电流源型变换器-2014
- 格式:pdf
- 大小:621.63 KB
- 文档页数:34
帮你看懂充电机的英文说明书与充电机参数有关的英文单词charged watt-hour 充电瓦时charge characteristic 充电特性charge ampere-hour 充电安时deep cycle endurance 重负荷循环寿命/重复合寿命floating charge 浮充电floating charge voltage 浮充电电压floating charge current 浮充电电流(1)mean voltage (2)average voltage 平均电压on-load voltage 负载电压discharge duration time 放电持续时间(1)final voltage(2)cut-off voltage(3)end voltage 终止电压/截止电压depth of discharge 放电深度discharge voltage 放电电压discharge current 放电电流discharge current density 放电电流密度charger step charge 阶段充电short-circuit current 短路电流storage test 保存测试high rate discharge at low temperature 低温高率放电rated voltage 额定电压rated capacity 额定容量fixed resistance discharge 定阻抗放电constant voltage charge 恒压充电constant voltage life test 恒压寿命测试constant current charge 恒流充电constant voltage constant current charge 恒流恒压充电constant current discharge 恒流放电constant watt discharge 恒功率放电low rate discharge characteristics 低率放电特征trickle charge 涓流充电trickle charge current 涓流充电电流trickle charge life test 涓流充电寿命测试thermal runaway 热失控driving pattern test 运行测试capacity in driving pattern test 运行测试boost charge 急充电start-of-charge current 充电开始电流charge efficiency 充电效率end-of-charge voltage 充电结束电压specific gravity of electrolyte at the end of charge 充电结束时电解液比重charge voltage 充电电压charge current 充电电流discharge watt-hour 放电瓦时discharge characteristics 放电特性discharged ampere-hour 放电安时explosion proof test 防爆测试auxiliary charge 补充电maintenance factor 维护率storage characteristics 保存特性gas recombinating efficiency 气体复合效率/气体再化合效率charge 充电charge acceptance test 充电可接受性试验高频机与工频机的区别有些体积很小,有些体积又很大,这里我们专门列出这2种不同之处以及原理上分析。
一三相PWM变换器分类二变换器的状态平均模型2.1 (不带3倍,星型滤波电容)—《逆变器小信号输入阻抗分析及应用》图1变换器基本拓扑忽略开关过程,即将开关器件和反并联二极管组合看成一个理想开关,则三相变换器的开关网络等效成三个单刀双掷开关的并联。
对单相开关进行分析,设S p为相电压开关,其开关函数为闭合时为1,断开时为0,对应的约束条件为:S p * S in =1对应的相电压和相电流为:将开关网络化为平均模型后:(3)<4)F U —T *通过开关平均得到每一相的平均模型,将其按电路结构和其他部分连接后即可得到整个三相变换器的平均模型。
状态空间方程:d. d/系统的三相交流输出是三相平衡电压源:「“I'ni COS£ju/t7Tn c (]w ( OJ / 一 3) (7)"(2L7m cns( wt + 2^/3)进行DQ 坐标变换,公式得到等效平均模型:最后引入直流输入扰动%,得到小信号模型:图3旋转Dq 坐标系下小信号模型2.1 (带3倍,角型滤波电容)—《逆变器的建模与双环控制策略》本文以三相电压型逆变器为出发点,用开关函数法建立有源逆变器的小信号 数学模型■w讥■ ■ti.Wa 1■ 1<i/厂 礼R('AaJ5、6化到旋转坐标系下:图2旋转Dq 坐标系下平均模型开关状态表示有源逆变器交流侧三相线电压与直流电压的关系如下:线电流i ab 、i bc 、i ca 和相电流满足:开关函数表示交流侧三相电流与直流电流的关系如下:L RL| | ■B •J.Q-q公式2345代入公式67,整理得状态方程(线电流、线电压):=■云%K'd~dty K i€1RcX7)%4写出三相电压型逆变器交流侧状态方程为(电容电压、电容电流)由于开关函数为不连续函数,对以上状态方程求开关周期平均:图5三相静止坐标系下三相逆变器的等效受控源模型通过坐标变换将三相静止坐标系转换成与电网基波频率同步旋转的两相坐标系:图6三相逆变器同步坐标系等效受控源模型。
滨江学院学年论文题目峰值电流控制的单相BOOST PFC变换器工作原理分析院系滨江学院^专业电气工程与自动化学生姓名徐小松学号061指导教师毛鹏职称讲师二O一一年二月十八日{峰值电流控制的单相BOOST PFC变换器工作原理分析徐小松南京信息工程大学滨江学院电气工程与自动化,南京210044摘要:传统的电压型控制是一种单环控制系统,是一种有条件的稳定系统。
因而出现了双环控制系统即电流型控制系统。
从原理、应用方面系统地论述了单相PFC变换器中电流型控制的发展,阐述了各种控制方法的优缺点。
峰值和平均电流型控制是单相PFC中应用最频繁的两种电流控制方法。
因而对这两种方法的讨论得出一些结论。
…关键词:BOOST变换器,功率因数PFC,峰值电流控制,平均电流控制1 引言峰值电流模式控制简称电流模式控制。
它的概念在60年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。
在70年代后期才从学术上作深入地建模研究。
直至80年代初期,第一批电流模式控制PWM集成电路(UC3842、UC3846)的出现使得电流模式控制迅速推广应用,主要用于单端及推挽电路。
近年来,由于大占空比时所必需的同步不失真斜坡补偿技术实现上的难度及抗噪声性能差,电流模式控制面临着改善性能后的电压模式控制的挑战。
误差电压信号送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜坡比较,而是与一个变化的其峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号UΣ比较,然后得到PWM脉冲关断时刻。
因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制P WM脉冲宽度。
2Boost变换器及其工作原理|工程中常用的升压(Boost)变换器的原理图如图1所示[5][6],其中Vi为输入直流电源,Q为功率开关管,在外部脉冲信号的激励下工作于开关状态,Q导通,输入电流流经电感L和开关管Q,电感L储能;开关管Q 截止时,二极管D 导通,直流电源Vi 和电感L 同时向负载R 供电,输入电流经电感L 、二极管D 流向负载R ,同时给电容C 充电,电感L 释放能量,在理 想情况下,该电路输出电压:()i out v dv -=11ViLR Vout图1 BOOST 变换器式中D 为Boost 变换器的占空比,因为占空比D<1,所以V (out )>Vi ,故称升压式换器。
电压反馈型BOOST变换器闭环控制系统的分岔及混沌苏琦;陆益民;黄险峰【摘要】为了弥补以往对DC—DC变换器非线性特性的研究主要是在开环或比例积分( PI )控制下进行的不足,在分段光滑系统状态空间模型的基础上,根据凯莱—哈密尔顿定理,建立了比例-微分( PD)控制电压反馈型Boost变换器闭环控制系统的精确离散映射,推导了系统的稳定性条件,讨论了PD控制器参数对变换器系统稳定性和分岔的影响,定性分析了系统的倍周期分岔和混沌现象产生的机理,指出控制器的比例增益对系统的稳定性起主导作用。
最后,搭建了变换器实验电路,结果表明了理论分析和仿真的正确性。
研究结果为深刻认识该类变换器的非线性特性提供借鉴意义。
%The previous studies on nonlinear behavior of DC/DC converters mainly focused on the open-loop and proportional-integral ( PI) control systems. To make up the deficiencies, the precise discrete mapping of a voltage-mode closed-loop controlled Boost converter system is derived from its piecewise smooth state space model depending on Cayley-Hamilton theorem. The stability condition of the system is analyzed. The parameters of PD controller influence on stability and bifurcation, as well as the mechanism that produced chaos from period-doubling bifurcation are discussed. The re-sults found that the proportional gain is a dominant parameter affecting the stability of the system. Finally, the analysis results are verified through simulation and experiment. The results provide a reference for a profound understanding of the nonlinear characteristics of such kind of converters.【期刊名称】《广西大学学报(自然科学版)》【年(卷),期】2015(000)005【总页数】9页(P1192-1200)【关键词】Boost变换器;电压反馈型;PD控制器;分岔【作者】苏琦;陆益民;黄险峰【作者单位】广西大学电气工程学院,广西南宁 530004;广西大学电气工程学院,广西南宁 530004;广西大学土木建筑工程学院,广西南宁 530004【正文语种】中文【中图分类】TM13;TP17DC-DC 变换器电路的核心器件是功率半导体器件。
双向DC-DC变换器摘要:双向DC/DC变换器是一种可以实现“一机两用”的设备,可用其得到能量的双向传输,并且在有些需要能量双向流动的场合,双向DC/DC变换器可大幅度减轻系统的体积、重量以及成本价值,有着重要的研究意义。
首先介绍的是双向DC/DC变换器的概念、应用场合以及其研究现状,并在此基础上分析了电压—电流型双向全桥DC/DC变换器;Buck充电模式时,高压侧开关有驱动信号,低压侧开关管驱动信号封锁,仅用功率开关管的体二极管整流;此时电路为电压型全桥结构;Boost放电模式时,低压侧开关管有驱动信号,高压侧开关管驱动信后封锁,仅用功率开关管的体二极管整流;此时电路为电流型全桥结构。
然后,分别对buck充电模式和boost放电模式的工作原理进行了分析。
最后利用Proteus软件分别对buck充电模式和boost放电模式的开环和闭环进行了仿真,给出了各部分的波形图,最后得出的仿真结果和理论一致。
关键词:双向DC-DC变换器 Buck充电模式 Boost放电模式目录前言 (3)1.方案论证 (4)1.1方案一 (6)1.2 方案二 (6)1.3 方案选择 (7)2.电路设计和原理 (7)2.1 5V电压源电路设计 (7)2.2 0.1s (8)2.2.1 引脚及功能表 (9)2.2.2 (10)2.3 计数电路设计 (11)2.4电路设计 (13)2.5显示电路设计 (14)2.6控制电路设计 (15)3.软件仿真调试 (15)3.1 软件介绍 (15)3.2 调试步骤及方法 (16)4.故障分析及解决方法 (17)5.总结与体会 (18)附录: (20)A、总体电路图 (20)B、元器件清单 (20)C、元器件功能与管脚 (21)D、参考文献 (24)前言当您电池的最后一焦耳电能被耗尽时,功耗和效率就将真正呈现出新含义。
以一款典型的手机为例,即使没有用手机打电话,LCD屏幕亮起、显示时间及正在使用的网络运营商等任务也会消耗电力。
DC-DC直流变换器第⼀章绪论本章介绍了双向DC/DC变换器(Bi-directional DC/DC Converter,BDC)的基本原理概述、研究背景和应⽤前景,并指出了⽬前双向直流变换器在应⽤中遇到的主要问题。
1.1 双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输⼊、输出电压极性不变的情况下,根据具体需要改变电流的⽅向,实现双象限运⾏的双向直流/直流变换器。
相⽐于我们所熟悉的单向DC/DC 变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上⼀般都需要⼆极管,因此单个变换器能量的流通⽅向仍是单向的,且这样的连接⽅式会使系统体积和重量庞⼤,效率低下,且成本⾼。
所以,最好的⽅式就是通过⼀台变换器来实现能量的双向流动,BDC就是通过将单向开关和⼆极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2 双向直流变换器的研究背景在20世纪80年代初期,由于⼈造卫星太阳能电源系统的体积和重量很⼤,美国学者提出了⽤双向Buck/Boost直流变换器来代替原有的充、放电器,从⽽实现汇流条电压的稳定。
之后,发表了⼤量⽂章对⼈造卫星应⽤蓄电池调节器进⾏了系统的研究,并应⽤到了实体中。
1994年,⾹港⼤学陈清泉教授将双向直流变换器应⽤到了电动车上,同年,F.Caricchi 等教授研制成功了⽤20kW⽔冷式双向直流变换器应⽤到电动车驱动,由于双向直流变换器的输⼊输出电压极性相反,不适合于电动车,所以他提出了⼀种Buck-Boost级联型双向直流变换器,其输⼊输出的负端共⽤。
1998年,美国弗吉尼亚⼤学李泽元教授开始研究双向直流变换器在燃料电池上的配套应⽤。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应⽤具有很⼤的推动⼒,⽽开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳⼤利亚Felix A.Himmelstoss发表论⽂,总结出了不隔离双向直流变换器的拓扑结构。
峰值电流模式控制总结PWM (Peak Current-mode Control PWM)峰值电流模式控制简称电流模式控制。
它的概念在60年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。
在70年代后期才从学术上作深入地建模研究。
直至80年代初期,第一批电流模式控制PWM集成电路(UC3842、UC3846)的出现使得电流模式控制迅速推广应用,主要用于单端及推挽电路。
近年来,由于大占空比时所必需的同步不失真斜坡补偿技术实现上的难度及抗噪声性能差,电流模式控制面临着改善性能后的电压模式控制的挑战。
如图1所示,误差电压信号 Ue 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜坡比较,而是与一个变化的其比较,然后得到峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号UΣPWM脉冲关断时刻。
因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。
图1采用斜坡补偿的BUCK电流型控制1. 峰值电流模式控制PWM的优点:①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快;峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流环。
电流环是瞬时快速按照逐个脉冲工作的。
功率级是由电流环控制的电流源,而电压外环控制此功率级电流源。
在该双环控制中,电流环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制LC储能电路。
由于这些,峰值电流模式控制PWM具有比起电压模式控制大得多的带宽。
②虽然电源的L-C滤波电路为二阶电路,但增加了电流环控制后,只有当误差电压发生变化时,才会导致电感电流发生变化。
即误差电压决定电感电流上升的程度,进而决定功率开关的占空比。
因此,可看作是一个电流源,电感电流与负载电流之间有了一定的约束关系,使电感电流不再是独立变量,整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积。
移相控制零电压开关PWM变换器电流模式控制分析摘要:采用电流模式控制是移相控制零电压开关pwm变换器(ps-zvs-pwm变换器)实现稳压源控制的模式之一。
对该控制模式进行分析研究,并提出克服电流型控制模式主要缺点的方法。
关键词:ps-zvs-pwm变换器电流型控制分析研究1 概述电压型控制模式是传统的pwm开关稳压电源主要采用的控制模式,只对输出电压采样并作为反馈信号实现闭环控制,来稳定输出电压。
但仅采用电压方式稳压,有稳定性差,响应速度慢等缺点。
电流型控制器正是针对其缺点发展起来的。
它增加了一个电流环,很容易不受约束地得到完善的大、小信号特性和大的开环增益。
下面以ps-zvs-pwm变换器为例来分析研究其电流模式控制。
2 电流模式控制移相控制零电压开关pwm变换器利用变压器的漏感和功率管的寄生电容来实现零电压开关,是中大功率直-直变换场合理想的方式之一。
ps-zvs-pwm变换器实现的稳压源的控制模式有电压模式控制和电流模式控制,下面采用电流模式控制进行分析。
电流模式控制是指在电压环内增加了一个电感电流反馈的电流内环的双闭环控制系统。
其结构框图如图1所示[1]:图1 平均电流模式控制系统结构框图①电流控制器的设计[2,3,4],这里简单取电流反馈系数kif=1,(s)对输出的传递函数gid(s)带入参数如式:g(s)= =(1)则电流内环的控制对象为2gid(s)。
控制目标是把内环变为一个快速跟随环节,电流环节开环bode图如图2所示:电流控制器采用pi调节器。
将pi调节器具体整定为:gacr(s)= (2)调整后的电流内环的开环传递函数的bode图如图3所示,其截止频率为1.26e4rad/sec,相角裕量为78.5deg;幅值裕量为inf。
②电压外环控制器的设计[2,3,4],电流内环有很好的跟随性,因此在设计电压外环时可以把电流内环视为一个比例环节。
由于电流反馈系数kij=1,一次电流环节的比例增益为1。
基于Cuk拓扑结构的精准电流源建模与仿真安晋彤【摘要】恒流源广泛应用于航空、电子等领域,但相比恒压源而言,由于其结构复杂性和产品稳定性阻碍了其自身的发展.本文通过使用DC-DC变换器Cuk拓扑结构,实现了一个精准电流源的功能.文中阐述了使用Cuk拓扑实现恒流源的可行性,分析了Cuk拓扑结构作为恒流源的小信号等效模型,介绍了使用电流纹波补偿法和电流反馈回路法稳定输出电流的原理与实现电路.最后,通过PSIM软件仿真检验所设计的恒流系统稳定性,判断此系统的可行性.%The current source is widely used in many areas,such as aerospace,pared with voltage source,however,the current source is strangled its improvement due to its complex structure and stability.The paper accomplishes a precise current source with Cuk topology in DC-DC converter. Moreover,the paper introduces the principles and actual circuits of the Method of Ripple Current Compensate and the Method of Current Feedback Loop,describes the practicability and analyses the small-signal model of Cuk topology as current source.Finally,the paper simulates and tests the stability of the current source system designed via the simulation software PSIM,and checks its practicability.【期刊名称】《电子设计工程》【年(卷),期】2017(025)018【总页数】5页(P110-113,117)【关键词】恒流源;小信号模型;纹波补偿;DC-DC变换器【作者】安晋彤【作者单位】西安邮电大学陕西西安710121【正文语种】中文【中图分类】TN99随着国家大力推进节能减排项目建设,在生产和生活中人们更加重视产品效率的提高。
2005年12月重庆大学学报(自然科学版)D ec.2005第28卷第12期Jour nal of Chongqi n g U niversity(Nõt u rõl Sc ience Ed ition)V o.l28No.12文章编号:1000-582X(2005)12-0027-05移相全桥软开关变换器拓扑分析*陈柬,陆治国(重庆大学电气工程学院,重庆400030)摘要:移相全桥软开关变换器从基本的移相全桥(FB)零电压(Z VS)脉宽调制(P WM)变换器,发展到移相全桥零电压零电流(ZVZCS)P WM变换器,及移相全桥零电流(ZCS)P WM变换器,进而又产生一系列其它新型的移相全桥电路,构成了这一类很具有发展和应用前景的变换器.比较分析了上述3类主要的移相全桥软开关变换器的拓扑结构、工作特点和各自的优缺点.改进的FB-Z VS-P WM变换器扩大了滞后臂Z VS负载范围.FB-ZVZCS-P WM变换器解决了滞后臂软开关负载范围问题,滞后臂较适合用绝缘栅极双极型晶体管(I G B T).FB-ZCS-P WM变换器可以实现各个功率管的ZCS,更适合大功率场合.关键词:移相;零电压开关;零电流开关;零电压零电流开关;变换器中图分类号:TM910.1文献标识码:A移相P WM控制方式是近年来在全桥变换电路中广泛应用的一种软开关控制方式.这种控制方式实际上是谐振变换技术与常规P WM变换技术的结合.移相全桥软开关电路有效降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器装置提高开关频率和效率降低尺寸及重量提供了良好的条件.同时,还保持了常规的全桥P WM电路中拓扑结构简洁,控制方式简单,开关频率恒定,元器件的电压和电流应力小等一系列优点.1移相FB-Z VS-P WM变换器1.1基本的移相FB-ZVS-P WM变换器移相全桥零电压P WM软开关的实际电路如图1所示[1-3].图1基本的移相FB-ZVS-P WM变换器图2是Q1~Q4的开关控制波形.与常规的全桥P WM相比,移相式FB-Z VS-P WM变换器具有明显的优势.利用变压器漏感和开关管的结电容谐振,在不增加额外元器件的情况下,通过移相控制方式,实现了功率开关管的零电压导通与关断,减小了开关损耗,降低了开关噪声,提高了效率,减小整机的体积与重量.其主要缺点为:滞后臂开关管在轻载下将失去零电压开关功能;原边有较大环流,增加了系统的通态损耗;存在占空比丢失现象[3-8].图2开关控制波形1.2串联饱和电感的改进拓扑在变压器初级串联饱和电感L r的方案中[9],利用L r的临界饱和电流特性及储能,来扩大Z VS的负载范围,提高轻载时的输出效率.与图1所示变换器相比,它具有明显的优势:有效扩大了零电压开关负载范围,*收稿日期:2005-08-10作者简介:陈柬(1981-),女,河南南阳人,重庆大学硕士,主要从事电力电子与电力传动方向的研究.保持了最小的环流能量,减小了导通损耗;减小占空比丢失;改善了输出电压调节特性;减小了副边整流二极管结电容的寄生振荡.1.3输出滤波电感参与谐振的改进拓扑这种电路在滞后臂开关管进行状态转换的短暂期间,使副边整流二极管不能同时导通,则输出滤波电感可被用来参与谐振.与基本的移相式FB-ZVS-P WM 变换器相比[9],它具有如下特点:输出滤波电感具有很大的数值,可以存储很大的磁场能量,从而大大扩展滞后臂开关管零电压开关负载范围;减小占空比丢失;输出电压可以通过变压器副边调节,原边保持恒定的占空比,从而可以加快系统的动态响应,简化了控制电路,无需考虑原副边的隔离;饱和电感使副边整流二极管结电容的寄生振荡可忽略不计,副边可以不考虑缓冲器的设计.1.4有源钳位型改进拓扑针对高压大功率场合整流管的寄生电容与变压器漏感相互作用会导致整流管输出电压产生过冲及振荡现象的问题,常用的抑制方法有整流管两端并联阻容吸收回路,采用无源钳位吸收电路,或使用低漏感变压器及谐振电感等,存在的问题是吸收电路损耗大、影响效率,或者能抑制电压过冲但无法完全消除振荡现象.文献[9]提出一种在整流管输出端并联有源钳位吸收电路的方法,不仅能有效抑制整流管电压过冲和振荡现象,而且钳位回路本身损耗很小,变换器具有较高效率.1.5增加辅助电路的改进拓扑这种电路的基本方法是,给滞后臂并联一个辅助谐振电路,利用辅助电路中的电感帮助漏感实现滞后臂开关管的ZVS.此种方法在三相电压型逆变器设计中是最常用的软开关手段之一.1.6其它改进拓扑将一个续流二极管增加到输出端,并且在原边增加由电阻、电容组成的吸收电路[10],如图3所示.在变换器的钳位续流期,大部分电流经过外加续流二极管,降低了输出滤波电感电流对原边的影响.但是,外加续流二极管并不影响移相臂的/线性0切换,这是因为在外加续流二极管导通之前,移相臂的线性切换已经完成.外加二极管的作用就是消除移相臂切换行为发生后的输出滤波电感对原边的反射,降低了钳位续流期间原边电流的短路效应,减少了环流期间的导通损耗,提高了能量的传输效率.在变压器原边增加由电阻、电容组成的压吸收电路使电流尖峰得到了明显的抑制.图3增加吸收电路和续流二级管的变换器另外,文献[11]介绍了利用能量恢复缓冲器的软开关变换器.2移相FB-Z VZCS-P WM变换器近年来I G BT得到了迅速的发展及广泛的应用,由于它具有较高的耐压值,较低的通态损耗,较大的功率密度和较低的成本,更适用于大功率场合[12-15]. FB-ZVZCS-P WM变换器就比较适合I GBT.2.1饱和电感型FB-ZVZCS-P WM变换器如图4所示,这种在变压器初级串联隔直电容及饱和电感作为反向阻断电压源,来复位初级电流的方案[13,16-17],拓扑结构简单,实现了有效的软开关特性,电路中的占空比丢失几乎可以忽略.但由于实际运行中饱和电感上有很大损耗,饱和电感磁芯的散热问题是一个很需要解决的问题.图4全桥ZV ZCS-P WM变换器2.2有源钳位型FB-ZVZCS-P WM变换器在整流管输出端并联有源钳位电路,作为反向阻断电压源来复位初级电流.钳位电路不仅对整流电压起钳位作用,同时也为滞后桥臂功率管创造了ZCS条件[18].不足之处是需使用额外的有源开关,降低了输出效率.2.3辅助电路型FB-ZVZCS-P WM变换器采用变压器辅助绕组和辅助电路来使初级电流复位,优点是辅助电路中没有耗能元件,整流管电压应力和初级环流均较小,不足之处是辅助绕组的参数设计比较复杂[19].2.4复合型FB-ZVZCS-P WM变换器文献[20]提出在变压器次级采用耦合输出电感及辅助电路使初级电流复位的方案,没有耗能元件或有源开关,环流可以保持在最小值,辅助电路中的整流28重庆大学学报(自然科学版)2005年管通过谐振可以实现/软换流0[20].比较分析上述几种变换器拓扑,文献[20]提出的方案较易于工程实现,有较大的实用价值.2.5 其它FB -Z VZCS-P WM 变换器图5是一个带能量恢复缓冲器的FB -ZVZCS-P WM 变换器.利用一个能量恢复缓冲器,来代替附加抽头式电感和饱和电抗器,以减小电流应力.变换器可以减少惯性间隙的环路电流.使用简化的能量缓冲器可以使环路电流和次级暂态过电压最小化.图5 其它FB-ZV ZCS-PWM 变换器能量恢复缓冲器和输出电感L f 一起减小了环路电流.缓冲二极管D s 4和输出电容C f 连在一起用于对从次级电压V T 2到输出电压V 0的缓冲电容电压V cs 2钳位[21].因此,简化的FB -Z VZCS-P WM 变换器可以减小次级的暂态过电压和环路电流.这个简化的缓冲器也把开关损耗恢复到负载.3 移相FB-ZCS-P WM 变换器图6是一种电流源型FB -ZCS -P WM 变换器[22],其外特性与升压电路(Boost)一样,L b 是升压电感,C r 是谐振电容.变换器采用移相控制,Q 3和Q 4的驱动信号分别超前于Q 1和Q 2.同一桥臂的上下两管之间有一个重叠的开关时间,用来创造零电流开关条件.它的特点是:1)输出整流管自动实现ZVS 和ZCS 换流;2)采用固定频率控制和移相P WM 控制技术;3)在实现ZCS 的同时,变换器能保证较宽的负载调节范围;4)如果将升压电感移到交流电压输入侧,则可以实现单级功率因数校正(PFC).但是对电路参数的要求很严格,如果保护措施不当,很容易产生过压而损坏开关管.图6 电流源型FB -ZCS-P WM 变换器图7介绍了一种电压源型的FB -ZCS -P WM 变换器,存在的问题是:所选用的辅助管额定功率必须与初级开关管相当,增加了成本.图7 电压源型FB -ZCS-P WM 变换器4 其它新型移相全桥电路4.1 半桥和全桥组合的电路拓扑主电路如图8所示,该电路是由一个半桥部分和一个全桥部分组合而成.开关管Q 1、Q 2以及变压器T 1构成半桥部分;开关管Q 1、Q 2、Q 3、Q 4和变压器T 2构成全桥部分.Q 1、Q 2是共用的开关管.2个变压器的副边电压经叠加、整流后输出给负载.整流输出端并有二极管D 9用于输出电流的续流;还有由C Z 、D Z 1、L Z 、D Z 2构成的钳位电路用于减小占空比的丢失.电路采用移相控制策略,可以实现输出电压控制.图8 主电路原理图这种电路克服了传统的移相全桥的缺点,大幅度的扩大了负载的适用范围,即使在轻载的工作环境下也能实现4个主开关管的软开关,实现了真正意义上的全程ZVS .同时副边钳位电路的存在,也减小了占空比的损失[23].4.2 带抽头电感的软开关FB-P WM 变换器在变换器拓扑里利用一个抽头电感滤波器,扩大了软开关负载范围.而没有使用附加的谐振电路和(或)辅助开关器件,就可以大大减小电路中的环流量[24].如图9所示,抽头电感滤波器用在变换器输出端,在很宽的负载变化范围下实现软开关.它的作用相当29第28卷第12期 陈 柬,等: 移相全桥软开关变换器拓扑分析于无源钳位元件整流电压当悬空时钳位在正极.因此,整流二极管(二者之一)就反向偏置,输出电感电流流过悬空端的悬空二极管D 7.于是通过变压器和初级电路的环路电流就得到了抑制.开关Q 3开通时工作在ZVS 和ZCS 状态,关断时工作在ZVS 状态;Q 4开通和关断时都工作在ZCS 状态.图9 带抽头电感的软开关PS-P WM 变换器4.3 隔离交错的移相ZVS-P WM 变换器为了实现高容量的功率密度,低的电磁干扰(E M I)和低成本,介绍一种新型隔离交错的移相ZVS-P WM 变换器.它由2个半桥组成,不用辅助电路即可实现ZVS[25].如图10所示,有并联型和串联型2种.变压器T 1和T 2具有相同的变比,并考虑励磁电感和漏感.通过变换器2个支路之间的电压移相而控制功率传输,每个支路工作半个周期.在这种方式下,就可以保证高频变压器的退磁.通过分析移相控制的一个周期的工作状态,以看出开关控制是交错式的.除此之外,所有的开关管都可以工作在ZVS.图10 移相ZVS-P WM 变换器5 结 论移相FB -ZVS-P WM 变换器适合于高频、大功率、开关器件采用MOSFET 的应用场合.但副边存在占空比丢失,具有大的导通损耗,归根结底是因为电路拓扑,开关管选型,电路参数匹配,控制方式等方面存在不足,这是以后深入研究的方向.移相FB -Z VZCS -P WM 变换器更适用于大功率场合,比较适合I GBT .移相FB-ZCS-P WM 变换器比前二者具有更好的应用前景,但目前尚处于研究阶段.其它新型电路都有其各自突出的特点,具有很大的实际用途.参考文献:[1] 杨旭,赵志伟,王兆安.全桥型零电压软开关电路谐振过程的研究[J].电力电子技术,1998,35(3):36-39.[2] 刘宁庄,伟力.移相控制全桥变换技术的理论分析与计算机仿真[J].现代电子技术,2002,(10):100-101.[3] AYDE M I R M T,BENDRE A.A Cr itical Eva l uati on of H i ghPo w er H ard and Soft S w itched Iso l ated DC -DC Converters[J].IEEE T rans P E ,2002,17(7):1138-1345.[4] FUENTES R C,H E Y H L .A F a m ily o f So ft -s w itch i ng DC -DC P o w er Conve rters to H i gh Pow er A ppli cations[J].I EEE T rans P E,1996,5(4):268-264.[5] S M I TH K M,S M EDLEY K M.A Co mparis on o fV o ltage -m odeSoft -s w i tch i ng [J ].IEEE T rans P E ,1997,12(2):376-264.[6] K I M E S ,J OE K Y,KYE M H,e t a.l An I m proved So ftSw itchi ng P WM FB DC /DC Converter for R educi ng Conduc -ti on L osses[J].I EEE T rans P E ,1996,5(7):651-656.[7] K I M E S ,J OE K Y,C HO I H Y,et a.l A n I m proved So ftSw itchi ng B-i d i recti ona lPS PWM FB DC /DC Converter[J].IEEE T rans P E ,1998,10(7):740-743.[8] BENDRE A,NORR IS S ,D I VAN D,et a.l N e w H i gh Pow erDC -DC Converter w it h L oss L i m ited Sw itch i ng and Lo ssless Seconda ry C la mp [J].IEEE T rans P E ,2003,18(4):1020-1027.[9] 王聪.软开关功率变换器及其应用[M ].北京:科学出版社,2000.[10] 赵靖辉,刘兆.常规FB -ZVS -P WM 变换器的改进[J].三门峡职业技术学报,2002,2(1):63-66.[11] AYYANAR R ,MOHAN N.N ovel So f-t s w i tch i ng DC -DC Con -verter w it h Fu llZVS -range and R educed F il ter R equire ment[J].IEEE T rans P E ,2001,16(2):184-192.[12] STE I GERW ALD R.A R ev ie w o f So ft -s w itch i ng T echn i quesi n H i gh Perfo r m ance DC P ower Supplies[J].IEEE T rans P E ,1995,4(9):1-7.[13] 阮新波.零电压零电流开关P WM DC /DC 全桥变换器的分析[J].电工技术学报,2000,15(2):73-77.30重庆大学学报(自然科学版) 2005年[14] 吕照瑞,张俊洪,赵镜红.全桥P WM ZV ZCS 变换器电路的分析设计[J].电力电子技术,2003,37(5):36-38.[15] 王聪.一种简单的ZV ZCS 全桥P WM 变换器的分析与设计[J].电工技术学报,2000,15(6):35-39.[16] C HO J G,SABATE J A,HUA G,et a.l Z ero -vo ltage andZ ero -current Sw itchi ng Fu l-l bridge P WM Conv erter for H i gh P o w er Appli cations[J].IEEE T rans P E ,1994,11(4):622-628.[17] 盛专成.一种新颖的PS-ZVZCS P WM 全桥变换器[J].电力电子技术,2001,35(5):22-24.[18] C HO J G,J EONG C Y .Zero -vo ltage and Zero -current S w itc -h i ng Fu l-l bridge P WM Conve rter U si ng Secondary A cti ve C la m p[J].I EEE T rans P E ,1998,13(4):601-607.[19] C HO J G,BAEK J W.N ovel Z ero -vo ltage and Zero -cur -rent -s w itchi ng Ful-l br i dg e P WM Converte r U si ng T rans -for m er A ux iliary W i nd i ng [J].IEEE T rans P E ,2000,15(2):250-257.[20] C HO I H S .N ove l Zero -vo ltage and Zero -curren t -s w itch i ng(ZVZCS)Fu l-l bridge P WM Converter U si ng Coupled O u-tput Inductor [J ].IEEE T rans P E ,2002,17(5):641-648.[21] K I M E S ,J OE K Y,P ark S G,e t a.l An I m proved ZVZCSP WM FB DC -DC Converte r U sing t he M odified Energy R e -cove ry Snubber [J].IEEE T rans P E,2000,11(2):119-124.[22] 许峰,徐殿国,王健强,等.软开关大功率全桥P WM 变换器拓扑结构的对比分析[J].电力电子技术,2002,36(6):51-53.[23] 蒋强,张代润.轻载或空载时软开关DC-DC 变换器的实现及仿真研究[J].四川大学学报,2003,35(1):93-96.[24] M O ISSEEV S ,HAM ADA S ,NAKAOKA M,e t a.l Ful-lb ri dge Soft -s w itch i ng P hase -shifted P WM DC -DC Pow er Conve rter U si ng T apped Inducto r F ilte r [J].E l ectron i csL ette rs ,2003,39(12):924-925.[25] P I NHE I RO J R,BAGG I O J E .Iso l a ted Interleaved Phase -shift PWM DC -DC ZVS Converte rs[J].IEEE T rans P E ,2000,10(5):2383-2388.Topology Anal ysis of Phase -s hifted Ful-l bridge Soft -s witchi ng ConverterC HEN J i a n,LU Zh i -g uo(Co llege of E lectrica lEng ineeri n g ,Chongqi n g University ,Chongq i n g 400030,Ch i n a)Abst ract :Phase -sh ifted f u l-l bri d ge (FB )sof-t s w itch i n g converters are develop i n g for m t h e basi c phase -shifted FB -ZVS -P WM converter to phase -shifted FB -Z VZCS-P WM converter and phase -shifted FB -ZCS -P WM converter ,to a seri e s o f the other ne w phase -shifted f u l-l bri d ge circuits ,wh ich m ake up o f the converters w ith deve lopm enta l and usefu l foreground .The topo logy structures ,operati o n characteristics ,as w ell as their m er its and de m erits are co m pared and analyzed .The i m pr oved phase -shifted FB -Z VS-P WM converter en lar ge the l o ad range o f Z VS i n lag -ar m .Phase -shifted FB -ZVZCS -P WM converter so lves the prob le m m entioned above ,and i n su lated gate bipo lar transistor (I GBT)is fit for the lag -ar m .Phase -sh ifted FB -ZCS -P WM converter cou l d ach ieve ZCS i n every po w er tube ,and is used i n h i g h -po w er occasion .W hat .s m ore ,the deve l o p m enta l trend of sof-t s w itch i n g converti n g technic w ithou t resonance net w o r k i s po i n ted ou.t K ey words :phase -shifted ;zero -vo lta ge -s w itc h i n g ;zero -curren-t s w itchi n g ;zero -voltage and zero -current s w itc h i n g ;converter(编辑 李胜春)31第28卷第12期 陈 柬,等: 移相全桥软开关变换器拓扑分析。