无刷双馈风力发电机的最大风能追踪控制策略
- 格式:pdf
- 大小:213.77 KB
- 文档页数:3
无刷双馈电机的控制方法研究一、本文概述随着电机技术的不断发展和应用领域的日益扩大,无刷双馈电机作为一种高效、节能的电机类型,受到了广泛关注。
无刷双馈电机以其独特的结构和工作原理,在风力发电、泵类负载、电动汽车等领域展现出显著的优势。
然而,无刷双馈电机的控制方法一直是研究领域的热点和难点。
因此,本文旨在深入探讨无刷双馈电机的控制方法,以提高其运行性能,推动其在各个领域的广泛应用。
本文首先介绍了无刷双馈电机的基本结构和工作原理,为后续的控制方法研究奠定基础。
接着,文章综述了目前无刷双馈电机控制方法的研究现状,包括传统的控制方法和近年来新兴的控制策略。
在此基础上,文章重点分析了无刷双馈电机的数学模型和控制系统设计,详细阐述了各种控制方法的实现原理和应用效果。
本文还探讨了无刷双馈电机控制方法在实际应用中的挑战和解决方案,如参数辨识、动态性能优化等问题。
通过案例分析,文章展示了无刷双馈电机控制方法在具体领域的应用实例,验证了其可行性和有效性。
本文总结了无刷双馈电机控制方法的研究成果和发展趋势,展望了未来可能的研究方向和应用前景。
通过本文的研究,旨在为无刷双馈电机的控制方法提供理论支持和实践指导,推动无刷双馈电机技术的持续发展和应用推广。
二、无刷双馈电机的工作原理无刷双馈电机(Brushless Doubly-Fed Machine, BDFM)是一种特殊的电机类型,它结合了异步电机和同步电机的特点,具有独特的运行方式和控制策略。
无刷双馈电机的工作原理主要基于电磁感应和电磁场理论,其内部包含两套极数不同的绕组,分别称为功率绕组和控制绕组。
功率绕组通常与电源直接相连,负责传递主要的电能和转矩。
控制绕组则通过变频器或其他电力电子设备进行控制,用于调节电机的运行状态。
这两套绕组在电机内部产生不同的旋转磁场,通过磁场相互作用实现电机的转矩传递和转速控制。
无刷双馈电机的独特之处在于其不需要机械换向器或电刷来实现电流换向,从而提高了电机的可靠性和维护便利性。
双馈风力发电机运行原理及发电控制技术研究摘要:随着化石燃料储量的减少,在电力工业中风能发电技术变得越来越重要,而风力发电机也因此得到了广泛的应用。
但目前,我国风力发电机的相关技术、应用广度和发展速率与国外相比仍存在明显差距。
为了迅速推广风力发电机的应用与发展,本文将以双馈风力发电机为例,向读者简要介绍其运行原理及相关控制技术。
关键词:双馈风力发电机;运行模式;控制技术中图分类号:tm315 文献标识码:a 文章编号:1001-828x(2013)06-0-01据调查,世界各国在风力发电中每年投入的资金总额已接近一千亿美元。
全球范围内,已开始进行研究和采用风力发电技术的国家约有一百个。
由此可见,在化石燃料日渐减少的现状下,风力发电技术极有可能与其它可再生能源(比如太阳能、水力等)发电技术一同取代火力发电。
在风力发电技术研究中,最基本的一个环节就是风力发电机的研究与应用。
到目前为止,常见的风力发电机有定桨定速型、变浆变速型等多种类型,而在后一种类型中,大部分都采用了双馈式设计。
下面,笔者将以此类风力发电机为例,简明扼要地介绍其组成结构、优点、运行原理以及相关控制技术。
一、双馈风力发电机的结构与特点顾名思义,“双馈”指的就是电机的定子与转子均可完成电力供应过程。
一般来说,双馈式发电机的主要部件有定、转子及其接线盒,传动机构、滑环系统与冷却设备等。
其中,转子结构主要存在成型绕组、矩形半线圈、散嵌绕组等形式;滑环系统主要包括碳刷、刷架、滑环、滑环风扇、滑环座、滑环维护罩等部分,而滑环又分为热套式和环氧浇注式两种类型;冷却设备主要分为风冷式、水冷式等多种形式。
从性质上区分,双馈式发电机应当归入异步式发电机的范畴,但这类发电机又拥有与同步式发电机相似的激磁绕组来调控励磁过程及功率因数。
因此,这种发电机兼有同步和异步式发电机的优点。
这类发电机体积小、成本低、无功功率的调节方式简便易行、抗电磁干扰能力较强。
同时,发电机的励磁过程与所连接的供电网络关系不大,可以直接由转子所处电路完成。
风力发电机组监测与控制课程设计说明书课题名称基于PSCAD_EMDTC的双馈风力发电机的控制策略研究专业学生姓名班级学号指导教师完成日期盐城工学院课程设计说明书(2015)目录1摘要 (1)2PSCAD软件简介 (2)3PSCAD样例说明 (3)3.1同步风力机样例功能与工作原理分析 (3)3.2同步风力机样例仿真模型的建立过程 (5)3.2.1风源组件 (6)3.2.2风力发电机组 (7)3.2.3调速器组件 (8)3.2.4同步发电机 (11)3.2.5单输入电平比较器 (15)3.2.6电压源 (16)3.2.7故障的模拟组件 (17)3.2.8控制面板 (19)3.3同步风力机样例仿真结果分析 (20)4双馈风力发电机仿真模型的建立 (22)4.1双馈风力发电机工作原理及控制方法分析 (22)4.1.1工作原理分析 (22)4.1.2控制方法分析 (24)4.2双馈风力发电机仿真模型的建立 (26)4.2.1转子侧变换器模块 (26)4.2.2 电网侧变换器模块 (27)4.2.3 电源 (28)4.2.4单输入电平比较器 (29)4.2.5绕线转子感应式电机 (30)4.2.6有功/无功功率器 (31)4.2.7控制面板 (32)4.3双馈风力发电机仿真结果分析 (33)5结论 (34)6心得体会 (35)7参考文献 (36)附录 (37)1摘要随着风电在电力系统中的比例不断增加,其对电力系统的影响已不可忽略。
由于风力发电机组的工作原理和接入方式与传统的三相同步发电机组差异较大,因此对风力发电机组的准确建模是分析大规模风电的接入对电网稳定性、安全性、可靠性等方面影响的关键步骤。
电力系统暂态仿真是开展风电并网研究的一种重要手段,而建立准确、有效的风力发电机组暂态模型则是仿真工作的基础,基于PSCAD能建立详细反映风机控制调节特性的风机电磁暂态仿真模型,包括风机的详细风力机、轴系、发电机及变流器等元件模型与变流器的机侧和网侧控制、风力机的桨距角控制等控制模型,所建立的模型能反应风机在各种扰动下的输出特性。
风力发电并网技术分析及电能质量的控制作者:王位俊来源:《华中电力》2014年第04期摘要:风力发电是一种新型的绿色能源,正逐渐成为世界各国争相开发的新技术能源。
近几年来,随着科学技术的进步,变速双馈风力发技术在风力发电中得到广泛应用。
该技术能够最大限度的捕获风能,同时还能够实现发电机组以及电网之间的柔性,提高风力发电系统运行的动静态稳定性。
本文针对双馈风力机并网技术进行简单阐述,重点讨论双馈风力发电机组的控制策略,最后通过系统仿真来验证双馈发电机运行性能。
关键词:双馈风力发机;最大风能控制;工作原理;优化策略;仿真技术近几年来,随着国际工业化的进程,全球气候逐渐变暖,环境污染日益严重,支撑工业化进程的能源以及电力所主要依靠的化石燃料已越来越少,常规能源面临着枯竭,因此,风能属于可再生能源,选择风力发电能够延缓煤炭以及石油、天然气等常规能源的枯竭。
双馈恒频发电是20世纪末发展的一种新型发电模式,主要是利用电子技术以及矢量变换控制技术、微机信息处理技术从而引发的发电,在发电技术中得到广泛应用。
[1]到目前为止,主要有爬山法、功率信号反馈控制以及叶尖速比控制方法,来提高风力发电机组的工作效率。
然而,这几种方法几乎都忽略了双馈发电机组本身的效率,即使在风力机中能够获得比较大的风能捕获,但是发电系统对电网输出的有功功率还是会随着电机效率的不同而出现差异。
因此,本文就在捕获最大风能的基础之上,提出双馈风力发电机组的风能控制策略。
一、双馈风力发电机并网技术到目前为止,适合交流励磁双馈风力发电机组的并网方式主要是基于定子磁链定向矢量控制的准同期并网控制技术,即空载并网方式、独立负载并网方式、孤岛并网方式。
另外,对于垂直轴型的双馈机组,由于不能自动起动,所以必须采用“电动式”并网方式。
1、空载并网方式所谓空载并网就是并网前双馈发电机空栽,定子电流为零,提取电网的电压信息(幅值!频率!相位)作为依据提供给双馈发电机的控制系统,通过引入定子磁链定向技术对发电机的输出电压进行调节,使建立的双馈发电机定子空载电压与电网电压的频率!相位和幅值一致。
双馈式风力发电机低电压穿越技术探讨作为一种重要控制技术,低电压穿越技术对于保证双馈式风力发电机运行的安全性和可靠性具有重要作用。
本文首先介绍了双馈式发电机的结构组成和低电压特性,然后具体探讨了风机的低电压穿越技术,以期为相关技术与研究人员提供参考。
标签:双馈式;风力发电机;低电压穿越技术在风力发电机机组内,当系统电压出现微小跌落式,原有控制方法会使机组自动同电网解裂,以避免设备发生事故。
然而因风电穿透功率的不断增加,电网在出现电压跌落时,原有的控制方式会造成系统失去一些电源,继而引发更为剧烈的电压跌落,更多机组会退出工作系统,最终造成电网状态的破坏。
低电压穿越就是指在系统电压出现跌落后,机组在保证设备无损坏的同时,不再通过与电网解裂,而是向系统提供定量的无功支持以促进系统电压恢复的过程。
因此,加强有关机组低压穿越技术的探讨,对于改善机组的运行质量具有重要的现实意义。
一、双馈式发电机的结构组成及低电压特性1、结构组成双馈式异步发电机的定子侧同电网直接连接,转子侧采用三相堆成绕组,通过交-直-交变频器连接到电网上,以向发电机提供交流励磁。
转子励磁的电流频率、相位及幅值等都可以进行调整。
风力发电机组利用变桨系统使风能转换为机械能,再通过发电机及齿轮箱等转化为电能,利用变频器对转子励磁进行控制以完成风机变速恒频的发电过程。
[1]2、低电压特性低电压穿越不仅能保证机组设备的安全,且能在系统故障期间大量提供无功支持,以促进系统电压恢复。
通过分析双馈式风力发电机在系统电压跌落后的暂态反应可研究设备安全保护过程。
(1)在系统发生对称故障时,电网电压会出现不同幅度的跌落,因双馈发电机的定子绕组直接连接到电网上,发电机的电动势保持稳定的同时则必然会造成定子电流的增加,因定子磁链需缓慢变化,进而会形成一个暂态直流分量以保证磁链的连续性,在时间推移过程中直流分量会按照指数形式不断衰减。
根据系统电压跌落后转子的侧短路状态,通过定量分析转子暂态电流和仿真研究发现在电网电压跌落程度不同时,转子暂态电流中的交流分量和定子暂态电流中的直流分量大小主要取决于电压跌落的幅度。
最大风能捕获原理:最大风能捕获有3 种控制算法:最佳叶尖速比法、功率反馈法和爬山法。
最佳叶尖速比控制要求实时测量风速和发电机转速,通过计算使风力机工作于最佳尖速比;然而,由于风速的多变性,增加了测量成本和控制复杂度。
功率反馈法是利用矢量变换原理,通过对双馈电机转子励磁的幅值和频率进行调节,改变电机转速,实现最大风能追踪。
该方法虽可避免对风速的测量,但操作之前必须根据实际情况设定风力机最佳叶尖速比,且其控制精度取决于系统快速性和定子有功功率的计算。
爬山法是通过实时检测风力机转速和输出功率,利用数学模型使电机工作于最大功率点,该方法的局限性在于:捕获最大功率点需要几百s 的时间,出现这一延迟严重影响了控制精度。
当风机运行在额定风速以下时其功率输出完全取决于桨叶的气动性能。
采用转速控制方式,根据风速的大小,用风速变化稳定的低频分量,配合变频器对发电机进行控制,使风机运行在最佳尖速比情况下。
当风速达到或超过额定风速后,风力发电机组进入额定功率状态。
在传统的变桨矩控制方式中,这时将转速控制切换到功率控制,变桨矩系统开始根据发电机的功率信号进行控制。
控制信号的给定值是恒定的,即额定功率。
功率反馈信号与给定值进行比较,当功率超过额定功率时,桨叶节矩就向面积减小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。
风力机将捕获的风能以机械能的形式驱动永磁发电机,而永磁发电机的转速随着风速的变化而变化,因而发出的电能是电压和频率都变化的电能,为得到恒压恒频的电能就必须进行交直交变流,再通过滤波器滤波将逆变器输出变换成正弦波输出。
永磁同步风力发电系统不需要励磁装置,具有重量轻、效率高、可靠性好的优点。
风轮机可以和永磁发电机直接耦合,省去了其他风力发电系统中的增速箱,减少发电机的维护工作而且降低噪声。
PWM整流器可提供几乎为正弦的电流,因而减少了发电机侧的谐波电流。
直流环节并有大电容,可维持电压恒定。
电网侧串联电感可用于滤波。
双馈风力发电机的特点与功能分析摘要:风力是重要的清洁能源,风力所具备的可再生性以及无污染性使得其受到广泛关注和应用,双馈发电机的并网控制方法和异步发电机相似,主要原理是通过滑差率来调节负荷,发电机的转速和输出功率近似成线性关系,所以只要保持发电机的转速和同步转速相接近就能实现并网。
基于此,本文对双馈风力发电机概述以及双馈式双馈风力发电机控制的措施进行了分析。
关键词:双馈风力发电机;概述;措施1 双馈风力发电机概述双馈感应发电机(DoublyFedInductionGenera-tor,DFIG)集同步发电特性和异步发电特性于一体,可通过定子和转子向电网实现双向馈电。
当前双馈风力发电机大体可以分为同步电机好异步电机两类,实际应用中可以细分为鼠笼异步发电机、双馈发电机、同步发电机以及永磁同步发电机。
双馈风力发电机是一种绕线式感应发电机,属于异步发电机。
由于双馈异步电动机的定子绕组直接同电网相连接,转子绕组通过变流器和电网连接,并由变频器实现对饶子绕组电源电压、相位以及频率和幅值的自动调控,因而在运行中,机组可以在不同的转速下维持恒频发电。
然而,虽然双馈发电机具备机械承受应力小、运行噪音小、变频器容量小以及启动效率高的特点,但双馈发电机的电气损耗较大,还需配备齿轮箱,造价较为昂贵。
不过相比同步双馈风力发电机,双馈风力发电机能够更好的实现电能稳定输出,实用性较强。
2 双馈式双馈风力发电机控制的措施2.1 混合储能模块特性及控制策略混合储能模块经响应速度为ms级的变流器与直流母线相连,可快速响应功率变化。
混合储能改变直流母线上的功率大小,影响双馈风机的输出功率。
当系统发生功率波动时,双馈风机为系统提供惯量支撑和参与系统的一次调频,提供相应的有功补偿,吸收直流母线上多余功率。
以系统电压跌落导致的LVRT为例,暂态过程中可认为风速近似不变,此时双馈风电机组吸收功率不变,而向电网输出功率减少,功率失衡,导致能量过剩。
双馈风力发电机虚拟同步控制策略研究
随着可再生能源的快速发展,风力发电作为一种清洁、可持续的发电方式受到了广泛关注。
双馈风力发电机作为目前最常用的风力发电机类型之一,具有较高的转速可调性和较低的转矩波动性,被广泛应用于风力发电场中。
然而,在风力发电机运行过程中,由于风速的不稳定性和电网故障的存在,双馈风力发电机容易出现电力系统频率偏差和电压波动等问题。
为了解决这些问题,研究人员提出了虚拟同步控制策略。
虚拟同步控制策略是一种基于电流和功率的控制方法,通过对双馈风力发电机的转子电流和功率进行监测和调节,使其与电网频率实现同步。
具体而言,虚拟同步控制策略主要包括以下几个方面。
首先,通过对转子电流的监测和分析,可以实时获取双馈风力发电机的运行状态。
根据电流的变化情况,可以判断电网的频率偏差,并及时调节转子电流,使其与电网频率同步。
其次,通过对转子功率的监测和分析,可以实时了解双馈风力发电机的负荷情况。
根据功率的变化情况,可以判断电网的负荷需求,并通过调节转子功率,使其满足电网的需求。
最后,通过虚拟同步控制策略,可以实现双馈风力发电机与电网的动态匹配。
当电网频率发生变化时,虚拟同步控制策略能
够实时调节转子电流和功率,使其与电网频率保持同步,从而提高风力发电机的稳定性和可靠性。
综上所述,虚拟同步控制策略是一种有效解决双馈风力发电机频率偏差和电压波动等问题的方法。
通过对转子电流和功率的监测和调节,可以实现双馈风力发电机与电网的动态匹配,提高风力发电机的运行效率和稳定性。
相信随着相关技术的不断发展和完善,虚拟同步控制策略将在风力发电领域发挥越来越重要的作用。
最大风能追踪的实现原理
最大风能追踪的实现原理是基于风力发电机的追踪系统。
风力发电机是一种利用风能来产生电力的设备,其追踪系统的目的是使发电机始终面向风的方向,从而获得最大的风能利用效率。
最大风能追踪的实现原理主要包括以下几个方面:
1. 风向测量:追踪系统首先需要确定风的方向。
这可以通过安装风向传感器或使用其他风向测量方法实现。
风向传感器通常安装在发电机的轴上或者直接安装在发电机的机身上。
它能够实时测量风的方向,将相关数据传输给控制系统。
2. 风速测量:追踪系统还需要测量风的速度。
这可以使用风速传感器实现,风速传感器通常安装在发电机桨叶上或者发电机旁边。
通过测量风的速度,系统可以判断风的强弱,并根据这些数据进行相应的调整。
3. 追踪算法:追踪系统使用追踪算法来根据风向和风速的测量数据来确定风机的方向。
常见的算法包括最大功率点追踪算法和最大效率追踪算法。
最大功率点追踪算法通过不断调整发电机转向来实现最大功率的输出,而最大效率追踪算法则通过调整发电机的转速和桨叶的角度来实现最高的效率。
4. 控制系统:最大风能追踪的实现还需要一个控制系统,它用于接收风向和风速的测量数据,并根据追踪算法来控制风力发电机的转向和转速。
控制系统通常由微处理器或控制器组成,它可以自动监测和调整发电机的运行状态。
总的来说,最大风能追踪的实现原理是通过风向传感器和风速传感器测量风的方向和速度,然后依靠追踪算法和控制系统来控制风力发电机的转向和转速,从而实现最大风能的利用。
这种追踪系统可以提高风力发电机的输出效率,减少能源浪费。
双馈感应风力发电机(DFIG)和双馈异步风力发电机(DFIM)是两种常见的风力发电技术,它们的控制策略如下:
1. DFIG控制策略
DFIG控制策略的主要目的是控制发电机输出电压和频率,以使其与电网同步。
具体而言,DFIG控制策略包括以下几个方面:
-速度控制:控制发电机转子的转速,以匹配电网的频率和电压。
-电流控制:控制发电机输出电流的大小和相位,以满足电网的功率和电压要求。
-功率控制:控制发电机输出功率的大小和相位,以满足电网的负载需求。
-并网控制:控制发电机并网点的电压和频率,以保证与电网的同步运行。
2. DFIM控制策略
DFIM控制策略的主要目的是控制发电机输出电压和频率,以使其与电网同步,并保证系统的稳定性和可靠性。
具体而言,DFIM控制策略包括以下几个方面:
-电压控制:控制发电机输出电压的大小和相位,以满足电网的功率和电压要求。
-频率控制:控制发电机输出频率的大小和变化率,以匹配电网的频率和电压。
-功率控制:控制发电机输出功率的大小和相位,以满足电网的负载需求。
-并网控制:控制发电机并网点的电压和频率,以保证与电网的同步运行。
此外,DFIM还需要进行转子电流控制,以防止过大的转子电流对电机造成损害。
在DFIM 中,转子电流控制通常采用矢量控制方法,即通过控制电流的大小和相位来实现转子磁场的精确控制。
风力发电双馈异步发电机励磁控制变频器综述禹华军 上海输配电股份有限公司技术中心1. 变速恒频风电系统结构风力发电机组通常由风力机、传动系统、发电机、偏航系统、变桨距系统和控制系统等部分组成。
风力机的作用是将风能转换为机械能,通过传动系统,由齿轮箱增速,将机械能传递给发电机。
发电机采用绕线式异步发电机,通过交流励磁控制,实现机械能向电能的转换,同时能实现风力机系统的变速恒频控制。
机舱与塔架之间安装有偏航系统,使机舱对准来风的方向。
变桨距系统通常在风速超过额定值时,对风力机转速和输出功率进行控制,保证系统机械和电气安全。
控制系统是风力发电机组的“大脑”,由它自动完成机组的所有工作过程,并提供人机接口和远程监控的接口。
对恒速风机来说,当风速跃升时巨大的风能将通过风力机传递给主轴、齿轮箱和发电机等部件,在这些部件上产生很大的机械应力。
如果上述过程频繁出现,会引起这些部件的疲劳损坏,因此设计时不得不加大安全系数,从而导致机组重量加大,制造成本增加。
而当风力发电机采取变速运行时,由风速跃升所产生的巨大风能,其中部分被加速旋转的风轮所吸收,并以动能的形式存储于高速运转的风轮中,从而避免主轴以及传动机构承受过大扭矩和机械应力。
当风速下降后,在相关电力电子装置调控下,将高速风轮所存储的动能释放出来并转变为电能送入电网,通过风轮的加速、减速对风能的阶跃性变化起到缓冲作用,使风力机组内部能量传输部件应力变化平稳,防止破坏性机械应力产生,从而使风力机组运行更加平稳和安全。
常用的变速恒频控制方法有:鼠笼型异步发电机变速恒频(包括定子侧串变频器),绕线型异步发电机变速恒频(改变转子外接电阻),同步发电机变速恒频(电磁式与永磁式),双发电机侧变流器抱闸倾斜控制转子齿轮变流控制风力发电机控制系统带滑环的异步发电机线侧变流器图1 风力发电系统结构示意图馈感应异步发电机(Doubly-Fed Induction Generator-DFIG )变速恒频(包括无刷型),磁场调制型变速恒频,开关磁阻发电机变速恒频等。
第38卷 第2期2010年2月Vol.38 No.2Feb. 2010风电系统中双馈发电机组的控制李 季,马幼捷,周雪松,杨海珊(天津理工大学,天津 300384)摘 要:介绍了风力发电系统控制的发展历程,包括传统控制方法、现代控制方法,详细阐述了双馈风力发电机组的模糊自适应控制、具有强鲁棒性的自抗扰控制技术在风力发电中的应用研究。
通过对比各种控制方法的优缺点,对未来风力发电机和风力发电控制技术的发展趋势作了展望。
关键词:风力发电;控制技术;模糊自适应控制;自抗扰控制基金项目:国家自然科学基金项目(50877053);天津理工大学育苗基金项目(LGY M200919)作者简介:李 季(19772),女,博士研究生,研究方向为电力系统分析与控制、风力发电等。
中图分类号:TP13 文献标志码:A 文章编号:100129529(2010)022*******Con trol of D ouble2fed W i n d Genera tor i n W i n d Power Syste mL I ji,MA You2jie,ZHOU Xue2song,YAN G Hai2shan(Tianjin University of Technol ogy,Tianjin300384,China)Abstract:The course of devel opment of the wind power syste m was analyzed,including the traditi onal contr olmethods and modern contr ol methods.App licati on researches of the fuzzy adap tive contr ol and the aut o2disturbance2rejecti on contr ol technol ogy with str ong r obustness in the wind power generati on were expounded.By comparing the advantages and disadvantages of vari ous contr ol methods,the p r os pect of wind turbines and wind power contr ol technol ogy trends in the future was referred.Key words:wind power generati on;contr ol technol ogy;fuzzy adap tive contr ol;ADRC 风能是一种用之不竭、清洁的可再生能源,风力发电系统因其结构简单、维护方便、易于管理而得到了各国的高度重视,近年来更是由于控制技术和电力电子技术的发展和广泛应用,风力发电技术已取得了长足的进步,是各国首先考虑发展的新环保能源。