低矿化度水驱技术机理及适用条件研究
- 格式:pdf
- 大小:1.85 MB
- 文档页数:1
二氧化碳驱技术在低渗透油藏开发中提高驱油效率的研究与应用摘要:在中石化总公司支持下,组建了CO2驱技术研究团队,形成了高温高盐油藏CO2驱油三次采油关键技术,解决水驱废弃油藏和低渗难动用储量的开发难题。
在国内率先开展了特高含水油藏CO2/水交替驱;深层低渗油藏CO2驱。
油田层次开展了四种油藏类型五种矿场试验。
验证该类油藏二氧化碳驱可行性,探索合理举升方式,进一步优化二氧化碳驱井网井距,验证大井距可行性,探索深层低渗稠油油藏有效开发方式,扩展二氧化碳驱应用范围以及特高含水废弃油藏二氧化碳驱提高采收率技术。
探索储层粘土含量高、水敏性强油藏二氧化碳驱提高采收率技术。
关键词:二氧化碳驱低渗油藏提高采收率换油率1、研究目的1.1 某厂低渗难动用储量涉及开发单元11个,地质储量1601.85×104t,标定采收率7.56%,目前采出程度5.54%。
涉及单元多为低孔隙、低渗透的地质特点。
2010年开始二氧化碳驱在胡1块深层低渗油藏实施先导试验,胡1井组气驱取得成效后,相继在其他五个低渗类型油藏实施气驱开发。
目前总覆盖地质储量309.5×104t。
累注气17.9×104t,累增油3.05×104t。
1.2低渗油藏水驱效率低,注采井组呈现两极分化现象,一是注水压力高油井难以见效,二是油井见效快、含水上升快、见效稳产周期短,通过二氧化碳驱提高驱油效率。
2、研究内容及成果2.1 二氧化碳驱机理上优于水驱一是超临界二氧化碳注入能力强,增大有效井距;二是CO2驱补充地层能量,可膨胀地层原油,提高驱油效率再者CO2能进入的孔喉半径比水小一个数量级(0.01μm),低渗油藏,增加驱油体积25%以上,随CO2溶解,原油体积膨胀。
毛管半径分布曲线不同驱替方式驱替压力变化曲线2.2二氧化碳驱解决注入压力过高的问题根据深层低渗油藏开发情况调查,注水压力高,注气难度不大。
从地质条件类似的胡某区块二氧化碳注入能力看,二氧化碳驱可以解决注入压力过高的问题。
高含水区域油藏开发及水驱方式研究随着全球能源需求的不断增长,地下油藏的开发利用成为人类的关注焦点。
然而,随着时间推移,大部分油田开始进入高含水期,这对开采工程提出了更高的要求。
本文将讨论高含水区域油藏开发及水驱方式的研究,以有效提高油井的采收率和提高开采效益。
首先,我们需要了解高含水区域油藏的特点。
高含水油藏是指油井的产液中水含量高于50%的情况。
这种油藏通常具有较高的含水层位,油井的产液中含有大量的水。
高含水油藏的开发难度较大,因为水的存在会影响油藏中油的流动性,降低油井的采集率。
此外,油水井之间的界面张力也会影响水的排出速度,从而增加了开采难度。
针对高含水油藏的开发,有几种常见的水驱方式。
水驱是指在油藏中注入水以增加采收率的一种方法。
目前,最常用的水驱方式包括前驱水驱、顺序水驱和后驱水驱。
首先是前驱水驱。
前驱水驱是指在高含水油藏中,先注入大量的水以驱出油井中的原油。
这样可以降低油井中的原油黏附力,提高采收率。
前驱水驱的优点是操作简单,但需耗费大量的水资源。
此外,前驱水驱还有可能造成水侵,从而降低开采效率。
其次是顺序水驱。
顺序水驱是在前驱水驱的基础上进行的一种改进方法。
在顺序水驱中,我们根据油井的渗透能力和密度等条件进行分区,分别注入不同浓度的水来驱出油井中的原油。
这种方式可以更好地控制水的注入量和压力,提高采收率同时减少水的浪费。
最后是后驱水驱。
后驱水驱是指在油井开采过程中,注入低含水量的水来驱出油井中的原油。
后驱水驱的优点是节约水资源,同时以较低的成本提高采收率。
然而,后驱水驱需要较高的工程技术支持,才能保证水的注入速度和压力的控制。
除了水驱方式,还有其他的开发方法可以应用于高含水油藏的开发。
例如,采用人工举升方法可以通过抽吸泵将油井中的原油抽出,可以快速提高采收率。
此外,也可以尝试使用化学驱等新的技术手段来提高采集效率。
总结起来,高含水区域油藏的开发是一个技术难题,并且需要根据油井的具体条件选择合适的水驱方式。
矿井水处理工艺深入研究及回用发表时间:2017-11-06T15:25:14.717Z 来源:《防护工程》2017年第14期作者:丁冬[导读] 本文将立足于矿区水质特征,探讨影响矿井水处理工艺机理的因素,并提出合理化的建议。
大唐环境产业集团股份有限公司大唐(北京)水务工程技术有限公司北京 100097摘要:矿区缺水是影响煤矿产业发展的重要因素,也是大部分矿区普遍存在的现象,因此加强矿井水处理工艺研究显得尤为重要。
为解决煤炭矿区严重缺水等问题,本文将立足于矿区水质特征,探讨影响矿井水处理工艺机理的因素,并提出合理化的建议,促进煤矿产业经济效益与社会效益统一。
关键词:煤矿;矿井水;处理工艺1 矿井水水质概况矿井水的排水主要来源于煤矿生产中产生的废水和岩层裂隙水。
从观感上看,矿井水大多是黑灰色的,浑浊度较高,含有大量的固体悬浮物。
煤矿矿区的水文地质条件、矿床的地质构造以及矿采的开采状况,都会直接影响到矿井水的水质。
另外,水动力学、地质化学等因素也会造成矿井水与普通水质的差异,影响水源的质量。
矿井水中含有较多的负电性颗粒,颗粒带有静电斥力导致彼此的排斥,无法聚合在一起形成较大的颗粒。
另外,矿井水中含有的胶体也携带着电荷,因而能与水分子发生水化作用而形成水化膜,水化膜也会增加胶体之间的聚合难度。
悬浮颗粒本身具有湿润性,悬浮颗粒的湿润性会影响与混凝剂的亲和力。
煤本身的疏水性决定了水代替煤表层气体的难度。
这个难度可以用接触角来表示。
煤表面的结构是非均相的,形成了煤表面无机物和有机物的复杂结合。
这些因素共同影响着煤的湿润性。
相关的数据显示,不同煤化阶段的煤种有着不同的接触角。
褐煤的接触角在40°~63°,长焰煤在60°~63°,焦煤在86°~90°,无烟煤在84°~93°。
可见,煤化阶段越高,煤表面的极性官能团数量越少,芳香度越大,湿润性越低,接触角越大。
《低渗透油藏纳微米聚合物驱油实验和渗流机理研究》篇一低渗透油藏纳微米聚合物驱油实验与渗流机理研究一、引言随着石油资源的日益减少,低渗透油藏的开采变得愈发重要。
纳微米聚合物作为一种新型的驱油技术,在低渗透油藏的开发中显示出其独特的优势。
本文通过实验研究纳微米聚合物在低渗透油藏中的驱油效果,并探讨其渗流机理,为低渗透油藏的开发提供理论依据和技术支持。
二、实验材料与方法1. 实验材料实验所需材料主要包括纳微米聚合物、低渗透油藏岩心、模拟油等。
纳微米聚合物具有良好的吸附性、降粘性及良好的耐温性能,是本次实验的关键材料。
2. 实验方法(1)制备纳微米聚合物溶液,并将其注入低渗透油藏岩心;(2)在恒定的温度和压力条件下,观察并记录岩心内模拟油的流动情况;(3)分析纳微米聚合物对低渗透油藏的驱油效果及渗流机理。
三、纳微米聚合物驱油实验结果1. 驱油效果实验结果表明,纳微米聚合物在低渗透油藏中具有良好的驱油效果。
通过注入纳微米聚合物溶液,能够显著降低模拟油的粘度,提高其流动性,从而有效提高采收率。
2. 渗流机理分析纳微米聚合物在低渗透油藏中的渗流机理主要包括以下几个方面:(1)吸附作用:纳微米聚合物能够吸附在岩心表面,形成一层保护膜,降低岩心表面的吸附力,从而提高模拟油的流动性;(2)降粘作用:纳微米聚合物具有降低模拟油粘度的作用,使模拟油更容易流动;(3)改善润湿性:纳微米聚合物能够改善岩心的润湿性,使模拟油更容易在岩心中扩散和流动。
四、讨论与结论本实验通过研究纳微米聚合物在低渗透油藏中的驱油效果及渗流机理,得出以下结论:1. 纳微米聚合物在低渗透油藏中具有显著的驱油效果,能够显著提高采收率;2. 纳微米聚合物的渗流机理主要包括吸附作用、降粘作用和改善润湿性等方面;3. 纳微米聚合物技术为低渗透油藏的开发提供了一种有效的驱油方法,具有重要的理论意义和实践价值。
五、建议与展望根据本实验结果,提出以下建议与展望:1. 在实际低渗透油藏开发中,可考虑采用纳微米聚合物技术以提高采收率;2. 进一步研究纳微米聚合物的性能及其与其他驱油技术的结合应用;3. 深入研究低渗透油藏的渗流机理,为优化采收率提供更多理论依据;4. 继续探索和发展新型的驱油技术,以满足不断变化的石油开采需求。
西南石油大学学报(自然科学版)2021年6月第43卷第3期Journal of Southwest Petroleum University (Science & Technology Edition )Vol. 43 No. 3 Jun. 2021DOI : 10.11885/j.issn.1674 —5086.2020.04.07.01文章编号:1674—5086(2021)03—0101 — 10 中图分类号:TE357文献标志码:A页岩油藏提高采收率技术及展望李一波1 *,何天双】,胡志明2,李亚龙2,蒲万芬1*收稿日期:2020-04-07 网络出版时间:2021-05-11通信作者:李一波,E-mail : ***************.cn基金项目:中国石油创新基金(2019D-5007-0212);四川省科技计划(2021YFH0081)1.西南石油大学石油与天然气工程学院,四川成都6105002.中国石油勘探开发研究院廊坊分院,河北廊坊065007摘要:通过调研近二十年国内外页岩油藏提高采收率技术的室内研究和现场应用,结合页岩油藏储层特征,总结了 开发过程中的难点,并针对各类提高页岩油藏采收率技术的作用机理,讨论了对页岩油藏的适应性。
研究表明,注气是页岩油藏补充地层能量的最佳方法,二氧化碳和天然气是常用的注入介质,但其作用机理还有待深入探讨;通过改善储层润湿性来提高渗吸效果是表面活性剂和低矿化度水的主要机理;泡沫驱拥有良好注入性的同时能够有效调整裂缝性油藏的非均质性,但是其在裂缝中的稳定性有待加强;热力采油可以改变储层的热应力,诱导裂缝扩张,增大注入介质的波及范围。
溶剂和纳米材料在机理上有改善页岩储层润湿性的作用,但是其在页岩油藏开发中的可行性还 有待验证。
关键词:页岩油藏;提高采收率;非常规油气;机理研究;综述A Comprehensive Review of Enhanced Oil Recovery Technologiesfor Shale OilLI Yibo 1*, HE Tianshuang 1, HU Zhiming 2, LI Yalong 2, PU Wanfen 11. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China2. Langfang Branch, PetroChina Research Insittute of Petroleum Exploration & Development, Langfang, Hebei 065007, ChinaAbstract: Through the investigation of the indoor research and field application of EOR technologies in shale oil reservoirs at home and abroad in the past 20 years, the difficulties in the development process are summarized in combination with the characteristics of shale oil reservoirs, and the adaptability of various EOR mechanisms to shale oil reservoirs. The results show: The gas injection is the best way to supply energy for shale reservoir. Carbon dioxide and natural gas are the normal injection media and the displacement mechanism needs further investigation. The wettability alteration to enhance the performance of imbibition effect is the main mechanism for surfactant and low salinity water flooding. Foam has the good performance in adjusting the heterogeneity but its stability needs to be enhanced. Thermal methods can change the thermal stress of the shale formation and thus induce the propagation of fracture to increase the sweep efficiency. In theory, solvent and nano-based material can also improve the wettability of shale reservoir, but its adaptation needs further discussion.Keywords: shale reservoir; enhanced oil recovery; unconventional resource; mechanism investigation; review网络出版地址:http :///kcms/detail/51.1718.TE.20210510.1809.002.html李一波,何天双,胡志明,等.页岩油藏提高采收率技术及展望[〕]•西南石油大学学报(自然科学版),2021,43(3): 101-110.LI Yibo, HE Tianshuang, HU Zhiming, et al. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(3):101-110.102西南石油大学学报(自然科学版)2021年引言随着世界能源需求的不断增加以及常规油气资源开发难度日益加大,以页岩油气为代表的非常规油气资源作为接替能源受到了广泛的关注。
矿井疏干水利用与处理技术研究随着矿业开采的不断深入,矿井疏干水问题日益突出,如何科学合理地利用和处理矿井疏干水成为亟待解决的问题。
矿井疏干水是指在煤矿开采过程中产生的大量地下水,一旦排放到地表会对周围环境和生态系统造成严重影响。
矿井疏干水的利用与处理成为矿山水环境管理的重要课题之一。
本文将从矿井疏干水的利用和处理技术方面展开讨论。
一、矿井疏干水的利用技术1. 地热利用技术地热能够有效利用矿井疏干水,通过热泵和地源热能等技术,将矿井疏干水中的热能转化为可用热能,供暖或供热水使用。
通过地热利用技术,可以最大程度地减少矿井疏干水的排放,同时实现资源的可循环利用。
2. 工业用水补给部分矿井疏干水含有一定的矿物质成分,具有一定的实用价值。
可以通过对矿井疏干水进行深加工处理,获得一定品质的工业用水,供给相关工业生产使用,实现矿井疏干水的资源化利用。
3. 农田灌溉补水在农业用水稀缺的地区,可以将矿井疏干水进行适当处理后,用于农田灌溉补水,提高土地的水分利用效率,促进农作物的生长发育,同时起到节水和环境保护的作用。
1. 沉淀-过滤法通过加入絮凝剂将矿井疏干水中的悬浮物沉淀,再通过过滤的方式使水中的悬浮物得以去除,从而达到净化水质的目的。
这种方法简单易行,能够有效处理矿井疏干水中的悬浮物质。
2. 活性炭吸附法活性炭具有特殊的孔隙结构和表面化学性质,可以有效吸附水中的有机物和重金属离子,减少水中的污染物含量,提高水质。
可以将矿井疏干水通过活性炭吸附柱处理,达到净化水质的效果。
3. 膜分离技术膜分离技术主要包括超滤、反渗透和微滤等,能够有效除去水中的微生物、重金属、胶体和悬浮物等杂质,提高水质,适用于对水质要求较高的场合。
4. 生物处理技术利用微生物对水中的有机物和其他污染物进行生物降解和生物吸附,通过生物处理技术可以有效净化水质,降低水的污染物含量。
矿井疏干水的利用和处理技术对矿山水环境保护和资源利用具有重要意义。
矿井疏干水利用与处理技术研究随着煤矿行业的发展,矿井疏干水的处理和利用成为了一个重要的环保议题。
煤矿疏干水是指在采煤作业过程中,随着煤的开采和矿井的深度增加,地下水和煤层开采过程中产生的水逐渐增多,如果不及时排放和处理,就会对周边环境和生态系统造成严重的污染。
矿井疏干水利用与处理技术研究显得尤为重要。
本文将从矿井疏干水的特点、利用与处理现状、存在问题以及未来发展趋势等方面进行详细的探讨。
一、矿井疏干水的特点1. 产水量大。
随着煤矿的深度增加,矿井疏干水的产量也不断增加,有的甚至会形成水患的情况,给矿井的安全生产带来了很大的威胁。
2. 含污染物多。
矿井疏干水中含有多种有机物和重金属离子等污染物质,对水质造成了严重的污染。
3. 水质复杂。
由于矿井疏干水是地下水经过煤层吸收了大量的煤的有机物而形成的,因此其水质非常复杂,处理起来相对困难。
4. 对周边环境造成威胁。
如果矿井疏干水不得到有效的处理和利用,就会对周边的环境和生态系统造成严重的破坏,甚至导致酸性水体的形成,加剧地表水环境的污染。
二、矿井疏干水利用与处理现状目前,对于矿井疏干水的处理与利用主要包括以下几种方式:1. 直接排放。
部分煤矿直接将疏干水排放到周边的河流或地表水中,这种做法会给周边的水环境带来巨大的污染。
2. 生态治理。
有的煤矿采用生态湿地的方式进行疏干水的处理,这种方式能够一定程度上净化疏干水并将其进行再利用,但投资较大,容量较小,且对水质的要求较高。
3. 生物技术处理。
通过植物的吸附和微生物的降解能力对疏干水进行处理,但该技术对水环境的适应性较低,处理效果也不是很理想。
4. 化学物理处理。
利用吸附剂、氧化剂和还原剂等进行疏干水的处理,通过加入各种化学剂对水质进行改良,达到合格排放标准。
目前,矿井疏干水的处理主要是以化学物理处理为主,但由于疏干水的特殊性,该方式存在着成本高、效果不稳定、副产物无法处理等问题,因此需要深入研究矿井疏干水利用与处理技术。
低盐水改变砂岩表面润湿性的pH升高机理杨杰;董朝霞;向启贵;雷宇;胡金燕;彭锋;王兴睿【摘要】Low salinity waterflooding can change the wettability on sandstone surface but also increase pH of crude oil/brine/rock system.The spontaneous imbibition macroscopically studied the effect of pH increase of imbibing brine on wettability of sandstone surface when the saturated brine is acidic, and zeta potential measurements were used to interpret the mechanism of wettability alteration on sandstone surface by pH increase.The adsorption of simulated polar oil on sandstone and molecular simulation were used to microscopically analyze the mechanism of wettability alteration on sandstone surface by pH increase.The experiments and simulation results show that when saturated brine was acidic, the ionization of petroleum acid was inhibited and they existed as the form of acid molecule and the base were ionized to be positive, then the petroleum acid and positive base can adsorb onto negative oxygen of sandstone surface by hydrogen bond and coulomb force respectively.The hydrocarbon chain of adsorbed polar components can change the sandstone surface to less water-wet.However, as pH increased, the adsorbed carboxylic acid were ionized to be negative and the base were ionized to be neutral, then the coulomb force between negative acid and oxygen group on sandstone surface and the weak van der waals between neutral base and oxygen group resulted in desorption of acid and base from sandstone surface and alteration of sandstone surface to be morewater-wet.%低矿化度水驱能改变砂岩表面润湿性,注入低矿化度水使体系pH升高.当岩心初始饱和水为酸性时,利用岩心自渗吸和接触角实验,在宏观上研究自渗吸盐水pH升高对砂岩表面润湿性的影响,结合Zeta电位测试解释pH升高改变砂岩表面润湿性的机理;利用极性模拟油组分砂岩表面吸附实验,结合分子模拟在微观上分析自渗吸盐水pH升高改变砂岩表面润湿性的机理.实验及分子模拟结果表明:当初始饱和水为酸性时,原油中的石油酸电离被抑制,以羧酸分子形式存在,碱组分电离而带正电,羧酸分子、正电性碱组分分别通过氢键和库仑力(静电引力)吸附在砂岩表面的负电性硅氧基团上.由于吸附的酸碱组分另一端为烃基,砂岩表面亲水性减弱,当体系pH升高时,吸附在砂岩表面上的羧酸分子电离而成负电性羧酸根,碱组分电离被抑制而成电中性碱,在负电性羧酸根与砂岩表面负电性硅氧基团之间存在库仑力,电中性碱组分与硅氧基团之间的范德华力不足以自行吸附在砂岩表面的基团上,导致酸碱组分从砂岩表面脱落,砂岩亲水性增强.【期刊名称】《东北石油大学学报》【年(卷),期】2018(042)006【总页数】12页(P104-113,前插7-前插8)【关键词】pH升高;吸/脱附;库仑力;氢键;表面润湿性;砂岩;低盐水【作者】杨杰;董朝霞;向启贵;雷宇;胡金燕;彭锋;王兴睿【作者单位】中国石油西南油气田分公司安全环保与技术监督研究院, 四川成都610000;中国石油大学(北京)科学技术研究院, 北京 102249;页岩气评价与开采四川省重点实验室, 四川成都 610000;中国石油西南油气田分公司安全环保与技术监督研究院, 四川成都 610000;中国石油西南油气田分公司安全环保与技术监督研究院, 四川成都 610000;中国石油西南油气田分公司安全环保与技术监督研究院, 四川成都 610000;中国石油西南油气田分公司安全环保与技术监督研究院, 四川成都 610000【正文语种】中文【中图分类】TE3430 引言注水开发是油田应用最广泛、最成熟的油田开发技术。
煤岩体水力致裂弱化的理论与应用研究一、本文概述本文旨在全面探讨和研究煤岩体水力致裂弱化的理论与应用。
水力致裂是一种利用高压水流在煤岩体中形成裂缝,进而改善煤岩体渗透性、提高开采效率的技术手段。
随着煤炭资源开采的不断深入,煤岩体弱化问题日益突出,水力致裂技术作为一种有效的煤岩体弱化方法,受到了广泛关注。
本文将从理论和应用两个层面对煤岩体水力致裂弱化进行深入分析,以期为我国煤炭资源的开采和利用提供理论支撑和实践指导。
在理论层面,本文将对煤岩体水力致裂弱化的基本原理进行阐述,包括水力致裂的物理化学过程、裂缝扩展机制以及影响因素等。
同时,通过数学建模和数值模拟,对水力致裂过程中的应力分布、流体流动和裂缝扩展等关键问题进行深入研究,揭示水力致裂弱化煤岩体的内在规律。
在应用层面,本文将对煤岩体水力致裂弱化的实际应用情况进行分析,包括水力致裂技术在煤炭开采、油气资源开发和地热能源利用等领域的应用案例。
通过对实际工程案例的剖析,总结水力致裂技术在不同煤岩体条件下的应用效果和经验教训,为相关工程实践提供借鉴和参考。
本文旨在对煤岩体水力致裂弱化的理论与应用进行全面系统的研究,以期推动水力致裂技术在煤炭资源开采和利用领域的发展和应用,为我国的能源安全和经济发展做出贡献。
二、煤岩体水力致裂弱化理论基础煤岩体水力致裂弱化技术是一种利用高压水射流或水压作用,在煤岩体中产生裂缝,从而改变其力学性质、提高瓦斯抽采效率或进行煤岩体的切割和破碎的技术。
这一技术的理论基础主要涉及到流体力学、岩石力学、断裂力学等多个学科的知识。
从流体力学的角度来看,高压水射流或水压作用会在煤岩体中形成应力场和压力场,当这些场的强度超过煤岩体的抗拉、抗压或抗剪强度时,就会在煤岩体中产生裂缝。
裂缝的产生和扩展过程受到多种因素的影响,如煤岩体的物理性质(如弹性模量、泊松比、抗拉强度等)、水力参数(如射流压力、流量、喷嘴形状等)以及环境因素(如温度、压力、地应力场等)。
低渗油藏水驱效果影响因素与开发评价摘要:某油田为典型低渗透油藏,经过多年水驱开发取得较好开发效果。
但也存在注水井吸水能力低、启动压力和注水压力高、油井受效时间长、压力和产量变化不敏感等问题。
针对低渗透油田注水开发中存在的问题,分析影响水驱开发效果的主要因素,提出有效开发低渗透油田的主要技术措施。
关键词:低渗透油田;水驱开发;影响因素;技术对策;评价前言某油田属于背斜带上的一个三级构造。
含油层段为新近系上新统的上、下油砂山组,岩性主要为深色的泥岩类、灰岩类夹少量砂岩、粉砂岩及白云岩。
储层发育原生粒间孔、次生溶蚀孔,残余粒间孔、晶间孔和微裂缝。
储层平均孔隙度为14石%,平均渗透率为2.98mD,储层排驱压力、饱和中值压力低,孔喉半径小,储层渗流性能差,属于中高孔一低渗透储层。
1水驱开发存在问题某油田注水开发,采用反九点法注采井网,辖区内注采井数比为1:3。
取得一定注水效果的同时,开发过程中的问题及矛盾也日益突出。
1.1采用消耗方式开发,产量递减快,压力下降快。
低渗透油田天然能量不充足,原始地层压力为17.2MPa,渗流阻力大,能量消耗快,采用自然枯竭方式开发,产量递减快,地层压力下降快,在依靠天然能量开采阶段,产油量的年递减率为40%,地层压力下降幅度很大,每采出1%地质储量,地层压力下降4.2MPa。
为了获得较长的稳产期和较高的采收率,采用保持压力的开发方式是势在必行的。
1.2注水井吸水能力低,启动压力和注水压力高。
该油田注水井吸水能力低,启动压力和注水压力高,而且随着注水时间的延长,层间、层内矛盾日益加剧,甚至发展到注不进水的地步。
由于注采井距偏大、油层吸水能力低,注水井的能量(压力)难以传递、扩散出去,致使注水井井底附近产生鳖压,注水压力升高。
1.3油井见注水效果较慢,压力、产量变化不敏感。
该油田由于油层渗流阻力大,注采井距偏大,注水井到油井间的压力消耗多,因而油井见注水效果不仅时间晚,而且反应比较平缓,压力、产量变化幅度不大,有的甚至恢复不到油井投产初期的产量水平。
石油地质与工程2021年11月PETROLEUM GEOLOGY AND ENGINEERING 第35卷第6期文章编号:1673–8217(2021)06–0110–04深层稠油高盐水驱油藏深部化学调驱技术的应用以吐哈油田鲁X区块为例黄兆海(中国石油辽河油田分公司外部市场项目管理部,辽宁盘锦124010)摘要:吐哈油田鲁X区块为深层稠油高盐水驱油藏,受层间、层内非均质性等因素影响,存在注水井指进现象突出,油井水窜严重及应用调剖体系效果差的问题,为此研究了一种具有耐盐、抗剪切、封堵率高、有效期长、驱替效果好的两段塞深部调驱剂,并提出了“近井调堵、远井驱油、先堵后调”的调堵、驱油结合的调驱思路。
通过室内评价和现场实施表明:两段塞深部调驱剂黏损率小、封堵率达到90%以上,驱油效果好,可满足深层稠油高盐水驱油藏调驱需求。
深部化学调驱技术的实施抑制了水窜优势通道,改善了油层吸水情况,扩大了水驱波及范围,增油效果明显,为同类油藏提高注水开发效果提供了一种新方法。
关键词:吐哈油田;深层稠油;高盐水驱;化学调驱;增油效果中图分类号:TE357.43 文献标识码:AApplication of deep chemical profile control and flooding technology in deep heavy oil andhigh salt water drive reservoir-- by taking Lu X block of Tuha oilfield as an exampleHUANG Zhaohai(External Market Project Management Department of Liaohe Oilfield Company, PetroChina, Panjin, Liaoning 124010, China) Abstract: Lu X block of Tuha oilfield is a deep heavy oil and high salt water drive reservoir. Affected by strong interlayer and interlayer heterogeneity, there are some problems, such as prominent fingering of water injection wells, serious water channeling of oil wells and poor effect of profile control system. Therefore, a double-slug deep profile control agent with salt tolerance, high shear resistance, high plugging efficiency, long effective period and good displacement effect has been studied. The indoor evaluation and field implementation show that the viscosity loss rate of the double-slug deep profile control and displacement agent is small, the plugging rate reaches more than 90%, and the oil displacement effect is good, which can meet the profile control and displacement requirements of deep heavy oil and high salt water flooding reservoirs. The implementation of deep chemical profile control and flooding technology inhibits the dominant channel of water channeling, improves the water absorption of oil layer, expands the spread range of water flooding, and has obvious oil increase effect. It provides a new method to improve the effect of water injection development for similar reservoirs.Key words: Tuha oilfield; deep heavy oil; high salt water flooding; chemical profile control and flooding; oil increasing effect鲁X区块位于吐哈盆地南部鲁克沁稠油构造带,是受英也尔和鲁克沁断层控制的断背斜带,主力含油层系是三叠系中统克拉玛依组Ⅱ油组,为复杂断块边底水油藏[1–2],该区块油层中深2 600 m,孔隙度22.9%,渗透率319×10–3μm2,地温梯度2.51 ℃/100 m,50 ℃原油黏度324 mPa·s,地面原油密度收稿日期:2021–03–14;修订日期:2021–07–01。
低渗透油田精细分层注水开发技术方法的探讨随着我国油气资源的逐步枯竭,越来越多的油田进入了较为成熟的开发阶段。
低渗透油田是指岩心压力低、渗透率小于1mD的油田。
由于地下动态过程难以直接观测,低渗透油田的开发面临着很多难题,例如生产率低、渗流规律难以掌握等。
本文拟探讨低渗透油田精细分层注水开发技术方法,旨在提高开采效率,减少开采成本。
一、分层注水开发原理分层注水开发是将井筒的化学反应、产状分层等特征进行分析,将原本分为一层的特征差异明显缩小,使小规模的类同性区域成为注水单元,进而实现对比均一性的开发方式。
分层注水开发主要有三种方式:纵向、横向、组合式。
其中,纵向注水以井为界限,将层内每口井一层层注入水;横向注水则是将层内每口井一次性注入,通过层间压力差使水逐层渗透;而组合式注水则是以两种方式或以上方式同时组合起来进行注水开发。
二、关键技术优化在低渗透油田开发中,分层注水技术的关键在于降低油层对水的吸附、拌混和滞留,以达到水与油混合效果的最大化。
因此,注水时需要进行相关的工艺优化和技术改造,以提高注水质量。
以下是关键技术优化的几个方面:1. 确定注水层段在分层注水开发中,准确确定注水层段是十分重要的,否则将影响油田开采效率。
一般采用电性测井技术、测井核磁共振技术、岩心分析等方法测定油水分界面及其位置,再根据相关数据计算出注水位置。
2. 注水组合方式注水时,需要考虑选择合适的工艺组合方式。
通过合理的组合方式,使注水能够在不同的地层中均匀分布,提高开采效率。
同时,注水组合方式与注水井类型、注水井距及流量等有关。
3. 注水液类型和性质注水液的类型、性质、油水界面的稳定性和对油层的影响等,都会影响到注水的效果。
为了尽可能减少注水副反应,保障注水效果,需要根据不同油藏的特点选择不同的注水液种类、预处理方法和注液组份。
4. 注水控制技术为了保证注水效果,注水时需要进行严密的控制。
注水过程中,应考虑井壁的附着物、钻井液以及其它杂质等对注水效果的影响,并做好相应的控制。
《低渗透高温油藏活性水降压增注研究》篇一一、引言随着全球能源需求的不断增长,低渗透高温油藏的开发显得尤为重要。
然而,由于低渗透油藏的特殊性质,如渗透率低、温度高等,使得其开采难度较大。
为了解决这一问题,本文提出了一种新的技术手段——活性水降压增注技术。
本文将就该技术进行详细研究,探讨其应用、效果和可行性,为实际开发提供参考依据。
二、低渗透高温油藏的特点低渗透高温油藏具有以下特点:1. 渗透率低:油藏渗透率低,使得原油难以在地下有效流动,从而影响了油藏的开发。
2. 温度高:油藏温度较高,对开采过程中的设备和工艺提出了更高的要求。
3. 储量丰富:尽管开采难度大,但低渗透高温油藏的储量往往非常丰富,具有巨大的开发潜力。
三、活性水降压增注技术概述活性水降压增注技术是一种针对低渗透高温油藏的开采技术。
该技术通过向油藏注入活性水,降低油藏的压力,从而提高原油的流动性,实现增注的目的。
活性水具有以下特点:1. 良好的流动性:活性水能够有效降低油藏的粘度,提高原油的流动性。
2. 降低油藏压力:通过注入活性水,可以有效地降低油藏的压力,从而促进原油的开采。
3. 对油藏无害:活性水具有良好的环保性能,对油藏无害,不会对地下水资源造成污染。
四、活性水降压增注技术研究针对低渗透高温油藏的实际情况,本文对活性水降压增注技术进行了深入研究。
研究内容包括以下几个方面:1. 活性水的制备与选择:研究不同种类的活性水对低渗透高温油藏的适应性,选择合适的活性水配方。
2. 注入方式与参数优化:研究活性水的注入方式、注入量、注入速度等参数对增注效果的影响,优化注入参数。
3. 增注效果评价:通过现场试验和模拟实验,评价活性水降压增注技术的增注效果和经济效益。
五、实验结果与分析通过现场试验和模拟实验,本文得到了以下实验结果:1. 活性水的选择:经过对比不同种类的活性水,发现某一种活性水对低渗透高温油藏具有较好的适应性,能够有效降低油藏压力,提高原油的流动性。
注水开发提高原油采收率主要是通过提高注入水的波及系数和洗油效率实现的。
常规注水开发方式存在两方面的问题:(1)在提高波及系数方面受限于渗透率的非均质性,不实施增产措施的情况下波及系数较难提高;(2)在提升注入水洗油效率方面并不显著。
常规水驱能有效提高波及系数,但在提高洗油效率方面表现较弱。
因此,在采用注水开发方式的前提下,如何提高洗油效率成为提高原油采收率的一个关键。
1 低矿化度水驱技术
1967年Bernard最先提出“用注入淡水的方式可以提高原油采收率”。
通过研究,本文给出了该技术的定义。
低矿化度水驱是指向油藏注入矿化度接近临界矿化度的水,改变储层物理化学性质[1],促进原油解吸,通过提高洗油效率提高原油采收率的一种油田注水开发技术。
2 低矿化度水驱EOR机理
低矿化度水驱提高原油采收率核心的机理是:注入的低矿化度水进入油层后,与岩石和原油间发生多种物理化学作用使得储层润湿性向着亲水方向变化,提高注入水的洗油效率,提高原油采收率。
2.1 流固件的物理化学作用
(1)阳离子桥接
注入低矿化度水导致高价阳离子浓度降低,使得原油由于失去阳离子桥接作用而从储层岩石表面解吸下来,同时使储层润湿性向亲水转变。
(2)双电子层扩散
注入低矿化度水使得高价阳离子浓度降低,使黏土矿物与高价阳离子、高价阳离子与负电油滴的双电层结构电层间距扩大,当静电斥力超过阳离子桥接力时,油滴就会从储层表面解吸下来,导致储层润湿性向亲水转变。
(3)类碱驱
碱性条件下,注入低矿化度水,油层中会发生以下综合反应。
酸碱反应:R-COOH+OH-→R-COO-+H2O
皂化反应:R1-COO-R2+OH-→R1-COO-+R2-OH 原油中的酸组分或极性组分皂化,像碱驱一样,反应生成的石油酸盐表面活性剂使孔隙砂岩亲水疏油,改变了储层润湿性。
(4)多官能团离子交换
注入低矿化度水时会发生多官能团离子交换,黏土界面上的有机极性官能团和有机金属络合物会被其他阳离子置换或者除去,原储层润湿性往亲水转变。
(5)多组分离子交换
注入低矿化度水时会发生H+替换的Ca2+,而生成的OH-和原油组分反应,使原油解吸附,储层润湿性向亲水转变。
2.2 物理化学作用的协同效应
油气形成后,原油中的表面活性物质将吸附于岩石表面,会使储层润湿性缓慢的由亲水向亲油转变。
常规水驱通过弹性驱替和机械冲刷作用,能使原油采收率达到20%左右。
但油藏中仍然有大量的原油大都以油膜的形式覆盖于储层岩石表面,很难通过常规注水开采出来。
当采用低矿化度水驱时,注入水与岩石和原油间的多种物理化学作用之间产生协同效应促使储层润湿性向亲水方向转变,再经注入水的冲刷,会使油膜变薄甚至脱落,注入水会更容易进入到微小孔隙中进行原油驱替,大大提高了注入水的洗油效率,从而使采收率提高。
3 低矿化度水驱技术适用条件
(1)地层水
地层水中有高价阳离子(Ca2+和Mg2+至少占阳离子总量的5%),高价阳离子是离子交换、桥接和扩散的必备条件。
(2)粘土矿物
黏土矿物是多官能团离子交换、阳离子桥接和双电层扩散等机理的必备条件。
(3)极性官能团
原油分子中的极性官能团是离子交换、桥接和双电层扩散机理的基础。
(4)合理的低矿化度注入水
注入水的矿化度不应偏离临界值太多。
合理的低矿化度注入水是低矿化度水驱提高原油采收率的关键。
4 结束语
1)定义了低矿化度水驱的概念:低矿化度水驱是指向油藏注入矿化度接近临界矿化度的水,改变储层物理化学性质,促进原油解吸,通过提高洗油效率提高原油采收率的一种油田注水开发技术。
2)低矿化度水驱通过阳离子桥接、双层电子扩散、类碱驱、多官能团离子交换和多组分离子交换等作用相互之间产生的协同效应,促使储层润湿性向亲水方向变化,大大提高注入水的洗油效率,使原油采收率提高。
3)低矿化度水驱提高原油采收率的适用条件包括:储层中含有不同种类型的黏土矿物;原油中包含带电的极性组分;地层水含有高价阳离子(Ca2+和Mg2+等);合理的低矿化度注入水。
参考文献
[1]张乐.注入水矿化度对油藏润湿性的影响[J].西部探矿工程,2013,43(3):43-45.
低矿化度水驱技术机理及适用条件研究
张鑫君 于乐丹
西安石油大学 陕西 西安 710065
摘要:本文通过研究,定义了低矿化度水驱的概念,梳理总结了低矿化度水驱提高原油采收率的机理及其适用条件。
关键词:低矿化度水驱 洗油效率 储层润湿性 协同效应
Mechanism and applicable conditions of low salinity water flooding
Zhang Xinjun,Yu Ledan
Xi’an Shiyou University,Xi’an 710065,China
Abstract:This article describes the concept of low salinity water flooding and summarizes the mechanism and applicable conditions of low salinity water flooding to improve efficiency of oil recovery.
Keywords:low salinity water flooding;oil displacement efficiency;reservoir wettability;synergistic effect
37。