相变储热材料研究进展
- 格式:ppt
- 大小:294.50 KB
- 文档页数:9
相变储热材料的发展趋势引言相变储热材料是一种能够在相变过程中吸收和释放大量热量的材料。
相变储热技术被广泛应用于太阳能、地热能、工业废热回收等领域,具有高效、可靠、环保等优点。
随着能源需求的增加和环境保护意识的提高,相变储热材料的发展趋势备受关注。
本文将从材料创新、性能改进、应用拓展等方面,对相变储热材料的发展趋势进行全面详细、完整且深入的分析。
材料创新新型相变材料传统相变储热材料主要包括蓄冰剂、蓄热剂等。
随着科技的进步,新型相变材料不断涌现。
高分子相变材料具有较高的储存密度和较长的使用寿命;纳米相变材料具有更快的相变速率和更好的稳定性。
复合相变材料为了进一步提高相变储热材料的性能,复合相变材料成为研究的热点。
复合相变材料是将两种或多种相变材料进行组合,通过相互作用实现性能的优化。
将高导热材料与相变材料结合,可以提高传热效率;将气孔材料与相变材料结合,可以增加储热容量。
生物可降解相变材料随着对环境保护要求的提高,生物可降解相变材料逐渐受到关注。
这些材料在使用过程中不会产生环境污染,并且可以降解为无害物质。
生物可降解相变材料的开发和应用将进一步推动相变储热技术的可持续发展。
性能改进热导率提高热导率是影响相变储热效果的重要因素之一。
为了提高热导率,在设计新型相变储热材料时需要考虑以下几个方面:增加导热介质的比例、优化导热介质的形态、改善导热界面等。
通过这些方法,可以显著提高相变储热材料的热导率,提高储热效果。
相变温度调控相变温度是相变储热材料的重要性能指标之一。
随着应用领域的不同,对相变温度的要求也各不相同。
相变温度的调控成为改善相变储热材料性能的关键。
通过添加适量的添加剂、调整材料组成等方法,可以实现对相变温度的精确调控。
循环稳定性提高循环稳定性是评价相变储热材料可靠性的重要指标之一。
在实际应用中,相变储热材料需要经历多次充放热循环。
为了提高循环稳定性,需要优化材料结构、改善相变过程中的应力分布、增加材料表面涂覆等。
相变储能材料在建筑方面的研究与应用摘要:随着建筑行业的向前发展,当前人们对于居住的要求也变得越来越高,对于居住条件的舒适性、安全性成为居民居住的主要考虑因素。
正因如此,智能化、生态化已经成为当前建筑材料发展的趋势。
相变储能材料作为传统建筑材料与相变材料复合而成的一中新型材料,由于其具有储能密度大、能够近似恒温下的吸放热而发展迅速。
另一方面,相变储能材料的应用可以保持环境舒适,节省采暖制冷所需能源而受到建筑界的欢迎。
本文将从多个方面对相变储能材料进行具体的分析,为后期的深入研究奠定基础。
关键词:建筑材料;相变材料;储能技术Energy storage materials research and application ofphase change in architectureAbstract:With forward the construction industry, the current requirement for people to live has become increasingly high, the comfort of living conditions, security has become a major consideration residents. For this reason, intelligent, ecological building materials has become the current trend of development. Phase change material as traditional building materials and phase change materials in a composite made of a new material, because of its large energy density, can be approximated under constant heat absorption and rapid development. On the other hand, application of energy storage phase change material can be kept comfortable, energy-saving heating and cooling needed and welcomed by the construction industry. This article from the multiple aspects of the phase change material specific analysis, to lay the foundation for further research later.Key words:construction materials; phase change material; energy storage technology在当今社会,能源和环境问题人类发展必须面对的两大问题。
2021年第8期广东化工第48卷总第442期ꞏ139ꞏ季四戊醇热能储存相变材料的研究进展全宏冬1,赵亚平2(1.赤峰瑞阳化工有限公司,内蒙赤峰024000;2.上海交通大学化工学院,上海200240) [摘要]相变材料是具有热能储存和温度调控功能的物质,在相变转化过程中,伴随大量的吸热或放热热效应。
按材料相变行为主要分为固-液相变、固-固相变、液-气相变和固-气相变4类相变过程。
季戊四醇是一种典型的新戊基多元醇类,具有较长的碳链和较高的分子量,在187~189℃时,其面心四面体分子结构与体心立方结构相互转化时,伴随着很大的热焓变化(260~280kJ/kg),因此,是一种理想的固-固相变储能材料,具有广泛的应用领域。
本文主要介绍了季戊四醇作为相变材料的研究进展,讨论了其存在的问题和解决的方法,重点介绍了加入导热纳米材料提高其热导率以及相关稳定性和储能效应的最新研究成果,并对未来发展进行了探讨和展望。
[关键词]季戊四醇;相变材料;热能储存;纳米材料;热导率[中图分类号]TQ[文献标识码]A[文章编号]1007-1865(2021)08-0139-02Advances in Study of Pentaerythritol Phase-change Materials forThermal Energy StorageQuan Hongdong1,Zhao Yaping2(1.Chifeng Ruiyang Chemical Co.,Ltd.,Chifeng024000;2.School of Chemistry and Chemical Engineering,Shanghai200240,China)Abstract:Phase change material is a substance with thermal energy storage and temperature control function.A large number of heat absorption or heat release are accompanied during the process of phase change conversion.Four types of phase change processes are classified based on the material phase change behavior: such as solid-liquid phase change,solid-solid phase change,liquid-gas phase change and solid-gas phase change.Pentaerythritol is a typical new pyridine polyol with a longer carbon chain and a high molecular weight.Its molecular transformation between the face-center tetrahedron structure and the body-center cube structure are accompanied by a large change in enthalpy(260~280kJ/kg)at187~189℃.Therefore,it is an ideal solid-solid phase change energy storage material with a wide range of applications.This paper mainly introduces the research progress of Pentaerythritol as a phase change material,discusses its existed problems and solutions. The update research on improving its thermal conductivity and related stability and energy storage effects by adding thermal nanomaterials are mainly presented,and the future development is looked forward.Keywords:Pentaerythritol;Phase change material;Thermal energy storage;Nanomaterials;Thermal conductivity能源是人类生存和发展的基础,与我们的生产和生活紧密联系。
无机水合盐相变材料Na2SO4·10H2O的研究进展无机水合盐相变材料Na2SO4?10H2O的研究进展/黄金等?63?无机水合盐相变材料Na2SO4?10H20的研究进展黄金.柯秀芳(广东工业大学材料与能源学院,广州510090)摘要介绍3"Na2SO?10H20~作相变材料的储能特性,综述了针5~]-Na2SO4?10H203~-冷和相分离现象的解决方法以及Na2s04?10H20某些共晶盐的研究,同时简要概括了各因素对Na2SO4?10H20结晶速度的影响,展望了Na2SO4?10H20未来的发展方向.Na2SO?10H20作为相变材料的研究主要集中在成核剂和增稠剂的选择,Na2SO?10H20的无机共晶盐表现出较好的储热性能,可以尝试研究在微,纳米级多孔限域作用下的无机水合盐及其共晶盐的储热性能.关键词相变材料十水硫酸钠共晶盐过冷相分离ResearchandDevelopmentofNazSO4?10H20asPhaseChangeMaterials HUANGJin,KEXiufang(CollegeofMaterialandEnergy,GuangdongUniversityofTechnology,Guangzhou510090 )AbstractThecharacteristicsofNa2SO4'10H20asthephasechangematerialareintroduced. Thewaystosolvethe supercoolingandphaseseparationandsomeeutecticsaltsarereviewed.Theeffectsofdiferen tfactorsonthevelocityofcrystallizationarealsosummarized.Thedevelopmentdirectionoftheinorganicphasechang ematerialNa2SO410H20inthefutureispointed.Inconclusion,thestudyonNa2SO4'10H20asphasechangematerialsisfocu sedontheselectionofnucleat-ingagentsandthickeningagentsandtheinorganiceutecticsaltsofNa2SO4'10H20arewonde rfulmaterialsforheatstorage.ThestudyonheatstoragepropertyofNa2SO4'10H20anditsinorganicsalthydratesandeutecticsa ltsundermicron-nanoscaleporouslimitingfieldscanbeattempted.Keywordsphasechangematerials,sodiumsulfatedecahydrate,eutecticsalt,supercooling,p haseseparation0前言利用相变材料(Phasechangematerials)的相变潜热进行能量(热能和冷能)的贮存和应用是近年来引起应用化学家和能源环境学家广泛重视的研究课题].相变材料主要包括无机类(结晶水合盐,熔融盐等),有机类(石蜡类,酯酸类等)以及复合类等.Na2SO?10H20是一种典型的无机水合盐相变储能材料,俗称芒硝,白色或无色透明晶体,单斜晶系,呈芒状或颗粒状小晶体的集合体,或呈硬壳状和微密盐块状,密度1.4~1.5g/cm3,硬度莫氏标度1.5~2.0级,具有玻璃光泽,熔点32.4℃,易风化,味苦咸,溶于水,不溶于乙醇].Na2SO.?10H20属于低温储热材料,有较高的潜热(254kJ/kg)和良好的导热性能,化学稳定性好,无毒,价格低廉,是许多化工产品的副产品,来源广,因合适的相变温度,能用于贮存太阳能,各种工业和生活废热,与其它无机盐(如NaC1)形成的低共熔盐的相变温度可控制在20~30℃范围内.这一温度范围是人们生活和仪器,仪表正常工作的最佳温度区间].因此Na2SO.?10H20以其优越的性能,成为很具吸引力的潜热储热材料.1NazSO4.10H20的过冷和相分离现象作为相变材料,大多数水合盐都有过冷和相分离现象.经过加热一冷却循环后无机水合盐的过冷及相分离现象,一直以来都是水合盐类潜热式储热技术需要解决的最主要的难题.所谓过冷,即液相的水溶液温度降低到其凝固点以下仍不发生凝固,这样就使释热温度发生变动.在其储热后由结晶态变为液态时,因过冷不结晶就不能释放出所储存的潜热,而且由于过冷,液体随温度降低粘度不断增加,阻碍了分子进行定向排列运动,从而使其在过冷程度很大时形成非晶态物质,相应减小相变潜热.所谓相分离,即指结晶水合盐在使用过程中的析出现象.其成因和现象可简述如下:当(AB?mH20)型无机盐水合物受热时,通常会转变成含有较少摩尔水的另一类型AB?pH20的无机水合盐,而AB?pH20会部分或全部溶解于剩余的(m叩)摩尔水中.加热过程中,一些盐水混合物逐渐地变成无水盐,并可全部或部分溶解于水(结晶水).若盐的溶解度很高,则可以全部溶解,但如果盐的溶解度不高,即使加热到熔点以上,有些盐仍处在非溶解状态,此时残留的固态盐因密度大沉到容器底部而出现固液相分离.同样,Na2SO.?101-120也存在过冷和相分离现象.Na2SO.?10H20的熔点为32.4℃,但其过冷度达十几摄氏度,从热力学的角度来说,过冷是液相变为固相的推动力,而过冷现象对于相变储热非常不利盯.s.Na2SO.?10H20的相变储热循环过程可表示为:?广东省科技攻关项目(2006B13201001);校博士启动基金项目(053032)黄金:男,1975年生,博士,研究方向为相交储能材料及储能技术Te1:020-********E-mail:huangjiner@126.eom?64?材料导报2008年3月第22卷第3期Na2SO4?10H20Ti324~'Na2SO4(S)+饱和溶液将NaSO"?10HO升温到其转熔温度(32.4℃)时,发生不一致熔化,即63%的无水硫酸钠溶解在结晶水中,成为浓度为33.2%的饱和溶液,另外37%的无水硫酸钠不能溶解.由于该溶液与无水硫酸钠的密度(分别为1350kg/m和2680kg/m)相差较大,在重力作用下,无水硫酸钠会沉降到容器底部,出现同液分层现象j.因此要使Na:SO?10HO在储热中得到应用,必须采取措施解决其过冷和相分离现象.到目前为止,解决NaS04?10HO过冷的主要方法是添加成核剂法和冷指法.成核剂可作为结晶生成中心的微粒,使在凝固点时顺利结晶,减少或避免过冷的发生.成核剂的寻找很困难,一般来说是选择与该种水合盐具有相同晶型,相似原子排列,两者的晶格参数相差在15%以内的物质作成核剂,或通过试验来选择.可作NaSO?10HO成核剂的物质有Na2BO7?10H2O(硼砂),Li2B4o7?10H2O和(NH4)2B40?10HO等(见下面详细分析).冷指法即相变过程中保留部分固态Na2SO4?10H20,以这部分未融化的Na2SO?IOH20作为成核剂].为了防止在熔化时固液相的分层(包括成核剂由于密度的差异沉在容器底部而不能有效地起成核作用),需要加入一定量的增稠剂或悬浮剂(有时一起加).增稠剂的作用是提高溶液的粘度从而阻止水合盐聚集,但并不妨碍相变过程;悬浮剂是将析出的无水NaSO和成核剂均匀地分散在体系中,使它们与溶液充分接触.常用的增稠剂是活性白土,PCA (聚羧酸),YDS一1(一种水溶性的线性高分子,并可交联形成水凝胶),CMC(羧甲基纤维素)等.常用的悬浮剂有木屑和白碳黑等.有时,为了控制无水Na:SO和Na:SO?10H:O的晶体粒度,使晶体细小,均匀,可增加一定量的AACP(丙烯酰胺/丙烯酸共聚物)或SHMP(六角偏磷酸钠[(NaPO)])作为晶体结构改变剂.2NazSO4?10H2O的国外研究情况国外对结晶水合盐的研究在20世纪70年代就已经开始,80年代研究已经达到高峰.Telkes:在核化的经典研究中测试了NaSO.?10HO的几种同构成核剂晶格参数(见表1).研究结果指出,与Na:SO?10HO晶格参数非常接近的同构盐因太易溶,故不能作为成核剂.PbWO"无效,它的晶格参数与附着盐的偏差大于15%,硼砂(Na2B4O?10H0)与Na2s0?10H20的适应性良好,溶解也有限,事实证明是一种很好的成核剂.表1Na~SO?10H20的几种同构成核剂晶格参数Table1CrystallatticedataforisomorphicnucleatingagentsofNa2SO4?1OH2OBiswasE研究表明:在Na2SO4?10H20中加入3%(质量分数)的硼砂后,经几次熔化一冻结循环后的储热量就降为原先的25%,但若在加入硼砂的Na:S04?10HO中再加入适量的增稠剂活性白土(Attapulgiteclay),则在经历了许多次加热冷却循环后,储热容量仍能保持原先值的50%.1980~1983年Marks[I一发表的论文指出,通过控制Na:SO和NaSO?10HO在稠化十水硫酸钠相变混合物中的晶体粒度,能使贮热容量显着提高.其具体方法是:①加入1%像丙烯酰胺/丙烯酸共聚物(AACP)和六角偏磷酸钠(SHMP,(NaPO)]之类的晶体结构改变剂;②使用聚羧酸(PCA)增稠剂.在多达1600次冻熔循环中已获得理想蓄热量理论值的67%~82,且蓄热容量高于197kJ/,有效地克服了导致蓄热介质失效的因素,抑制了混合物的沉淀分离,防止了大晶粒的生成,增大了稠化剂的强度,保证了可逆反应,同时正确地解释了蓄热循环中热能存储损耗的原因, 大大增加了这种相变材料中极小Na:SO晶粒的晶核表面积,从而增强了溶解性.增稠剂的作用是将相变体系分散成一系列完全小的体积,这种分散体系的临界值为150~2001xm.这样,在完成结晶时,就为Na:s04和剩余溶液的重结晶提供了空间和途径,使十水化合物足以在结晶循环期间充分结晶.HerrickI"的研究表明,如果将Na:SO4?10H20置入以缓慢速度旋转的圆筒内,则在没有负荷的情况下,当经历了200次周期性溶解一冻结循环后,其相变潜热和性能几乎未减小和降低;在有负荷(313W/m的热流密度从圆筒外壁取走热量)的情况下,相变潜热可达理论值的67%,过冷度小于1.5℃.Hemck-认为,转动着的圆筒具有球磨机的作用,虽然转速很慢(3r/min),在不经历熔解一冻结循环时,明显地减小了颗粒的尺寸;而熔解一冻结循环过程中,十水硫酸钠的颗粒尺寸增大,正是这两个对颗粒尺寸起相反作用的效果才使得十水硫酸钠在经历长期加热一冷却循环后仍保持良好的性能.HerrickE]继续指出,当存放相变储热材料的圆筒以5r/min的速度旋转和采用不同质量百分比混合时,都能得到较好的结果.Herrick所用的混合物质量百分比见表2.具体做法是,按预定的质量百分比将硫酸钠与农用硼砂混合后,将混合物研磨成粉末状,再按比例加水.Shurcli"人为,转动着的圆筒除具有球磨机的作用外,还将使十水硫酸钠在冻结过程中的重力效应减到最小,而粉状化了的干硼砂也可将相变材料的过冷效应降到最低.表2混合物质量百分比[13]Table2Percentofweightforcompounds在应用方面,法国ELF—Union公司采用Na2s()4?10H20作相变材料制成储热装置,每1.7t相变材料可供100m:房间的取暖之用.日本人在玻璃窗内侧设置了集热,蓄热,放热屏障墙,其具体做法是:将许多芒硝装进玻璃管内,然后水平放无机水合盐相变材料Na2SO4?10H2O的研究进展/黄金等?65? 在木框中,并使之固定在玻璃窗的内侧,白天有日照时芒硝熔化,而傍晚因绝热板放在屏障墙与玻璃之问,故屏障墙向室内放热.另外,Marliacy进行了十水硫酸钠结晶过程的热动力学分析.国外对Na2s0?10HO的研究还有一些综述性文献报道].3NazSO4?10H2O在国内的研究国内从20世纪80年代开始相继展开了Na2S04?10HO作为相变储热材料的研究.阎立诚的研究表明,没有加成核剂的Na2SO4?10H2O,其过冷度约为10~C;在Na2SO4?10H2O 中加入3%左右的硼砂(Na2B40,?10H0)作成核剂,能起到较好的成核作用,使过冷度降低到2℃左右,配以一种叫YDS一1型的材料作增稠剂(该材料是水溶性的线性高分子,并可交联形成水凝胶)进行冻熔循环实验,500次循环后相变潜热衰减率为6.5%,1000次循环后相变潜热衰减率已达25.3%.丁益民[7JX~水合盐用作相变储热材料的成核原理进行了研究.研究结果表明:当成核剂与水合盐的晶格参数相差在15%以内时,能很好地起到成核作用.以Na2SO?10HO为研究对象,在其中加入不同含量(1~6%)的硼砂(Na2B40,?10H0)和4%的PbWO作成核剂进行了过冷度的对比试验,研究结果表明:4%的Pbw04作成核剂时效果不佳,过冷度高达13℃.硼砂作成核剂的效果要好得多,但硼砂含量过高和过低都不利于过冷度的控制,含量为3%时,成核效果最好,40次循环后,Na2SO?10HO的过冷度都在2.4℃以下.马江生对Na2SO?10HO作为相变材料进行了相变脱水差热分析,测得的热谱图上显示出4个吸热峰,研究结果认为:第一吸热峰失重相当1.9个结晶水,第二吸热峰失重相当3.1个结晶水,第三吸热峰失重相当5.1个结晶水,第四吸热峰失重相当10个结晶水.加入不同的添加剂,对Na2S04?10HO在40~42℃的恒温下进行13h的连续测试, 以观察相变材料的储热能力.研究结果显示,适量添加剂的NaS04?10HO相变储热材料在上述温度范围内可工作10h 以上,而本身温度变化不大,基本上维持在32~35~C之间, 表现出较高的储热能力.该文献还报道了NaSO?10HO的一些热物理性质:固相真比热.为2.72kJ/(kg?℃),固相导热系数A.为0.50W/(m?℃),液相导热系数Af为0.73W/ (m?℃),固相导温系数.为1.28x10m2/s,液相导温系数为1.77x104m~s.焦小浣啪]采用DSC法测试了Na2SO?10HO的熔化热与保温时间的关系,研究结果表明:①熔化热值开始随保温时间延长而增大较快,随后增长幅度变小并趋平坦,此时结晶过程趋于完全,所测的熔化热可作为标准熔化热;②不同组分的样品(非多元共熔体),其标准熔化热也不同,其值与NaSO?10HO的百分含量成正比.皮启铎l21讨论了差动热分析(DSC)在低温下测定十水硫酸钠熔化热的特点及局限性,对多次熔冻循环相变材料的最佳测定方法进行了研究,并对测定误差作了分析.研究结果表明:同一体系的水合盐,在不同深度处单位体积或单位质量的熔化热不同,不同体系的蓄热材料在其他条件相同时容器装料高度不同,则单位体积或单位质量熔化热不同,蓄热材料的热容含量及衰减状况不仅与熔冻次数有关,而且与熔化和冷冻深度及持续时间有关.冯海燕通过差热/热重联机(DTA/TGA)和差示扫描量热法(DSC)测定Na2SO?10HO的失水过程,对水合盐脱水过程几种可能的类型进行了探讨.研究表明,低温(100℃以下)水合盐脱水有两种类型:一种直接失去气态水,另一种先脱去液态水再进一步变为气态水,并从热力学上理论分析了两类脱水过程的原因.4NazSO?10H2o的一些低共熔混合物的性能研究所谓低共熔混合物即共晶盐相变材料EPCM(Eutectic Phasechangematerials),是指2种或2种以上物质组成的具有最低熔点的混合物.低共熔混合物具有与纯净物一样的明显的熔点,在可逆的固一液相变中始终保持相同的组分.相变储能材料应用中,低共熔混合物是比较理想的相变材料.胡起柱㈨采用步冷曲线法对三元体系Na2SO一NaNO,一H0中的Na2SO?10HO—NaNO多温截面进行了研究,作出了该截面的相图.该截面在74.1℃,24_3℃和13.0*C分别有一个四相转熔反应.阎立诚考虑在Na2SO?10HO中加入能与其形成共熔混合物杂质NaC1,制备了一系列NaC1含量不同的储热材料样品,并测定了它们的相转变点和储热能力.结果表明:随NaC1质量百分比的不断增大,材料的相转变点不断降低,储热能力也相应降低,但是在NaCI含量为13%左右时,出现例外,其储热量骤然增大.作者对此现象的解释是,在该比例时,NaC1与Na2SO?10H2O形成了一个稳定的共熔体.孙鑫泉在Na2SO?10HO中加入一定比例的NaC1,硼砂(成核剂),CMC(增稠剂),木屑或白碳黑(悬浮剂),HMP盐(晶习改变剂)和水等,形成低共熔混合体系,采用正交设计试验法,通过测定多次循环后的熔点,熔解热等指标,寻找最佳配比.研究结果表明,该体系的最佳组成为4%硼砂+7%木屑(或白碳黑)+2%CMC+0.2%m以及一定量的NaC1.主要研究结果见表3.裹3Na2SO.?IOH~O-NaC!共晶体系测试结果Table3TestresultsforNa2SOd?10H20-NaC1eu~cficsystem/'砌C条件共晶体系熔点.熔解热/(J/g)焦小浣.加'在Na2SO4?IOH~O中加入不同比例的NaC1和硼砂(成核剂),进行了熔化热随时间变化的研究,结果表明二?66?材料导报2008年3月第22卷第3期元共熔体的初始熔化热(保温时间等于或接近于零的熔化热)只达各自的50%左右,NaC1的添加使初始熔化热降低较大.谢全安l24采用微量量热法,利用Calver低温微量量热计对Na:SO?10H:O与NH4C1共晶相变蓄冷材料进行了热化学研究的工作.在不同实验条件下,测定出共晶盐相变材料的相变热为l18.19J/g,固体平均比热容为5.56J/(g?℃),液体平均比热容为14.38J/(g?℃).测试结果还表明,随着悬浮剂的加入,材料的相变热增大;所测得的升温DSC曲线的相变热略高于降温过程的相变热,笔者还测得了材料在4.5℃, 5.5℃,6.5℃和7.5℃下的等温DSC数据.以Avrami方程作数据处理的结果表明,该方程可以较好地描述该体系的结晶过程.温度的降低,成核剂的适量加入,都将导致Avrami方程速率常数逐渐增大.数据处理解得过程的活化能为953.6kJ/mol.数值为2.32~2.43的Avrami方程时间指数表明该体系的结晶过程应为三维依热成核机理,显微照相的图像结果亦证实了这一结论.该研究表明了以微量量热法进行新型相变蓄冷材料的研究与开发的有效性.徐玲玲研究了Na2SO?10H20体系,Na2HPO4?12H20体系及其复合体系的相变特性,测定了升温曲线和降温曲线,并初步探讨了解决体系中分层和过冷现象的措施.研究结果表明,Na:SO?10H:O体系的相变温度为33℃左右,由于它是一个不一致溶化化合物,易产生分层现象,采用的增稠剂CMC可以显着改善分层现象.该体系有轻微的过冷现象存在.Na2HPO?12H20体系的相变温度约为35~C,冷却过程中没有分层现象,但过冷现象严重.3%硼酸+3%硼砂对改善该体系的过冷度有一定作用,但效果不佳.结合两个体系的实验结果,尝试了将Na2SO?10H:O体系与Na2HPO?12H:O体系进行复合以期得到新的相变特征,80%Na:SO? 10H:O+20%Na:HPO?12H:O复合体系的相变温度为28~29.C,重复实验结果表明该体系重复性好,相变温度稳定, 分层和过冷现象基本消除.国内外相关文献对Na2SO?10H:O的热物性进行了实验测试,现综述于表4.表4NarSO?10H~O热物性Table4ThermophysicalperformancesforNa2SO4?10H2O熔点/~C熔解热/(kJ/kg)饱和溶液密度/(kg/m)固体密度/(kg/m)硬度固相真比热/(kJ/(kg?℃))固相导热系数/(W/(m?℃))液相导热系数/(W/(m?℃))固相导温系数/(x10'rn2/s)液相导温系数/(xl0~m2/s)32.4c,32.38c,31∞],33c254E26,28],251.1_29],251[27,1931300:.135ff]1485E.1458:]1.5~2.O[5]2.72E6]O.50E.O.544]0.73c611.28c611.77c61有关Na2SO4?101420的DSC,DTA,TGA,DTGA经典测试图以及Na:SO?10H:O及其共晶盐的相图和多温截面图摘录如下:图l为文献[22]测试出的Na2SO?10H:O的DTA/TGA/DTGA曲线,图2为文献[22]测试出的Na2SO? 10H:O的DSC曲线.图3为文献[23]采用步冷曲线法测出的Na2SO?10H20一NaNO多温截面图,图4为文献[10]和文献[25]报道的Na:s04一HO体系的二元相图.图1Na,SO,?10H20的DTA/TGA/DTGA曲线Fig.1DTA/TGA/DTGAcurvesforNarSO4?10H~Og葛fCfC图2NarSO?101120的DSC曲线Fig.2DSCcurvesforNa2SO4?1OH2O706050403020l0l030507090BNaNOd%图3Na,SO4?10It2O—NaNO3多温截面图Fig.3P0lythermalsectionforNa2SO4?1OH20-NaNO3504036鬯.20l00l020********x(Na2SO)/%图4Na2SO4-H20体系的二元相图Fig.4PhasediagramforNa,SO4-H20system一体/№-lr.-..........r...-.....-.._..........-_-r.__..L....,L_.......L无机水合盐相变材料Na2SO?10HEO的研究进展/黄金等5结语(1)将Na2SO?10H20作为相变材料的研究主要集中在成核剂和增稠剂的选择,且重复性很多,结果也有所不一,这可能是由于实验条件以及所用试剂的规格不同等各种因素造成的.研究较多的成核剂主要是硼砂,增稠剂相对集中在CMC(羧甲基纤维素).(2)对Na2SO?10H2O无机共晶盐的研究主要有Na2SO?l0H20-Na2HPO4?12H2O,Na2SO4?lOH20-NI-hC1,Na2SO4?10H20-NaC1以及Na2SO4?10H20一NaNO3等体系,而且都取得了较好的研究效果,主要表现在过冷现象基本控制,熔化潜热较大,这可能是由于共晶盐作为相变材料的优点所在.对Na2SO?10O有机共晶盐的研究相对较少.(3)整体研究水平大都还停留在试验阶段,商业化应用不多,其原因还是过冷和相分离现象.因此今后要对水合盐的过冷和相分离从成核机理进行更为透彻的研究.现在纳米技术在相变材料的制备上已有应用_3l】,笔者认为可以尝试进行在微纳米多孔限域作用下的水合盐成核结晶研究.参考文献l朱冬生,剧霏,刘超,等.相变材料CH,COONa?3H20的研究进展[J].中国材料科技与设备,2007,(1):302张寅平,胡汉平,孔祥冬,等.相变储能理论和应用[M].合肥:中国科技大学出版社,19963陈云深,陈凯,沈斌君,等.交联定形相变储能材料的研制[J].复合材料,2006,23(3):674黄金,张仁元,伍彬.复合相变储能材料制备工艺对其浸渗率和相对密度的影响[J].材料科学与工程,2006,24(5):6535蔡作乾,王琏,杨根.陶瓷材料辞典[M].北京:化学工业出版社,20026马江生.相变储热材料_Na2sO?10H20的研制[J].海湖盐与化工,1994,23(1):377丁益民,阎立诚,薛俊慧.水合盐储热材料的成核作用[J].化学物理,1996,9(1):838SuatCanbazoglu.eta1.Enhancementofsolarthermal energystorageperformanceusingsodiumthiosulfate pentahydrateofaconventionalsolarwater-heatingsystemlJ].EnergyandBuildings,2005,37:2359孙鑫泉,龚钰秋,徐宝庆.十水硫酸钠体系潜热蓄热材料的研究[J].杭州大学,1990,1l(2):19510DipakRBiswas.Thermalenergystorageusingsodiunl sulfatedecahydrateandwaterlJ].SolarEnergy,1987,19(1):9911StephenBMarks.Aninvestigationofthethermalenergy storagecapacityofGlauberssaltwithrespecttothermalcyclinglJJ.SolarEnergy,1980,25(5):25512StephenBMarks.Theeffectofcrystalsizeonthethermal energystoragecapacityofthickenedGlauber'ssaltlJ]. SolarEnergy,1983,30(1):45l3HerrickCS.Melt.fi'eeze.cyclelife.testingofGlauber'ssalt inarollingcylinderheatstorelJJ.SolarEnergy,1982,28 (2):99mentson"Glauberssaltinrotating cylinder:pressuregaugeshowsamountofstoredheat"lJ] SolarEnergy,l984,32(2):3l5l5郝新民.十水硫酸钠相变潜热在太阳能蓄热技术中的应用[J].新能源,1990,(1):l316MarliacyP,eta1.Thermodyna—micsofcrystallizeationof sodiumsulfatedecahydrateinH2O-NaC1-Na2SO4: applicationtoNa2SO4'10H20-basedlatentheatstorage materialslJJ.Thermochi—micaActa,2000,(344):8517MohammedMF,eta1.Areviewonphasechangeenergy storage:materialsandapplications[J].EnergyConversion andManagement,2004,(45):1597l8BelenZ.eta1.Reviewonthermalenergystoragewith phasechange:materials,heattransferanalysisand applications[J].AppliedThermalEnergy,2003,(23):25ll9阎立诚,丁益民,孙宇光.Na2SO?10O系储热材料研究[J].上海科技大学,1991,14(4):9920焦小浣,胡文旭,等.十水硫酸钠相变储热材料应用研究[J].陕西师范大学(自然科学版),1996,24(3):3721皮启铎.十水硫酸钠熔化热的差动热分析[J].太阳能学报,1992,l3(3):30322冯海燕,刘晓地,葛艳蕊,等.水合盐的几种脱水过程探讨[J].无机化学,2000,16(1):8923胡起柱,梁树勇,张太平,等.Na2SO4?10H20-NaNO3多温截面[J].华中师范大学(自然科学版),1992,26(2):19624谢全安,郑丹星,武向红.Na2SO?10H20共晶盐的热化学研究[J].太阳能,2002,23(1):7025徐玲玲,沈艳华,梁斌斌.Na2SO4?10H2O和Na2HPO4? l20体系的相变特性[J].南京工业大学,2005,27(4):2726AbhatA.Lowtemperaturelatentheatthermalenergy storage:heatstoragematerialslJJ.SolarEnergy,1983,30 (4):3l327DickinsonWC,CheremisinoffPN.SolarEnergyTechnol—ogyHandbook.London:Buterworths,198628HawesDW,FeldmanD,tentheatstoragein buildingmaterials[J].EnergyBuilding,1993,(20):7729GeorgeWScherer.Stressfromcrystallizationofsalt[J]. CementandConcreteRes,2004,(34):161330PaulWencilBrow.JohnW.Evaluationofthevariationin thermalperformanceinaNa2SO410H2Ophasechange system[J].SolarEnergyMaterialandCells,1986,(13):45331方玉堂,匡胜严,张正国.纳米胶囊相变材料的制备[J]. 化工,2007,58(3):771(责任编辑周真真)。
相变储能材料的研究及应用随着科技的发展,科学家们不断地探索新的材料,以实现更好的性能和应用。
其中,相变储能材料备受关注。
相变储能材料因其具有的高能量密度、快速响应速度和长寿命等优点已经应用于很多领域,例如节能、环保、信息存储等。
本文将介绍相变储能材料的研究过程和应用前景,并探讨未来的发展方向。
一、相变储能材料的研究相变储能材料包括有机和无机两种类型。
其中,无机相变储能材料主要有氧化物、硫化物、氮化物、硼化物、碳化物等。
这些材料的相变点在220K至1500K之间,具有高储能密度和良好的热稳定性。
有机相变储能材料则由聚合物、柔性电路和聚合物薄膜等构成。
这些材料的相变点在240K至400K之间,具有良好的复原性和可调节性。
相比之下,无机相变储能材料具有更高的储能密度和漫长的使用寿命。
相变储能材料的研究主要集中在相变现象的探讨和储能机制的研究上。
其中,相变现象是指在温度或压力变化下物质的相态发生改变的现象。
而储能机制则是指相变储能材料吸收或释放热时,储存或释放储能的机制。
储能机制的研究有助于深入了解相变储能材料的性能,并推进材料的优化。
二、相变储能材料的应用相变储能材料在节能、环保和信息储存等领域具有广泛的应用。
以下是相变储能材料的应用情况:1.太阳热能储存:相变储能材料可以吸收太阳能并将其储存起来,然后在需要时释放储存的热能以供电力或热水使用。
2.智能窗帘:采用相变储能材料制成的智能窗帘,可以根据室内温度自动调节百叶的倾角,使室内温度保持恒定。
3.电缆保护:相变储能材料可以制成电缆保护材料,能够有效防止电缆在高温条件下出现过热现象。
4.信息存储:相变储能材料在信息存储方面也具有潜力,可用于高速数据读写、容量更大的硬盘和移动储存设备。
三、未来的发展方向相变储能材料是一个非常有前途的领域,但仍面临一些挑战。
例如,相变储能材料的热稳定性和能量密度等需要进一步提高。
目前,一些研究机构已经投入研究力量,以推进相变储能材料的性能和应用。
高温相变材料的研究进展和应用摘要:随着全球性能源与环境的不断恶化,能源充分利用和新能源开发成为业界关注的重点。
相变储热是利用相变材料在其物相变化过程中从环境吸收热(冷)量或向环境释放热(冷)量,从而达到能量的储存或释放的目的,并能与新能源结合应用。
分析了高温相变材料的种类和各自特点,介绍了其在各行各业的应用情况,并对高温相变材料的未来发展进行了展望。
关键词:相变材料;储热材料;相变1引言物质相变过程是一个等温或近似等温过程,在这个过程中伴随有能量的吸收或释放。
相变储热是利用相变材料在其相变过程中,从环境吸收或释放热量,达到储能或放能的目的。
高温相变材料具有相变温度高,储热容量大,储热密度高等特点,它的使用能提高能源利用效率,有效保护环境,目前已在太阳能热利用、电力的“移峰填谷”、余热或废热的回收利用以及工业与民用建筑和空调的节能等领域得到了广泛的应用。
现阶段 ,人们关心比较多的新能源是太阳能 ,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。
相变储能材料可以从环境中吸收能量和向环境释放能量 ,较好地解决了能量供求在时间和空间上不匹配的矛盾 ,有效地提高了能量的利用率。
同时相变储能材料在相变过程中温度基本上保持恒定 ,能够用于调控周围环境的温度 ,并且能重复使用。
相变储能材料的这些特性使得其在电力“移峰填谷”、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。
2相变储热技术储热方法通常有3种:显热储热、化学反应储热和潜热储热(相变储热)。
相变储热可以实现能量供应与人们需求在时间和空间达到一致的目的,又具有节能降耗的作用。
相变储热材料按相变方式一般分为4类:固—固相变、固—液相变、固—气相变及液—气相变材料圈;按相变温度范围可分为高温、中温和低温储热材料;按材料的组成成分可分为无机类和有机类(包括高分子类)储热材料。
由于固一气相变材料相变时体积变化太大,使用时需要很多的复杂装置,在实际应用中很少采用。
固-固相变储热材料的研究进展∗钟秋;张威;赵春芳;曹琨【摘要】固-固相变储热材料在相变过程中无液体产生,而且具有较大的储能密度和较小的相变体积,在新能源开发和二次能源循环利用等方面具有显著的优势。
本文综述了近几年来不同类型固-固相变储热材料的研究进展,包括石蜡、聚乙二醇、多元醇、聚乙烯、层状钙钛矿等,分别从相变行为特征,传热导热,储能机理及其应用等几个方面进行论述,并对相变材料目前存在的问题及未来发展前景进行了展望。
%Solid-solid phase change materials ( SSPCM ) has become a new hotspot in the research of the energy development and utilization because of its large energy storage density, stable phase transition temperature, small volume change, no liquid leakage during phase change process. The research progress of SSPCM, such as paraffin wax, polyethylene glycol, polyol, polyethylene, layered calcium, were reviewed, the characteristics of phase change behavior, thermal conductivity, energy storage mechanism and its application were discussed.【期刊名称】《广州化工》【年(卷),期】2016(044)023【总页数】3页(P4-6)【关键词】固-固相变材料;石蜡;聚乙二醇;聚乙烯;多元醇【作者】钟秋;张威;赵春芳;曹琨【作者单位】内江师范学院化学化工学院,四川内江 641100;内江师范学院化学化工学院,四川内江 641100;内江师范学院化学化工学院,四川内江 641100;内江师范学院化学化工学院,四川内江 641100【正文语种】中文【中图分类】TQ342相变材料(PCM)[1-2]是指利用材料在相变过程的热效应进行能量的储存和释放。
摘要相变材料是一种高效的储能材料,具有能量存储密度高、降低温度波动和调节周围环境温度的优点,结合到建筑材料中能有效地改善建筑物的热舒性和节能降耗。
相变石膏是以石膏为基体与相变材料相复合,具有较好的储能效果,可应用于建筑物的外墙内壁材料,有助于建筑物内部温度的调控,满足低碳和环保的要求。
本文阐述了相变储能石膏的制备方法直接浸渍法、宏观封装嵌入法和直接混合法,相变储能石膏的特性包括热物性、相容性、吸水性和力学性能,以及相变储能石膏在建筑物外墙的保温材料、相变石膏抹灰和地板供暖系统的应用。
关键词:相变材料;相变储能石膏;热物性;外墙保温第一章绪论石膏是一种用处广泛的工业材料和建筑材料,可用于水泥缓凝剂、石膏建筑成品等。
石膏及其制品具有良好的隔音、隔热和防火性能。
相变材料价格实惠,无毒、无腐蚀性具有较高的储热能力和热传导性能,可逆性好使用寿命长,在发生吸放热温度变化时相变材料的体积变化小。
以石膏为基体相变材料相复合,制成的相变储能石膏板具有更高的储能密度和蓄热能力。
适用于建筑围护构件可增大储能容量,降低供暖所需的电力和能耗,减小室内温度的波动大小,降低夏季、冬季室内峰值的温度,提高人体的热舒性。
相对普通围护墙体相变墙具有更好的储能、调温和控温性能,在达到同等保温节能效果的同时,可减小墙体厚度和降低墙体自重。
在不同的季节、外墙不同的朝向和相变材料置于外墙不同位置都对相变墙体的传热有影响,合理运用可提升热性能。
美国在相变材料的研究和发展上一直处于领先地位,进入90年代以后,相变材料在建筑领域的应用技术已经得到更大发展,采用了浸泡法和直接加入法两种方法制备了相变石膏板并通过DSC分析比较了两种方法制得的相变储能石膏板。
还模拟研究了相变储能石膏板的热特性,结果表明影响相变石膏板热特性分别是相变温度、相变温度区间和想变石膏板单位面积蓄热能力。
我国在相变材料的发展和应用方面较国外虽起步较晚,但通过多次研究已取得了一定的成绩。
定形相变材料储热性能和强化传热研究进展
李琳;王宇;张凯
【期刊名称】《化工新型材料》
【年(卷),期】2024(52)6
【摘要】潜热蓄热技术被视为缓解能源供需矛盾的有效措施,其利用相变材料在相变过程中吸热/放热来实现能量的存储和释放,在建筑节能、温室控温、调温服装等领域具有极大的应用潜力。
归纳了定形相变材料的种类和特点,对多孔基相变材料、微胶囊相变材料和聚合物基相变材料等制备技术及储热性能的研究进展进行了综述,分析了定形相变材料制备过程中存在的问题,介绍了定形相变材料的强化传热方法,
最后讨论了今后研究工作的重点并展望了定形相变材料的发展前景。
【总页数】6页(P7-11)
【作者】李琳;王宇;张凯
【作者单位】宿迁学院建筑工程学院;江苏省装配式建筑与智能建造工程研究中心【正文语种】中文
【中图分类】TB34
【相关文献】
1.基于孔尺度的泡沫金属强化相变储热材料传热性能数值模拟
2.多孔基定形复合相变材料传热性能提升研究进展
3.多孔炭基定形相变储热材料的研究进展
4.基于相
变材料的储热器及其传热强化研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
相变储热材料发展现状1. 大家好啊!今天咱们来聊一个超级有意思的话题——相变储热材料!这可是个神奇的"百变小能手",简直就像是会变魔术的材料!2. 现在这个领域可热闹了!科学家们就像是在开发新菜品的大厨,研究出了各种各样的相变储热材料。
有的能在建筑里帮忙调节温度,有的能在工业上存储热量,简直是百变星君啊!3. 说到目前最火的材料,石蜡类相变材料可是个"网红"!它就像是个温度调节高手,在建筑保温这块儿可出力了。
你想想,夏天它帮你吸收热量,冬天再把热量吐出来,这不就是个天然的空调嘛!4. 水合盐类相变材料也不甘示弱,它们就像是小储蓄罐,能把热量存起来。
不过这些小家伙有点"小脾气",容易出现过冷现象,就像是赖床的孩子,到点了还不想"相变"!5. 现在研究最热门的是复合相变材料,这简直就是个"全能选手"!科学家们把不同材料混在一起,就像是在调配一道美味的火锅底料,让它既能存储热量,又能导热快,还特别稳定!6. 在建筑领域,相变材料可是个省电小能手!它们被做成墙板、地板,藏在建筑里默默工作,就像是一群勤劳的小蜜蜂,帮着调节室内温度,省下不少空调电费呢!7. 工业领域更是把相变材料玩出了新花样!有的用在太阳能电站,有的用在工业余热回收,这些材料就像是热量的"搬运工",把白天的阳光存起来,晚上再慢慢释放出来!8. 不过现在也还有不少难题要解决。
比如有些材料价格太贵,就像是买个奢侈品一样,让人望而却步。
有些材料寿命不够长,用着用着就"罢工"了,这可愁坏了科学家们!9. 科研人员现在可忙了,整天在实验室里捣鼓新材料。
他们就像是魔法师,想方设法提高材料性能,降低成本。
有时候一个实验要做好几百次,这耐心真是没谁了!10. 最近纳米技术可给相变材料带来了新机遇!就像是给材料打了兴奋剂,性能蹭蹭往上涨。
中低温相变蓄热的研究进展徐治国;赵长颖;纪育楠;赵耀【摘要】相变蓄热技术由于蓄热密度大、温度恒定,在国内外得到广泛的研究与应用,尤其在能源供给不连续的情况下,应用的尤其广泛.相变储热系统作为解决能源供应时间与空间矛盾的有效手段,是提高能源利用率的重要途径之一.本文从相变材料的选取、相变过程数值模拟、相变蓄热装置3个方面对中低温相变蓄热的研究进行了综述.首先介绍了中低温相变材料的种类及其循环稳定性、导热能力强化,其次总结了适用于中低温相变蓄热的数值模拟方法和理论,然后介绍了不同的相变储热器,最后指出了中低温相变蓄热的研究目标和方向.【期刊名称】《储能科学与技术》【年(卷),期】2014(003)003【总页数】12页(P179-190)【关键词】中低温;蓄热;相变材料;数值方法【作者】徐治国;赵长颖;纪育楠;赵耀【作者单位】上海交通大学,动力机械与工程教育部重点实验室,上海200240;上海交通大学,动力机械与工程教育部重点实验室,上海200240;上海交通大学,动力机械与工程教育部重点实验室,上海200240;上海交通大学,动力机械与工程教育部重点实验室,上海200240【正文语种】中文【中图分类】TK02节能减排是我国的一项基本国策,是实现可持续发展的重大战略保障和面临的极为迫切的任务。
据2011年中国能源统计年鉴公布的最新数据,2010年我国消耗能源总量为32.49 亿吨标准煤,其中工业领域能源消耗量23.11 亿吨标准煤,占到当年全国能源消耗总量的 71.1%左右。
而我国的能源利用效率仅为33%,相比发达国家低约10%,单位产品的能耗与国际先进水平相比,有较大差距。
直接排放到大气和地层中的工业余热,包括高温烟气余热、冷却介质余热、废气、废料余热,简称为非工艺性余热,其大致占到余热总体的81%。
非工艺余热资源的共同特征是:温度范围较广、往往具有间歇性、工作介质复杂(常常有腐蚀性和尘粒)以及资源比较分散。
1 文献综述1.1 相变蓄热材料1.1.1相变蓄热材料的研究背景随着全球能源形势的日益紧张,节能与环保受到世界各国越来越多的重视。
能源是人类赖以生存的基础,但是由于能源的供给与需求具有较强的时间性和空间性,在许多能源利用系统中(如太阳能系统、建筑物空调和采暖系统、冷热电联产系统、余热废热利用系统等)存在着供能和耗能之间的不协调性(失配),从而造成了能量利用的不合理性和大量浪费。
例如:在不需要热时,却有大量热的产生,有时候供应的热却有很大一部分作为余热被损失掉,这些都需要一种类似于储水池储水一样的物质把热量储存起来,需要时再释放出来,这样的物质称为热能储存材料(蓄热材料)。
人们对蓄热材料,特别是相变蓄热材料的认识和研究是近几十年的事情。
二十世纪二十年代以来,特别是七十年代能源危机的影响,相变蓄热的基础和应用技术研究在发达国家迅速崛起,并得到不断的发展,日益成为受人重视的新材料。
在太阳能利用、电力的“削峰填谷”、废热和余热的回收利用以及工业与民用建筑采暖与空调的节能领域具有广泛的应用前景,近年来已成为世界范围的研究热点。
相变储能材料作为储能技术的基础,在国内外得到了极大的发展。
1.1.2 相变蓄热材料的分类1.1.2.1根据蓄热材料的化学组成分类(1) 无机相变材料主要包括结晶水合盐、熔融盐、金属或合金。
结晶水合盐通常是中、低温相变蓄能材料中重要的一类,价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性,且工作温度跨度比较大,更重要的是可在高温下进行蓄热。
例如KNO3-NaNO3熔盐、K2CO3-Na2CO3熔盐、CaCl2·6H2O、Na2HPO4·12H2O、Na2CO3·10H2O、Na2SO4·5H2O等[1]。
但其在使用过程中会出现过冷、相分离等不利因素,严重影响水合盐的广泛应用[2-3]。
(2) 有机相变材料主要包括石蜡, 脂肪酸、某些高级脂肪烃、醇、羧酸及盐,包括石蜡类、非石蜡类、某些聚合物等。