于预防、治疗和诊断的多肽和蛋白质类物质的生物药物。多肽作为蛋白质水解的中间产物,是α-氨基酸以肽链连接在一起而形成的化合物,多条多肽链按一定的空间结构结合就构成了蛋白质,而大分子蛋白质也可水解生成多肽。

(一)多肽和蛋白质类药物特点

1.基本原料简单易得

多肽和蛋白质类药物主要以20种天然氨基酸为基本结构单元依序连接而得,广泛存在于生命体中。

2.药效高,副作用低

多肽和蛋白质类药物本身是人体内源性物质或针对生物体内调控因子研发而得,通过参与、介入、促进或抑制人体内或细菌病毒中生理生化过程而发挥作用,具有副作用低、药效高、针对性强等优点,且不会蓄积于体内而引起中毒。

3.用途广泛,品种繁多

多肽和蛋白质类药物是目前医药研发领域中最活跃进展最快的部分,将20种基本氨基酸按不同序列相互连接,可得到品种繁多用于治疗各种类型疾病的多肽和蛋白质类药物。众多新型多肽和蛋白质类药物在治疗艾滋病、癌症、肝炎、糖尿病、慢性疼痛中效果显著。

4.研发过程目标明确,针对性强

借助生命科学领域取得的大量研究成果,包括对各类疾病发病机理的揭示,对体内各种酶、辅酶、生长代谢调节因子的深入认识,可以针对性开展多肽和蛋白质类药物的研发。

(二)多肽类药物的分类

主要的多肽类药物有以下几种。

1.多肽激素

(1)垂体多肽激素促皮质素(ACTH)、促黑激素(MSH)、脂肪水解激素(LPH)、催产素(OT)、加压素(AVP)。

(2)下丘脑激素促甲状腺激素释放激素(TRH)、生长素抑制激素(GRIF)、促性腺激素释放激素(IMRH)。

(3)甲状腺激素甲状旁腺激素(PTH)、降钙素(CT)。

(4)胰岛激素胰高血糖素、胰解痉多肽。

(5)胃肠道激素胃泌素、胆囊收缩素—促胰酶素(CCK—PZ)、肠泌素、肠血管活性肽(VIP)、抑胃肽(GIP)、缓激肽、P物质。

(6)胸腺激素胸腺素、胸腺肽、胸腺血清因子。

2.多肽类细胞生长调节因子

表皮生长因子(EGF)、转移因子(TF)、心钠素(ANP)等。

3.其他多肽类药物

Exendin-d、齐考诺肽等。

4.含有多肽成分的其他生化药物

骨宁、眼生素、血活素、氨肽素、妇血宁、脑氨肽、蜂毒、蛇毒、胚胎素、助应素、神经营养素、胎盘提取物、花粉提取物、脾水解物、肝水解物、心脏激素等。

(三)蛋白质药物的分类

蛋白质药物具体可分为以下几类:

1.蛋白质激素

(1)垂体蛋白质激素,包括生长素(GH)、催乳激素(PRL)、促甲状腺素(TSH)、促黄体生成素(LH)、促卵泡激素(FSH)等。

(2)促性腺激素,包括人绒毛膜促性腺激素(HCG)、绝经尿促性腺激素(HMG)、血清性促性腺激素(SGH)等。

(3)胰岛素及其他蛋白质激素,包括胰岛素、胰抗脂肝素、松弛素、尿抑胃素等。

2.血浆蛋白质

主要包括:白蛋白、纤维蛋白溶酶原、血浆纤维结合蛋白(FN)、免疫丙种球蛋白、抗淋巴细胞免疫球蛋白、Veil’s病免疫球蛋白、抗-D免疫球蛋白、抗-HBs免疫球蛋白、抗血友病球蛋白、纤维蛋白原、抗凝血酶Ⅲ、抗凝血因子Ⅷ、抗凝血因子Ⅸ等。

3.蛋白质类细胞生长调节因子

主要包括:干扰素α、β、γ,白细胞介素(IL),神经生长因子(NGF),肝细胞生长因子(HGF),血小板衍生的生长因子(PDGF),肿瘤坏死因子(TNF),集落刺激因子(CSF),组织纤溶酶原激活因子(tPA),促红细胞生成素(EPO),骨发生蛋白(BMP)等。

4.黏蛋白

如胃膜素、硫酸糖肽、内在因子、血型物质A和B等。

5.胶原蛋白

如明胶、氧化聚合明胶、阿胶、新阿胶、冻干猪皮等。

6.碱性蛋白质

如硫酸鱼精蛋白等。

7.蛋白酶抑制剂

如胰蛋白酶抑制剂、大豆胰蛋白酶抑制剂等。

8.植物凝集素

如植物血球凝集素(PHA)、刀豆蛋白A等。

二、多肽和蛋白质类药物的生产方式

多肽及蛋白质类药物主要来源于动物、植物和微生物,多从天然生物材料中,经提取、纯化等工艺制得。但随着基因工程技术的发展,已有多种多肽和蛋白质采用基因工程菌或转基因动植物生产。

(一)化学合成法

化学合成法是把氨基酸按一定的顺序排列起来,利用氨基和羧基的脱水形成肽键,进而形成我们所需要的结构。1953年,人类化学合成了具有生物活性的多肽催乳素,1965年,我国又率先合成了蛋白质——牛胰岛素。经过半个多世纪的发展,目前已采用专门的化学合成仪,利用多种方式(如液相合成、固相合成、同/液合成相结合以及片段连接等)进行多肽蛋白质类药物的研制开发。特别是含有非天然氨基酸的蛋白质(如翻译后修饰蛋白质、修饰有探针分子的蛋白质等)难以通过生物表达来获取,必须使用化学方法来合成。但目前化学合成法步骤麻烦、成本较高,难以工业化生产。

(二)直接提取法

直接提取法是从动物、植物原料中,将多肽或蛋白质提取出来,再进行分离纯化的过程。该方法是最早使用的方法,也是目前生产多肽蛋白质药物的重要方法。

1.原料

多肽蛋白质药物的主要原料是动物脏器,如丘脑、脑垂体、胰腺、甲状旁腺、甲状腺、胸腺、胃肠道。原料的种属、发育状态、生物状态等对产品的质量、产量和成本都有着重要的影响。

2.提取与纯化

提取的总体要求是最大限度地把有效成分提出来,关键是溶剂的选择。提取的溶剂随药物的性质而异,如白蛋白可以用水来提取,为做到重复性较强,以较稀的缓冲液为宜;胰岛素则用50%的乙醇提取。提取一般都在较低温度下如0℃左右进行,个别的需适当提高温度,但要注意温度高会引起变性。

纯化就是将某种蛋白质与其他蛋白质杂质分离开来。纯化方法需利用分离形状与相对分子质量大小、电离性质、溶解度及生物功能的专一性差别,使用沉淀、层析、膜分离等多种技术使蛋白质达到药用质量标准。

(三)基因工程法

基因工程技术就是将重组对象的目的基因插入载体,拼接后转入新的宿主细胞,构建成

工程菌(或细胞),实现遗传物质的重新组合,并使目的基因在工程菌内进行复制和表达的技术。基因工程技术是制备多肽和蛋白质药物的重要方法。利用基因工程技术制备蛋白质类药物的主要程序是:①发现具有药物作用特性和活性的目的蛋白;②分离或合成相关基因;③将该基因导入合适的载体(质粒、病毒等)中并转人宿主细胞;④构建能表达产生目的蛋白的菌种库或细胞库;⑤扩大规模,应用生物反应器或发酵罐或细胞培养制造目的蛋白。

目前经批准的重组蛋白类药物,按照结构可分为三类:①与人完全相同的多肽和蛋白质。

②与人密切相关但不同的多肽和蛋白质,在氨基酸序列上或翻译后修饰上有差异。③与人相关较远或无关的多肽和蛋白质,如具有调节活性,但和已知的人多肽和蛋白质没有同源性的多肽和蛋白质、双功能的融合蛋白、经蛋白质工程改造和模拟的活性蛋白。

三、典型多肽和蛋白质类药物

(一)多肽类典型药物

1.降钙素

降钙素是由甲状腺内的滤泡旁细胞(C细胞)分泌的一种调节血钙浓度的多肽激素,具有抑制破骨细胞活力,阻止钙从骨中释出,降低血钙的功能。临床用于骨质疏松症、甲状旁腺机能亢进、婴儿维生素D过多症、成人高血钙症、畸形性骨炎等,还用于诊断溶骨性病变、甲状腺的髓细胞癌和肺癌。最近有报道降钙素还能抑制胃酸分泌,可治疗十二指肠溃疡。

2.胸腺激素

动物胸腺中有多种多肽类激素,总称为胸腺激素。

胸腺素,是从小牛、猪等动物胸腺中提取的第五种组分。由40~50种多肽组成的混合物,现在不仅可人工合成,而且已成功地利用基因工程通过大肠杆菌生产。胸腺素为免疫调节剂,临床主要用于以下方面的治疗:①原发性和继发性免疫缺陷病,如反复上呼吸道感染等;②自身免疫病,如肝炎、肾病、红斑狼疮、类风湿关节炎、重症肌无力等;③变态反应性疾病,如支气管哮喘等;④细胞免疫功能减退的中年人和老年人疾病,并可抗衰老;⑤肿瘤的辅助治疗。

胸腺肽,从冷冻的小牛(猪、羊)胸腺中,经提取、部分热变性、超滤等工艺过程制备出的一种具有高活力的混合肽类药物制剂。胸腺肽可调节细胞免疫功能,有较好的抗衰老和抗病毒作用,适用于原发和继发性免疫缺陷病以及因免疫功能失调所引起的疾病,对肿瘤有很好的辅助治疗效果。也用于再生障碍性贫血、急慢性病毒性肝炎等的治疗,无过敏反应和不良的副作用。

胸腺五肽,由精氨酸、赖氨酸、天门冬氨酸、缬氨酸、酪氨酸五种氨基酸组成的胸腺生成素II的有效部分。胸腺生成素II是从胸腺激素中分离出来的单一多肽化合物,由49个氨基酸组成,而其中由5个氨基酸组成的肽链片段,却有着与胸腺生成素II相同的全部生理功能,所以就把这个五肽片段称为胸腺五肽。胸腺五肽可诱导T细胞分化,增强巨噬细胞的吞噬功能,增加干扰素产生量。可用于恶性肿瘤病人放化疗后,免疫功能损伤者;乙型肝炎的治疗;重大外科手术及严重感染;自身免疫性疾病,如类风湿性关节炎,红斑狼疮;Ⅱ型糖尿病、更年期综合征;年老体衰免疫功能低下者。

胸腺肽α1,胸腺肽α1是由胸腺素组分5(TF-5)中分离纯化出的一种小分子生物活性多肽,由28种氨基酸排列而成,分子量3108.37,其含量约占TF-5的0.6%,具有较高的免疫增强活性。

表1 胸腺肽注射液、胸腺五肽和胸腺肽α1的比较

项目胸腺肽注射液胸腺五肽胸腺肽α1

主要成份为动物胸腺提取物,化学结

构式不明确

为人工合成的胸腺五肽,化

学结构式明确

结构、化学式明确的28个

氨基酸组成

有效成份含量有效成份含量随批量不同

而变化。

有效成份含量稳定,为动物

胸腺提取物的84-102倍

有效成份明确。分子量

3108.37;纯品胸腺肽α1免

疫学活性是市售胸腺肽的

2000-3000倍

生产方式及标准产品不是单一化合物,有效

成份用效价表示(单位)。

原料药为人工合成的胸腺

五肽,采用固相合成法制

成,纯度高(99%以上),含

量稳定。

采用国际上先进的多肽固

相合成法合成,经液相色谱

分离纯化、精制而成。原料

及制剂均按GMP要求生产

副作用有大分子蛋白质,病人有可

能有过敏反应,一般要求先

作皮试。

不含有致敏蛋白质,无过敏

反应,不需要做皮试。

为化学单体化合物,不存在

异原蛋白,无过敏反应,使

用前无需皮试,安全方便,

未发现毒副作用

3.促皮质激素

促皮质激素(ACTH)是从腺垂体前叶中提取的一种含39个氨基酸残基的直链多肽,可被胃蛋白酶水解。本品是维持肾上腺正常形态和功能的重要激素,能使肾上腺皮质增生,刺激肾上腺皮质制造并释放糖皮质激素进入血液循环而显效。临床用于治疗胶原病(包括风湿性关节炎、红斑狼疮、干癣等),也用于过敏症(如严重哮喘、药物过敏、荨麻疹等)。还可用于诊断试剂,诊断垂体和肾上腺皮质功能。

(二)蛋白质类典型药物

1.白蛋白

白蛋白又称清蛋白,是人血浆中含量最多的蛋白质,约占总蛋白的55%。从人血浆中分离的白蛋白有两种制品:一种是从健康人血浆中分离制得的,称人血白蛋白;另一种是从健康产妇胎盘血中分离制得的,称胎盘血白蛋白。白蛋白制剂为淡黄色略稠的澄明液体或白色疏松状(冻于)固体。人血白蛋白的主要功能是维持血浆胶体渗透压,临床上用于失血性休克、严重烧伤、低蛋白血症等的治疗。

2.干扰素

干扰素系指由干扰素诱生剂诱导有关生物细胞所产生的一类高活性、多功能的诱生蛋白质。这类蛋白质从细胞中产生和释放之后,作用于相应的其他同种生物细胞,并使其获得抗病毒和抗肿瘤等多方面的“免疫力”。按照结构和来源方面的差异,可将干扰素分为3类,即α-干扰素、β-干扰素、γ-干扰素。干扰素按其作用被归到细胞激素(cytokine)或细胞生长调节因子一类。

干扰素作为人体防御系统的重要组成,其作用有:①抑制病毒等细胞内微生物的增殖;

②抗细胞增殖;③通过作用于巨噬细胞、NK细胞、T淋巴细胞、B淋巴细胞而进行免疫调节;

④改变细胞表面的状态,使负电荷增加,组织相容性抗原表达增加;⑤增加细胞对双链DNA 的敏感性。研究表明,α-干扰素可抗艾滋病病毒、肝炎病毒;β-干扰素能有效地治疗病毒引起的带状疱疹,对乳腺癌、肾细胞癌、恶性黑色素瘤等也有一定的作用;三类干扰素联合应用于抗肿瘤方面的研究正在进行之中。

干扰素主要用于:①病毒性疾病,如普通感冒、疱疹性角膜炎、带状疱疹、水痘、慢性活动性乙型肝炎;②恶性肿瘤,如成骨肉瘤、乳腺癌、多发性骨髓瘤、黑色素瘤、淋巴瘤、白血病、肾细胞癌、鼻咽癌等,可获得部分缓解;③用于病毒引起的良性肿瘤,控制疾病发展。

3.胰岛素

胰岛素广泛存在于人和动物的胰脏中,正常人的胰脏约含有200万个胰岛,胰脏总质量的1.5%。胰岛由a、β和δ三种细胞组成,其中β细胞制造胰岛素,a细胞制造胰高血糖素和胰抗脂肝素,δ细胞制造生长激素抑制因子。胰岛素在β细胞中开始时是以活性很弱的前体胰岛素原存在,进而分解为胰岛素进入血液循环,起到调节血糖的作用。临床上主要用于胰岛素依赖性糖尿病及糖尿病合并感染等疾病的治疗。将人胰岛素基因克隆到大肠杆菌中产生人胰岛素已产业化,胰岛素的生产不再依赖动物胰脏提取。

40分

用,可诱发排卵,治疗不育症。亦可用于皮肤瘙痒症、神经性皮炎等。

6.免疫球蛋白

免疫球蛋白(immunoglobulin,Ig)是一类主要存在于血浆中、具有抗体活性的糖蛋白。

免疫球蛋白约占血浆蛋白总量的20%。除存在于血浆中外,也少量地存在于其他组织液、外分

泌液和淋巴细胞的表面。根据免疫球蛋白的免疫化学特性质的差异,可将Ig分成五类,即IgG、

IgA、IgM、IgD和IgE,机体的大部分免疫能力主要依赖于IgG类免疫球蛋白,它们约占免疫球

蛋白总量的70%~90%。免疫球蛋白具有被动免疫、被动-自动免疫以及非特异性即负反馈作用,

故可用于预防流行性疾病如病毒性肝炎、脊髓灰质炎、风疹、水痘及治疗丙种球蛋白缺乏症

等。

7.白细胞介素

白细胞介素(IL)是细胞因子家族的一员,其主要功能是介导白细胞间的相互作用。到

目前为止,已发现的IL已有三十多种,其中IL-1~IL-6研究得较多。IL-2能诱导T细胞增殖与

分化,刺激T细胞分泌γ干扰素,增强杀伤细胞的活性,故在调整免疫功能上具有重要作用。

临床用于治疗一些免疫性疾病,如获得性免疫缺陷综合征(艾滋病)、原发性免疫缺损、老

年性免疫功能不全以及癌症的综合治疗。IL-2对创伤修复也有一定的作用。

[1]张恒主编.生物化学与分子生物学[M].郑州:郑州大学出版社.2007.

[2]郑里翔主编.生物化学[M].北京:中国医药科技出版社.2015.

[3]吴梧桐主编.生物制药工艺学[M].北京:中国医药科技出版社.2015.

[4]余琼主编.生物制药工艺学[M].北京:高等教育出版社.2011.

[5]吴晓英主编.生物制药工艺学[M].化学工业出版社.2009.03

[6]齐香君主编.现代生物制药工艺学[M].化学工业出版社.2010.02第2版

氨基酸多肽与蛋白质

第十五章 氨基酸、多肽与蛋白质 (Amino Acids,Peptides and Protein ) 一、教学目的和要求 1.掌握氨基酸的分类、常见氨基酸的结构和名称。 2.掌握氨基酸的化学性质。 3.理解多肽的一般结构。 4.了解蛋白质的一级结构 、二级结构、三级结构和四级结构。 5.了解蛋白质的性质。 6.了解氨基酸、蛋白质在生命活动中的重要意义。 二、教学重点与难点 重点是氨基酸的化学性质。 难点是蛋白质的一级结构 、二级结构、三级结构和四级结构。 三、教学方法和教学学时 (1)教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合,配合适量的课外作业。 (2)教学学时:2学时 四、教学内容 1、氨基酸。 2、多肽。 3、蛋白质。 4、核酸。 五、总结、布置作业 15.1 氨基酸Amino Acids 一、氨基酸的结构和分类 在蛋白质中常见的氨基酸约20种,除脯氨酸外都是α-氨基酸,除甘氨酸外都含手性碳原子且大多 为 L-构型。 组成蛋白质常见的氨基酸有20种,除甘氨酸外,其他氨基酸都有手性碳原子,具有旋光性,其构型 L 型,投影在右的为D 型。D 、L 氨基酸在生理活性上差别很大。 二、氨基酸的化学性质 1. 氨基酸的两性和等电点 研究表明,氨基酸晶体是以偶极离子的形式存在的: R-CH-COO NH 2 R-CH-COO - N + H 3 R-CH-COOH N + H 3 H 3O + OH OH H O + 氨基酸在溶液中的存在形式与溶液的pH 值有关,如果调节pH 使氨基酸成为正负电荷相等的偶极离子,

此时溶液的pH 值称为该氨基酸的等电点(pI) 等电点是每一种氨基酸的特定常数。 当pH <pI ,主要以正离子形式存在,在电场中会向阴极移动; 当pH >pI ,主要以负离子形式存在,在电场中会向阴极移动; 当pH =pI ,主要以偶极离子形式存在,在电场中会向阴极移动; 2. 与亚硝酸反应 放出氮气((Van Slyke 定氨基法) R-CH-COOH +NH 2 HNO 2 R-CH-COOH +OH N 2O H 2 测定放出的氮量,便可计算分子中氨基的含量。 3. 与甲醛反应 R-CH-COOH NH 2 HCHO HOCH 2-N-CH 2OH R-CH-COOH 甲醛固定氨基后,便可用碱滴定羧基。 原理:-OH 的-I 效应降低了N 原子上的电子云密度,使氨基的碱性消失,再用碱滴定-COOH ,从而测定氨基酸的含量——氨基酸的甲醛滴定法。 4. 络合性能 R CH O Cu O R CH O N H 2O NH 2 5. 氨基酸的受热反应 α-氨基酸: C H 3NH 2 O 3 H C H 3NH O CH 3 NH O β- γ - δ- 氨基酸脱水与相应的羟基酸脱水相似。 6. 与水合茚三酮反应——生成兰紫色物质 O O OH OH H 2N-CH-COOH R O O OH O N 此反应可用来鉴别氨基酸。 7. 失羧作用 -CH-COOH NH 2 H 2N-CH 2(CH 2)3Ba(OH)2-CO 2 H 2N-(CH 2)5 -NH 2 赖氨酸 尸胺 蛋白质腐烂时之所以极臭就是因为生成了剧毒的尸胺和腐肉胺(1,4-丁二胺)。 8. 失羧和失氨作用 (CH 3)2CHCH 2-CHCOOH + H 2O NH 2 (CH 3)2CHCH 2CH 2OH 2 + NH 3

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一些非免疫性疾病的预防和治疗。

多肽、蛋白质类药物缓释剂型的研究进展天烽

多肽、蛋白质类药物缓释剂型的研究进展 作者:文章来源:点击数:3201 更新时间:2004-7-13 随着生物技术的高速发展,多肽、蛋白质类药物不断涌现。目前已有35种重要治疗药物上市,生物技术与生物制药企业的发展也日益全球化。生物技术药物研究的重点是应用重组技术开发可应用于临床的多肽、蛋白、酶、激素、疫苗、细胞生长因子及单克隆抗体等。据's 报道,目前已有723种生物技术药物正在接受审评(包括Ⅰ~Ⅲ期临床及评估),700种药物处于早期研究阶段(研究与临床前),还有200种以上药物已进入最后批准阶段(Ⅲ期临床与评估)[1]。 生物技术药物的基本剂型是冻干剂。常规制剂尽管其疗效早为临床所证实,但由于半衰期短,需要长期频繁注射给药,从患者的心理与经济负担角度看,这些都是难以接受的问题。为此,各国学者主要从两方面着手研究开发方便合理的给药途径和新制剂:①埋植剂和缓释注射剂。 ②非注射剂型,如呼吸道吸入、直肠给药、鼻腔、口服和透皮给药等[2]。缓释生物技术药物的注射制剂,是很有应用前景的新剂型,有一些品种如能缓释1至3个月的黄体生成素释放激素()类似物微球注射剂已经上市[3],本文着重介绍这类制剂。 1多肽、蛋白质药物缓释制剂的主要类型 多肽、蛋白质药物缓释制剂的研究与开发,从发展过程及剂型看,主要分埋植剂和微球注射剂两类。 1.1埋植剂() 1.1.1细棒型埋植剂[4]埋植剂外形为一空心微型细棒,一头封闭,另一头开口,棒材为聚四氟乙烯等非生物降解聚合物。腔内灌入药物与硅胶(,聚二甲基硅氧烷)混合物。埋植剂埋入人体皮下,药物通过硅胶基质开口处缓慢释放。美国内科医生手册()上收载了商品名为?的埋植剂,药物为左旋-18乙基炔诺酮,用于计划生育。该制剂每根直径 2.4 ,长34 ,医生通过手术将6根细棒状物埋植在患者上臂内侧,药物可在体内按零级模式释药达5年,药物释完后再经手术取出。 1.1.2微型渗透泵埋植剂美国公司20世纪70年代开发了外形像胶囊的埋植剂,该制剂埋植于皮下或其它部分,体液可渗透过外壳,溶解夹层电解层,使体积膨胀的夹层压向塑性内腔,促使药物溶液从开口定速释放。有不少生物大分子药物,如胰岛素、肝素、神经生长因子等作为模型药物的动物体内外研究报道[5]。埋植剂对需要长期用药的慢性患者的治疗具有积极的意义,但它存在以下缺陷:①必须经手术途径植入。②制剂骨架材料为非生物降解聚合物,释药结束后还需经手术取出。③制剂在局部组织有刺激与不适感。 1.1.3可注射的埋植剂可生物降解聚合物作为埋植型或注射型缓释制剂骨架是近20年来国内外学者大力研究的方向,这类聚合物包括两大类:①天然聚合物,如明胶、葡聚糖、白蛋白、甲壳素等。②合成聚合物,如聚乳酸、聚丙交酯、聚乳酸-羟乙酸()、聚丙交酯乙交酯()、聚己内酯、聚羟丁酸等。 近年合成聚合物尤为人们重视,于20世纪70年代起即用作外科缝线及体内埋植材料,如人工关节、护板、螺栓等。聚合物在体内可逐渐

氨基酸、多肽与蛋白质答案

第十四章氨基酸、多肽与蛋白质 14.2 写出下列氨基酸分别与过量盐酸或过量氢氧化钠水溶液作用的产物。 a. 脯氨酸 b. 酪氨酸 c. 丝氨酸 d. 天门冬氨酸 答案: 14.3 用简单化学方法鉴别下列各组化合物: b. 苏氨酸丝氨酸 c. 乳酸丙氨酸 答案: 14.4 写出下列各氨基酸在指定的PH介质中的主要存在形式。 a. 缬氨酸在PH为8时 b. 赖氨酸在PH为10时 c. 丝氨酸在PH为1时 d. 谷氨酸在PH为3时 答案: 14.5写出下列反应的主要产物 答案: 14.6 某化合物分子式为C3H7O2N,有旋光性,能分别与NaOH或HCl成盐,并能与醇成 酯,与HNO2作用时放出氮气,写出此化合物的结构式。 答案: 14.7 由3-甲基丁酸合成缬氨酸,产物是否有旋光性?为什么? 答案: 如果在无手性条件下,得到的产物无旋光活性,因为在α–氯代酸生成的那一步无立体选择性. 14.8 下面的化合物是二肽、三肽还是四肽?指出其中的肽键、N-端及C-端氨基酸,此 肽可被认为是酸性的、碱性的还是中性的? 答案:三肽,N端亮氨酸,C端甘氨酸. 中性. 14.10 命名下列肽,并给出简写名称。 答案: a 丝氨酸--甘氨酸--亮氨酸,简写为:丝--甘--亮 b 谷氨酸--苯丙氨酸--苏氨酸,简写为:谷--苯丙--苏 14.11 某多肽以酸水解后,再以碱中和水解液时,有氮气放出。由此可以得出有关此多 肽结构的什么信息? 答案:此多肽含有游离的羧基,且羧基与NH3形成酰胺. 14.12 某三肽完全水解后,得到甘氨酸及丙氨酸。若将此三肽与亚硝酸作用后再水解, 则得乳酸、丙氨酸及甘氨酸。写出此三肽的可能结构式。 答案:丙--甘--丙或丙--丙--甘 14.13 某九肽经部分水解,得到下列一些三肽:丝-脯-苯丙,甘-苯丙-丝,脯-苯丙 -精,精-脯-脯,脯-甘-苯丙,脯-脯-甘及苯丙-丝-脯。以简写方式排出此九肽中氨基酸的顺序。 答案: 精—脯—脯—甘—苯丙—丝—脯—苯丙—精 1

多肽、蛋白质类药物给药系统

多肽、蛋白质类药物给药系统 摘要随着重组DNA技术的发展.基因工程肽和蛋白质药物的大规模生产已成现实,这类药物应用于临床的数量越来越多。与传统的化学合成约物相比,其优点受到了广泛的关注,即与体内正常生理物质十分接近,更易为机体吸收,其药理活性高、针对性强、毒性低。但由丁多肽、蛋门质类约物(1)分子质量大、稳定性高、易被胃肠道中的的蛋白水解酶降解;(2)生物半衰期短、生物膜渗透性差、生物利用度不高、不易通过生物屏障等,故其给药系统的研究一直足约剂学领域的一个热点。许多学者曾尝试对肽类、蛋白质类约物进衍化学修饰、制成前体药物、应用吸收促进剂、使用酶抑制刺、采用离子电渗法皮肤给药以及设计各种给药系统解决上述问题.此炎药物一般注射给药,基本剂型足注射剂和冻粉针剂,常需频繁注射,患者顺从性差,且加重了患者的身体、心理和经济负担。近年来,脂质体、微球、纳米粒等制剂新技术发展迅述歼逐渐完善,国内外学者将其广泛应用于多肽、蛋白质炎约物给约系统(drug deiivery system,DDS)的研究中,为此炎药物的临床应用铺平了道路。 本文就多肽、蛋白质类约物的给药系统及新技术进行综述。主要介绍注射给药系统和非注射给约系统,及其下属几个分支。重点介绍非注射给药系统。 关键字给药系统注射非注射 l 新型注射给药系统 1.1 控释微球制剂 为了达到多肽、蛋白质类药物控制释放,可将其制成生物可降解的微球制剂。目前已经实际应用的生物可降解材料主要有淀粉、明胶、葡糖糖、清蛋白、聚乳酸(PLA)、聚乳酸乙醇酸共聚物(PIGA)、聚邻酯、聚内酯和聚酐等;其中PLGA最为常用,改变乳酸乙醇酸的比例或相对分子质量,可得到不同降解时间的微球。 PLGA 微球相对于常规注射剂具有如下优点:(1)释药周期长,避免频繁给药; (2)使用安全;(3)药理作用增强;(4)避免发生明显的不良反应;(5)生物利用度显著提高。 1.2 脉冲式给药系统 普通注射剂(疫苗、类毒素)一般至少接种3次,才能确保免疫效果,血药浓度波动大,且不能保证在疾病发作时相应的血药浓度。而脉冲给药制剂具有普通制剂不可比拟的优点,它可以根据忠者发病的节律性提前给药,使给药时间与释药时间有一个与生理周期相匹配的时间差,从而预防发病,降低药物的不良反应,且不易产生耐受性,提高患者的顺应性,是现代药剂学研究的新模式。 2 非注射给药系统 2.1 口服给药系统 多肽、蛋白质类药物口服给药主要存在4个问题:(1)在胃内酸催化降解;(2)在胃肠道内的酶水解;(3)对胃肠道黏膜的透过性差;(4)存在肝的首过效应。因此研制新的剂型,提高多肽、蛋白质类药物的生物利用度是人们关注的 热点。 2.1.1 纳米粒 Kawashima等以降钙素为模型药物制备壳聚糖包衣PLGA纳米粒来评价黏膜黏附纳米粒对肽类药物吸收的影响。体外实验表明,壳聚糖包衣PI GA纳米粒对十二指肠、空肠和回肠的黏膜黏附效应无部位特异性,且壳聚糖的黏附特性要强于聚乙烯醇和海藻酸钠。药物的释放特性与未包衣纳米粒相比没有变化。

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%-20%约达人体固体总量的45%肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较咼,如大豆中蛋白含量约为38%而黄豆中咼达40%微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%-80%干酵母中蛋白质含量也高达46. 6%病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1?生物催化作用 作为生命体新陈代谢的催化剂一一酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2?结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白, a -角蛋白是组成毛发、羽毛、角质、皮肤的结 构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的

蛋白多肽类药物药代动力学分析方法研究进展

蛋白多肽类药物药代动力学分析方法研究进展 作者:张琪王广基 摘要通过查阅近期国内外有关文献10余篇,综述了现代分析方法在蛋白多肽类药物代谢动力学研究中的应用,重点介绍了生物检定法、同位素标记法、免疫学、色谱等方法的原理、特点、及发展状况。 关键词蛋白质;多肽;药物动力学;生物检定法;同位素标记法;免疫学;色谱文章编号:1005-8915(2000)02-0126-03 The Progress of the Analysis Method of Protein Polypeptide Drug Pharmac okinetics Zhang Qi Wang Guangji (Center of Pharmacokinetics, China Pharmaceutical University,Nanjing 210009) Abstract A review of application of modern analysis methods in studying the pha rmacokinetics of protein polypeptide drug is presented with 16 references. The paper emphasizes the principle, characteristic, and progress of bioassay, radioi odination, immunoassay, and chromatography. Key Words Protein, Polypeptide, Pharmacokinetics, Bioassay, Rad ioiodination, Immunoassay, Chromatography 在国家确定的发展高新技术计划中,生物技术产品一直作为优先开发的领域之一。蛋白多肽类药物在实现产品的产业化过程中,受到诸多因素的制约,其中药物动力学的研究面临着更高的要求。其主要原因是蛋白多肽类药物的结构特殊、用药量很小、生物体内有大量相似物质的干扰,这一切都使得该类药的分析方法不同于传统药物,大大增加了检测的难度。本文就目前进行该类药药物代谢动力学过程中所使用或发展中的几种分析方法做一概述。 1蛋白多肽类药物的分析方法 1.1生物检定法 由于蛋白多肽类药物多为有生物活性的物质,且生物活性不仅取决于药物的一级结构,

肽是介于氨基酸和蛋白质之间的物质

肽是介于氨基酸和蛋白质之间的物质。氨基酸的分子最小,蛋白质最大,两个或以上的氨基酸脱水缩合形成若干个肽键从而组成一个肽,多个肽进行多级折叠就组成一个蛋白质分子。蛋白质有时也被称为“多肽”。肽是精准的蛋白质片断,其分子只有纳米般大小,肠胃,血管及肌肤皆极容易吸收。二胜肽(简称二肽),就是由二个氨基酸组成的蛋白质片断。 肽,一种有机化合物,由氨基酸脱水而成,含有羧基和氨基,是一种两性化合物。亦称“胜”。[1]肽,是精准的蛋白质片断,其分子只有纳米般大小,肠胃,血管及肌肤皆极容易吸收。肽,酰胺之一。它是由两个或多个氨基酸通过一个氨基酸的氨基与另一个氨基酸的羧基结合而成。[2]一个氨基酸不能称为肽,也不能合成肽,必须是两个或两个以上氨基酸以肽键相连的化合物。两个氨基酸以肽键相连的化合物称为二肽;三个氨基酸以肽键相连的化合物称为三肽,以此类推,三十四个氨基酸以肽键相连的化合物称为三十四肽。肽是涉及生物体内多种细胞功能的生物活性物质。截止2003年9月,生物体内已发现几百种肽,是机体完成各种复杂的生理活性必不可少的参与者。所有细胞都能合成多肽物质,其功能活动也受多肽的调节。它涉及激素、神经、细胞生长和生殖各领域,其重要性在于调节体内各个系统器官和细胞。酶法多肽的生理和药理作用主要是激活体内有关酶系,促进中间代谢膜的通透性,或通过控制DNA转录或翻译而影响特异的蛋白合成,最终产生特定的生理效应或发挥其药理作用。肽优于氨基酸,一是较氨基酸吸收快速;二是以完整的形式被机体吸收;三是主动吸收(氨基酸属被动吸收);四是低耗,与氨基酸比较,肽吸收具有低耗或不需消耗能量的特点,肽通过十二指肠吸收后,直接进入血液循环,将自身能量营养输送到人体各个部位;五是肽吸收较氨基酸,具有不饱和的特点;六是氨基酸只有20种,功能可数,而肽以氨基酸为底物,可合成上百上千种。[3] 肽是一种链状的氨基酸聚合物 胜肽是属于降解的小分子胶原蛋白,含氨基酸基团,属于原料类产品。胜肽也是人体中原本就存在的成分,是一种氨基酸形成的链状结构。我们所熟悉的蛋白质,就是一种多胜肽链。。因氨基酸的组份和顺序各不相同而组成不同的肽。由两个氨基酸以肽键相连的化合物称为“二肽”,以此类推,有9个氨基酸组成的化合物称为"九肽",由多个氨基酸(一般为50个,也有称100个的)组成的肽则称为多肽,组成多肽的氨基酸单元称为“氨基酸残基”。肽键将氨基酸与氨基酸头尾相连。

多肽类药物

多肽类药物 多肽和蛋白质类生物药物按药物的结构分类可分为:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。 结构分析 多肽的定性至少应包括氨基酸分析、序列分析及质谱分析。纯肽的氨基酸分析可提供该多肽的氨基酸组成和数量。序列分析则提供氨基酸残基的精确排列顺序。基于多种技术的质谱, 如快原子轰击、电喷雾、激光解吸, 经常用于提供多肽的相对分子量及其序列信息。肽谱是蛋白质或多肽通过酶解得到的肽片段经分离和分析所得到的“指纹图谱”。当多肽含有20 个以上的氨基酸残基时, 肽谱分析对多肽结构研究和特性鉴别具有重要意义。 2. 1 氨基酸分析 用于氨基酸分析的水解方法主要是酸水解, 同时辅以碱水解。酸水解中使用最广泛的是盐酸(一般浓度为6mo l?L )。多肽于110 ℃真空或充氮的安瓿瓶内水解10~ 24 h, 然后除去盐酸。水解过程中氨基酸遭破坏的程度与保温时间有线性关系, 因此该氨基酸在多肽中的真实含量可通过以不同的保温时间对相应时间的样品中该氨基酸的含量作图, 用外推法求出。高氨基酸分析仪的使用使氨基酸的分析越来越准确, 如W aters 公司的氨基酸分析系统的检出限已达100 fmo l。 2. 2 序列分析 氨基酸测序主要为化学法, 酶法也有一定的意义。化学法以Edman 降解法最为经典, 它对所有氨基酸残基具有普适性和近乎定量的高产率, 是近50年N 2端顺序分析技术的基础。Edman 机理的液相(旋转杯) 自动蛋白顺序分析仪在1967 年推出。近年来不断对其改进, 其灵敏度已达到可以对0. 1pmo l 的样品进行常规分析。 2. 3 质谱(mass spect romet ry,M S) 质谱以质量分析为基础, 可提供化合物的分子量以及一些结构信息。1980 年代以后发展了许多新的“软电离”技术, 使其在蛋白质多肽分析中的应用越来越广。目前应用较多的有原子轰击、电喷雾和基质辅助激光解吸质谱。质谱测序是对Edman 降解的一个很好补充, 它可对N 2端封闭的多肽进行测序; 并可以通过碰撞诱导断裂(C ID ) 得到部分至完全的序列信息后, 作出M S2肽谱, 这可对修饰的氨基酸残基定性, 并确证其位臵。而且质谱技术与分离技术如HPLC、HPCE 直接相连可相互验证, 同时还可对混合肽进行测序。 2. 3. 1 快原子轰击质谱(fast atom bombardmen t2mass spect romet ry, FAB2M S)FAB2M S 克服了传统质谱中样品必须加热气化的限制, 可对热不稳定、难挥发的蛋白质多肽进行分析。与其他质谱技术相比, FAB2M S 更适合于小分子多肽的检测[6 ]。FAB2M S 测定肽的氨基酸序列具有用量少、方便和快速的优点。一些寡肽, 特别是人工合成的有保护基的寡肽在遇到N 2端封闭不宜用氨基酸序列仪测定其结构的情况下, 有可能用少量样品采用FAB2M S 直接获得寡肽的分子量和氨基酸序列。俞振培等[7 ]用FAB2M S 对7 个带有不同保护基的3~5 肽成功地进行了氨基酸序列研究。串联FAB2M S 将第一次轰击得到的分子离子进行再一次惰性原子轰击, 使肽链在不同部位断裂, 从而得到一组片段的质谱信息, 使多肽测序得以实现 2. 3. 2 电喷雾质谱(elect ro sp ray ion izat ion2massspect romet ry, ES I2M S)

多肽类药物

多肽类药物

————————————————————————————————作者:————————————————————————————————日期: ?

多肽类药物 多肽和蛋白质类生物药物按药物的结构分类可分为:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。 结构分析 多肽的定性至少应包括氨基酸分析、序列分析及质谱分析。纯肽的氨基酸分析可提供该多肽的氨基酸组成和数量。序列分析则提供氨基酸残基的精确排列顺序。基于多种技术的质谱,如快原子轰击、电喷雾、激光解吸, 经常用于提供多肽的相对分子量及其序列信息。肽谱是蛋白质或多肽通过酶解得到的肽片段经分离和分析所得到的“指纹图谱”。当多肽含有20个以上的氨基酸残基时, 肽谱分析对多肽结构研究和特性鉴别具有重要意义。 2. 1氨基酸分析 用于氨基酸分析的水解方法主要是酸水解, 同时辅以碱水解。酸水解中使用最广泛的是盐酸(一般浓度为6mo l?L )。多肽于110 ℃真空或充氮的安瓿瓶内水解10~ 24 h, 然后除去盐酸。水解过程中氨基酸遭破坏的程度与保温时间有线性关系,因此该氨基酸在多肽中的真实含量可通过以不同的保温时间对相应时间的样品中该氨基酸的含量作图,用外推法求出。高氨基酸分析仪的使用使氨基酸的分析越来越准确, 如W aters 公司的氨基酸分析系统的检出限已达100 fmol。 2. 2 序列分析 氨基酸测序主要为化学法, 酶法也有一定的意义。化学法以Edman 降解法最为经典, 它对所有氨基酸残基具有普适性和近乎定量的高产率, 是近50年N 2端顺序分析技术的基础。

多肽和蛋白质类药物发展过程

多肽和蛋白质类药物的发展过程 药物佐剂学 随着蛋白组学计划的逐步深入,蛋白质结构与功能关系逐渐被***,近年来越来越多的多肽及蛋白质类物质在诊断、治疗或作为疫苗预防各种疾病方面发挥着重要作用。与小分子药物相比,多肽及蛋白质类大分子药物稳定性差、易于被酶降解、故生物半衰期短;而扩散差、分配系数小,又使其难以通过生物屏障及脂质膜[1],所以,如何将这些生物技术类物质有效地送达人体相应部位,一直是制剂研究面临的重大课题。/i ekww^54 目前,生物技术类药物大多以注射用溶液或冻干粉针剂应用于临床,但常需要频繁给药,致使病人的顺应性较差,且治疗费用较高。而将大分子药物通过可生物降解微球系统给药,不仅能有效防止生物大分子在体内很快被降解,还能将药物定向送达体内有效部位,并通过可生物降解聚合物的降解达到缓释长效目的。现已有的多肽及蛋白质类药物微球制剂主要有:注射用缓释制剂,口服及鼻腔吸入剂等。随着对这类微球制剂研究的深入,制备过程中蛋白质的稳定性差、包封率低、载药量小、且易于产生聚集而使其生物活性降低并可能引起免疫反应、体外释放时具有明显突释效应等问题严重影响着这类制剂的发展。本文将就目前多肽及蛋白质类微球制剂的应用、制备方法、出现的问题及常用的各种增加稳定性、减少其突释效应的物理化学方法进行综述。?sBbe @OC? AmmU oS\ 1、多肽及蛋白质微球制剂的主要类型BV pRk UC" 1.1 注射剂? YO$NYwE 采用可生物降解聚合物为骨架材料,将多肽及蛋白质药物制成微球制剂用于肌肉或皮下注射,给药后随着聚合物的降解,药物以扩散、溶蚀方式释放,可达到缓释长效的目的[2]。 tu6Q7CjW8 ),肌肉注射后可缓释1或2个月。 这类制剂中,只有10个氨基酸的LHRH 类似物微球的研究最为成功,第一个多肽微球产品——曲普瑞林于1986年问世,随后亮丙瑞林、布舍瑞林、高舍瑞林、那法瑞林等长效微球制剂相继上市。2000年美国Genentech公司推出了重组人生长激素(rhGH)PLGA微球(Nutropin p; V H g 1.2 口服制剂a:(.{z?nM 多肽及蛋白质类药物应用于口服须克服两大障碍,一是抑制胃肠道各种酶对其降解,二是选用合适的制剂形式及载体材料使药物透过生物屏障。粒径范围处于1-1000nm的毫微粒制剂是目前研究最多的口服多肽制剂,但毫微粒的表面带电荷情况及聚合物疏水性能均影响多肽在小肠部位的吸收。 s - H e 近年来的研究主要在对毫微粒表面进行修饰,如在毫微粒表面连接各种生物粘附材料,如脱乙酰壳多糖、Carbopol?等。Kawashima等研究者[3]采用乳化溶剂扩散法在降钙素的PLGA毫微粒表面覆盖一层粘附材料脱乙酰壳多糖后,与原PLGA毫微粒相比,虽然药物扩散形式没有显著改变,但能明显降低血钙水平,且能维持48小时。Lubben等报道[1],脱乙酰壳多糖及其衍生物能有效提高亲水性大分子物质的吸收,因其能增加细胞间的紧密连接的开放而有利于药物的细胞旁转运。 P` -K? k< 另外,将毫微粒的疏水性聚合物骨架上连接亲水性聚合物侧链,可大大提高多肽药物的吸收,这可能是由于亲水性聚合物能打开小肠上皮细胞间的紧密连接。'v"{frh

多肽类药物个人见解

多肽类药物 氨基酸是蛋白质的基本单位,两个以上的氨基酸缩合形成肽链(polypeptide chain)。蛋白质是机体内最重要的一类生物大分子,目前被广泛地作为药物用于疾病的治疗。但是,蛋白质类药物也有缺点,如分子量大、制备困难、存在抗原性、体内易降解等。令人惊喜的是,人们发现某些分子量较小的多肽同样具有类似蛋白质的活性,且功能更显著。随着对这类生物活性多肽的进一步研究,已为新药的研制和开发提供了一个新的途径。从生物学角度看,多肽和蛋白质的区别只是前者结构小一些,后者结构大一些。在人的生命活动中,蛋白质不断分解变化,蛋白质分解后形成多肽,多肽聚合又形成蛋白质。在人体中,多肽是涉及各种细胞功能的生物活性物质,几乎所有的细胞都能合成多肽,所有细胞又受多肽调节。生命科学之所以将目光投向多肽,原因恰恰在于多肽在人体内担当的这种独特的生理和生化反应的信使角色。 蛋白质和多肽之间在分子量上并无明确的区分,习惯上将胰岛素(51个氨基酸组成,分子量5733)视为多肽和蛋白质的界限。也有人将分子量小于104(或2×104)的氨基酸链称为多肽。目前生物医学在人体中已发现了1000多种具有活性的多肽,仅脑中就存在近40种,它们在生物体内的浓度很低,血液中一般仅有10-12~10-9mol/L,但生理活性很强,在神经、内分泌、生殖、消化、生长等系统中发挥着不可或缺的生理调节作用。人们比较熟悉的有谷胱甘肽(3肽)、催产素(9肽)、加压素(9肽)、脑啡肽(5肽)、β-内啡肽(31肽)、P物质(10肽)等。 作为药用的肽,通常是由几个到二十几个氨基酸组成的比较短的多肽。开发和发展内源性活性物质作为治疗疾病的药物具有重要的实用价值,因为它是最符合人体生物学调节规律的治疗手段,可以避免许多其他类型药物给人体带来的不良反应。目前,全世界已经应用于临床的多肽类药物约有几十种,包括人们熟知的胰岛素、胸腺肽、抗艾滋病新药T20以及肽类激素等。近几年蛋白质/多肽类药物市场的发展速度惊人,年增长率达24%,与增长率仅为9%的总体医药市场相比,该领域令人注目。鉴于多肽生物活性高,一些肽在人的生长发育、细胞分化、大脑活动、肿瘤病变、免疫防御、生殖控制、抗衰防老及分子进化等方面又具有极其特殊的功能,多肽类药物的研发自然成为近年生命科学的一大热门领域。 1. 多肽药物的优势 多肽药物是近年来世界新药研究开发的热点,也是我国生物医药研究的重点方向之一。与传统药物相比,多肽药物具有以下明显的优势:

氨基酸、多肽与蛋白质

第十四章 氨基酸、多肽与蛋白质 14.2 写出下列氨基酸分别与过量盐酸或过量氢氧化钠水溶液作用的产物。 a. 脯氨酸 b. 酪氨酸 c. 丝氨酸 d. 天门冬氨酸 答案: N H 2 COOH N COO - HO CH 2CHCOOH b. a. O - CH 2CHCO O - c. CH 2-CH-COOH OH + NH 3CH 2-CH-COO - OH 2 d.HOOC-CH 2-CH-COOH + NH 3 - OOC-CH 2-CH-COO - NH 2 + + NH 3 NH 2 14.3 用简单化学方法鉴别下列各组化合物: a.CH 3CHCOOH N H 2 H 2NCH 2CH 2COOH N H 2 b. 苏氨酸 丝氨酸 c. 乳酸 丙氨酸 答案: a. CH 3CHCOOH NH 2 (A)H 2NCH 2CH 2COOH (B) NH 2 (C) A B C A B b. OH NH 2 NH 2 苏氨酸 H 3CCH-CHCOOH 丝氨酸 HOCH 2CHCOOH I 2/NaOH CHI 3 无变化 c. 乳酸H 3CCHCOOH OH 丙氨酸 H 3CCHCOOH NH 2 茚三酮 显色 不显色 14.4 写出下列各氨基酸在指定的PH 介质中的主要存在形式。 a. 缬氨酸在PH 为8时 b. 赖氨酸在PH 为10时 c. 丝氨酸在PH 为1时 d. 谷氨酸在PH 为3时 答案: (CH 3)2CHCH(NH 2)COOH (CH 3)2CHCH(NH 2)COO -H 2N(CH 2)4CH(NH 2)COOH H 2N(CH 2)4CHCOO - NH 2 IP 5.96PH=8时 主要存在形式 b. 赖氨酸 IP 9.74 PH=10时 a. 缬氨酸 CH 2-CHCOOH CH 2-CHCOOH OH N H 2 OH N H 3 c. 丝氨酸 IP 5.68 PH=1时 + HOOC(CH 2)2CHCOOH HOOC(CH 2)2CHCOOH NH 2 d.. 谷氨酸 IP 3.22 PH=3时 NH 3 + 14.5 写出下列反应的主要产物

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一

多肽和蛋白质类药物的发展过程

多肽和蛋白质类药物的发展过程 悬赏分:30 - 解决时间:2007-10-28 21:16 各位学识之士帮帮手啊,要写论文啊 提问者:5TY67J - 魔法学徒一级 最佳答案 随着蛋白组学计划的逐步深入,蛋白质结构与功能关系逐渐被***,近年来越来越多的多肽及蛋白质类物质 在诊断、治疗或作为疫苗预防各种疾病方面发挥着重要作用。与小分子药物相比,多肽及蛋白质类大分子 药物稳定性差、易于被酶降解、故生物半衰期短;而扩散差、分配系数小,又使其难以通过生物屏障及脂 质膜[1],所以,如何将这些生物技术类物质有效地送达人体相应部位,一直是制剂研究面临的重大课题。 /i ekww^54 目前,生物技术类药物大多以注射用溶液或冻干粉针剂应用于临床,但常需要频繁给药,致使病人的顺应 性较差,且治疗费用较高。而将大分子药物通过可生物降解微球系统给药,不仅能有效防止生物大分子在 体内很快被降解,还能将药物定向送达体内有效部位,并通过可生物降解聚合物的降解达到缓释长效目的。 现已有的多肽及蛋白质类药物微球制剂主要有:注射用缓释制剂,口服及鼻腔吸入剂等。随着对这类微球制剂研究的深入,制备过程中蛋白质的稳定性差、包封率低、载药量小、且易于产生聚集而使其生物活性降低并可能引起免疫反应、体外释放时具有明显突释效应等问题严重影响着这类制剂的发展。本文将就目前多肽及蛋白质类微球制剂的应用、制备方法、出现的问题及常用的各种增加稳定性、减少其突释效应的物理化学方法进行综述。?sBbe @OC? AmmU oS\ 1、多肽及蛋白质微球制剂的主要类型BV pRk UC" 1.1 注射剂? YO$NYwE 采用可生物降解聚合物为骨架材料,将多肽及蛋白质药物制成微球制剂用于肌肉或皮下注射,给药后随着 聚合物的降解,药物以扩散、溶蚀方式释放,可达到缓释长效的目的[2]。 tu6Q7CjW8 ),肌肉注射后可缓释1或2个月。 这类制剂中,只有10个氨基酸的LHRH类似物微球的研究最为成功,第一个多肽微球产品——曲普瑞林于1986年问世,随后亮丙瑞林、布舍瑞林、高舍瑞林、那法瑞林等长效微球制剂相继上市。2000年美国Genentech公司推出了重组人生长激素(rhGH)PLGA微球(Nutropin p; V H g 1.2 口服制剂a:(.{z?nM 多肽及蛋白质类药物应用于口服须克服两大障碍,一是抑制胃肠道各种酶对其降解,二是选用合适的制剂形式及载体材料使药物透过生物屏障。粒径范围处于1-1000nm的毫微粒制剂是目前研究最多的口服多肽制剂,但毫微粒的表面带电荷情况及聚合物疏水性能均影响多肽在小肠部位的吸收。 s - H e 近年来的研究主要在对毫微粒表面进行修饰,如在毫微粒表面连接各种生物粘附材料,如脱乙酰壳多糖、Carbopol?等。Kawashima等研究者[3]采用乳化溶剂扩散法在降钙素的PLGA毫微粒表面覆盖一层粘附材料脱乙酰壳多糖后,与原PLGA毫微粒相比,虽然药物扩散形式没有显著改变,但能明显降低血钙水平,且能维持48小时。Lubben等报道[1],脱乙酰壳多糖及其衍生物能有效提高亲水性大分子物质的吸收,因其能增加细胞间的紧密连接的开放而有利于药物的细胞旁转运。 P` -K? k< 另外,将毫微粒的疏水性聚合物骨架上连接亲水性聚合物侧链,可大大提高多肽药物的吸收,这可能是由 于亲水性聚合物能打开小肠上皮细胞间的紧密连接。'v"{frh 1.3 鼻腔吸入剂=A, 6KY=E 将多肽及蛋白质类药物以微球制剂的形式在鼻腔给药可提高这类药物的吸收及生物利用度,这在胰岛素、 降钙素、人生长激素等微球制剂中都得到了证实。尽管微球对多肽及蛋白类药物的这种促吸收机理尚不确 定,但一般认为,微球与鼻粘膜直接接触而吸水溶胀,使上皮细胞脱水导致紧密连接开放,使多肽及蛋白 质易于透过[4]。mqg[2VT RP 目前,将疫苗通过鼻腔给药产生局部免疫反应又是研究的一个热点。微球包载疫苗在鼻腔内给药,通过适

第五章氨基酸、肽和蛋白质

第五章氨基酸、肽和蛋白质 5.1 概述 蛋白质是生物体的重要组成部分,在生物体系中起着核心作用,占活细胞干重的50%左右。虽然有关细胞的进化和生物组织信息存在于DNA中,但是维持细胞和生物体生命的化学和生物化学过程全部是由酶来完成。众所周知,每一种酶在细胞中是高度专一的催化一种生物化学反应,酶是具有催化功能的蛋白质。此外,有的蛋白质,如胶原蛋白、角蛋白和弹性蛋白等,在细胞和复杂的生物体中作为结构单元,对于细胞的结构和功能起着重要作用。蛋白质之所以具有多种功能,这是与蛋白质的化学组成和结构有关。许多种蛋白质已经从生物材料中分离提纯,其相对分子质量大约在5000到几百万之间。蛋白质由50%--55%C、6%--7%H。20%--23%O、12%--19%N和0.2%--3%S等元素构成,有些蛋白质分子还含有铁、碘、磷或锌。蛋白质完全水解的产物是o—氨基酸,它们的侧链结构和性质各不相同,大多数蛋白质是由20种不同氨基酸组成的生物大分子。蛋白质分于中的氨基酸残基靠酰胺键连接,形成含多达几百个氨基酸残基的多肽链。酰胺键的C--N键具有部分双键性质,不同于多糖和核酸中的醚键与磷酸二酯键,因此蛋白质的结构非常复杂,这些特定的空间构象赋予蛋白质特殊的生物功能和特性。 根据蛋白质的分子组成,蛋白质可以分为两类:一类是分子中仅含有氨基酸(即细胞中未被酶修饰的蛋白质)的简单蛋白(homoprotein);另一类是由氨基酸和其他非蛋白质化合物组成(即经酶修饰的蛋白质)的结合蛋白(conjugated protein),又称杂蛋白(heteroprotein)。结合蛋白中的非蛋白质组分统称为辅基(prostheticgroup)。根据辅基的化学性质不同,可以分为核蛋白(核糖体和病毒)、脂蛋白(蛋黄蛋白、一些血浆蛋白)、糖蛋白(卵清蛋白、x—酪蛋白)、磷蛋白(e—和9—酪蛋白、激酶、磷酸化酶)和金属蛋白(血红蛋白、肌红蛋白和几种酶)。其中糖蛋白和磷蛋白是蛋白质以共价键分别与糖类和磷酸基团连接,而其他的蛋白质则是蛋白质通过非共价键与核酸、脂类和金属离子形成复合物。 每一种蛋白质都有其特定的三维结构。因此,也可按照蛋白质的结构分为纤维蛋白和球蛋白。纤维蛋白是由线形多肽链组成,构成生物组织的纤维部分,如胶原蛋白、角蛋白、弹性蛋白和原肌球蛋白都属于这类蛋白质。球蛋白是一条或几条多肽链靠自身折叠而形成球形或椭圆结构。此外,肌动蛋白和血纤维蛋白等纤维蛋白分子是小球状蛋白的线性聚集结构。大多数酶都属于球蛋白,纤维蛋白总是起着结构蛋白的作用。 蛋白质的一级结构是指蛋白质分子中氨基酸的排列顺序,而二级结构和三级结构则与多肽链的三维结构有关,四级结构表示多肽链的几何排列,这些肽链间大多是通过非共价键连

相关主题
文本预览
相关文档 最新文档