AOTF的高光谱成像光谱仪的辐射定标技术
- 格式:pdf
- 大小:413.57 KB
- 文档页数:6
高光谱成像检测技术一、高光谱成像技术的简介高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术, 其最突出的应用是遥感探测领域, 并在越来越多的民用领域有着更大的应用前景。
它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。
高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外 (200-2500nm 的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。
在获得物体空间特征成像的同时, 也获得了被测物体的光谱信息。
高光谱成像技术具有超多波段 (上百个波段、高的光谱分辨率 (几个 nm 、波段窄(≤ 10-2λ、光谱范围广(200-2500nm 和图谱合一等特点。
优势在于采集到的图像信息量丰富, 识别度较高和数据描述模型多。
由于物体的反射光谱具有“指纹” 效应, 不同物不同谱, 同物一定同谱的原理来分辨不同的物质信息。
二、高光谱成像系统的组成和成像原理高光谱成像技术的硬件组成主要包括光源、光谱相机 (成像光谱仪 +CCD 、装备有图像采集卡的计算机。
光谱范围覆盖了 200-400nm 、 400-1000nm 、 900-1700 nm 、 1000-2500 nm。
光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵 CCD 。
高光谱成像仪的扫描过程:面阵 CCD 探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X 方向 ,横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。
这是一列像元经过高光谱成像仪在 CCD 上得到的数据。
它的横向是 X 方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。
同时, 在检测系统输送带前进的过程中, 排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y 方向。
综合横纵扫描信息就可以得到样品的三维高光谱图像数据。
遥感影像辐射定标
遥感影像辐射定标是一个复杂的过程,具体步骤如下:
1.确定定标参数:辐射定标所需的参数通常存放在元数据文件中,用户可以从元数据文件中直接读取参数,从而完成定标。
2.绝对定标:把卫星传感器接收到的视场中已知反射率的地面目标作为参考,通过卫星传感器观测这类地面目标,从卫星传感器得到的测量值计算出该卫星传感器的定标系数,以此实现传感器的绝对定标。
3.相对定标:利用卫星同步观测的在轨绝对定标场地数据来计算卫星载荷不同探测器之间的相对光谱响应,并利用得到的在轨绝对辐射定标系数进行卫星载荷的星上亮温定标,从而得到卫星载荷红外通道的相对定标系数。
4.场地替代定标:在没有合适的在轨绝对辐射定标场地时,可以采用场地替代定标。
该方法是利用与在轨绝对辐射定标场地具有相似光谱特性并易于获取的场地作为替代场地,通过选择替代场地、获取替代场地的地表反射率数据、大气参数和同步卫星观测数据,计算得到在轨绝对辐射定标系数。
遥感影像辐射定标的目的是消除传感器本身的误差,确定传感器入口处的准确辐射值。
文章编号:1002-2082(2011)01-0101-05光纤光谱仪绝对光谱辐射定标新技术张 芳,高教波,王 军,肖相国,张 磊(西安应用光学研究所,陕西西安710065)摘 要:在700nm ~900nm 波段范围内,用1000℃黑体标定光纤光谱仪(200nm ~1100nm),获得其在该波段范围内的绝对光谱响应函数。
通过测量光纤光谱仪对不同色温下卤钨灯的光谱响应,将700nm ~900nm 波段的响应函数推延至400nm ~700nm 波段范围,最终得到400nm ~900nm 波段内的绝对光谱响应函数。
光纤光谱仪对不同色温下卤钨灯的5次测量结果表明:在550nm ~900nm 范围内,所获得的绝对光谱响应合成不确定度小于3.53%。
关键词:光纤光谱仪;色温;绝对辐射标定中图分类号:T N 25 文献标志码:AAbsolute spectral radiation calibrationof fiber spectrometerZHANG Fang ,GAO Jiao -bo ,WANG Jun ,XIAO Xiang -g uo ,ZHANG Lei(Xi ’an I nstitute of A pplied O ptics,Xi ’an 710065,China)Abstract :As a referenced spectral detector ,the accurate calibration of fiber spectrometer is veryimportant .The absolutely spectral response function of the fiber spectro meter w ithin 550nm -900nm w as obtained w ith a new technique ,w hich av oids using a high temperature blackbody ,and the uncer tainty of the respo nse function is less than 3.53%.Besides,a novel metho d is used to o btain the colo r temperature of the light source w ith characteristic of g ray bo dy.Key words :fiber spectro meter ;co lor temperature ;absolute r adiation calibr ation引言光谱成像技术[1]是一种集光学、光谱学、精密机械、电子技术及计算机技术于一体的新型遥感技术。
辐射定标(像元亮度值,辐射亮度/亮温)、表观反射率、地表反射率、反照率、比辐射率(转)(2012-11-28 13:58:29)转载▼分类:科研标签:杂谈(2012-01-26 01:18:44)标签:校园分类:工作篇定标系数为:增益53.473,单位:DN/(W⋅m-2⋅sr-1⋅μm-1);截距26.965,单位:DN。
利用绝对定标系数将DN值图像转换为辐亮度图像的公式为L=(DN-b)/coe,式中coe为绝对定标系数的增益,b为截距,转换后辐亮度单位为W⋅m-2⋅sr-1⋅μm-1。
HJ1B红外相机中红外波段则条带较为严重,不利于定量化应用。
遥感数字图像遥感数字图像是以数字形式记录的二维遥感信息,即其内容是通过遥感手段获得的,通常是地物不同波段的电磁波谱信息。
其中的像素值称为亮度值(或称为灰度值、DN值)。
遥感概念DN值(Digital Number )是遥感影像像元亮度值,记录的地物的灰度值。
无单位,是一个整数值,值大小与传感器的辐射分辨率、地物发射率、大气透过率和散射率等有关。
遥感图像量化image quantification。
释文:按一定的函数关系将图像所代表的物理量分割成有限的离散等级,以使观测数据可用一定字长的二进制码表示,因此又称为数据编码。
量化后的级别称为图像的像元值、灰度或亮度,记为DN(digital number)。
DN值没有单位,数量级与像素深度有关,如果是无符号整型的就是0-255,符点型,无符号16位均根据其类型确定。
在遥感领域,定标一般分为几何定标和辐射定标两种。
几何定标即指对遥感图像几何特性进行校正,以还原为真实情况。
辐射定标指对遥感图像的辐射度进行校准,以实现定量遥感。
辐射定标一般也可称为校准,其主要目的是保证传感器获取遥感数据的准确性。
通常,采用系统自身内部监视环路和外部标准目标方法对系统链路中的各个环节进行误差修正,来实现辐射定标过程。
一般在主动式遥感系统中,辐射定标可以作得很好,可以认为在一定误差范围内实现了定量遥感。
envi辐射定标
Envi辐射定标是指使用ENVI软件对遥感图像进行辐射定标,即将数字计数转换为物理辐射量。
该过程是将原始遥感图像转换为具有物理单位的辐射数据,以便进行定量分析和研究。
辐射定标的目的是消除图像中的光照差异和仪器响应差异,确保图像中不同像元的辐射值可比较。
辐射定标主要包括以下步骤:
1. 辐射校正:
通过测量辐射标准物体的辐射值,校正仪器的响应差异,消除仪器传感器的非线性特性和响应偏差。
2. 大气校正:
针对大气对辐射的影响,根据大气模型和大气参数,将图像中的大气效应进行校正,以消除大气底片。
3. 角度校正:
对于斜面遥感图像,根据观测角度和太阳天顶角,进行角度校正,以消除地形和光照角度带来的影响。
4. 波段融合:
对于多光谱或高光谱遥感图像,将各个波段的辐射值进行融合,生成一个全谱范围内的辐射图像。
通过辐射定标,可以将遥感图像转换为具有物理意义的辐射数
据,提供可靠的信息用于地学、农业、环境等领域的分析和应用。
(2012-11-28 13:58:29)转载▼标签:分类:科研杂谈(2012-01-26 01:18:44)标签:分类:工作篇校园环境一号卫星光学数据绝对定标环境一号卫星光学数据的遥感器校订分为绝对定标和相对辐射定标。
对目标作定量的描绘,获取目标的辐射绝对值。
要成立传感器丈量的数字信号与对应的辐射能量之间的数目关系,即定标系数,在卫星发射前后都要进行。
卫星发射前的绝对定标是在地面实验室或实验场,用传感器观察辐射亮度值已知的标准辐射源以获取定标数据。
卫星发射后,定标数据主要采纳敦煌外场测量数据,此值一般在图像头文件信息中能够读取。
以下两表为敦煌场所测定的绝对定标数据。
表HJ 1A/B 星绝对辐射定标系数(DN/W m 2 sr 1m1)定标系数( DN/W m 2 sr 1m 1)卫星传感器Band1Band2Band3Band4CCD1HJ1ACCD2CCD1HJ1BCCD2利用绝对定标系数将DN值图像变换为辐亮度图像的公式为:L=DN/coe式中 coe 为绝对定标系数,变换后辐亮度单位为W m 2 sr 1m1。
因为以上定标系数为敦煌场采纳单点法对中等反射率目标(沙漠)测定的结果,所以关于太阳反射光谱波段,建议针对中等反射率地物采纳上边供给的绝对辐射定标系数。
关于 HJ1B的红外相机,近红外波段绝对定标系数为,短波红外波段绝对定标系数为。
定标公式同前。
HJ-1B 红外相机热红外通道绝对辐射定标系数为:增益,单位: DN/(W m 2 sr 1 m 1);截距,单位: DN。
利用绝对定标系数将 DN值图像变换为辐亮度图像的公式为 L=( DN-b)/coe ,式中 coe 为绝对定标系数的增益, b 为截距,变换后辐亮度单位为W m 2 sr 1m1。
HJ1B红外相机中红外波段则条带较为严重,不利于定量化应用。
遥感数字图像遥感数字图像是以数字形式记录的二维遥感信息,即其内容是经过遥感手段获取的,往常是地物不同波段的电磁波谱信息。
航天光学遥感器辐射定标原理与方法航天光学遥感器辐射定标原理与方法航天光学遥感器是指在航天器上安装的一种用于获取地球和其他天体信息的光学成像系统。
由于遥感技术的非接触式观测特点,其在地球观测、天文观测等领域,均有着广泛的应用。
而光学遥感器的辐射定标,则是光学遥感技术进行成像与定量分析的基础。
1.辐射定标原理辐射定标原理主要依据辐射定律以及将感兴趣的辐射信号与标准光源辐射信号进行比较,推导出反射率、亮度温度等参数。
在广义上,辐射定标包括到辐射模型难以模拟的重要参数校准,比如太阳辐射的传输和漫反射,大气成分和温度的影响等。
而在卫星地球观测中,辐射定标包含对卫星遥感数据的预处理,包括对大气校正,辐射定标,几何定标,归一化等处理。
2.辐射定标方法常用的辐射定标方法,包括相对法、绝对法和波段梯度法。
相对法是通过对待定标目标与稳定光源信号比较,进行定标。
绝对法则是用外界已知标准辐射源的辐射值,来计算待测样本的辐射值,进而进行定标。
波段梯度法,利用线性变换,将多波段遥感数据转换为标准测量参数,进而进行定标。
在实际应用中,同一类型的遥感器,业界通常通过定期定时的太阳点校准来检验传感器成像性质。
3.实现航天光学遥感器辐射定标的难点实现航天光学遥感器辐射定标的主要难点是环境干扰,尤其是在接近轨道高度的清洁高空大气中,降雨、云层、气溶胶等大气特征使太阳辐射受到影响。
此外,遥感器与地面的相对位置,地球的曲面形状和角度、阳光角度等环境因素的变化,也会影响遥感器接收到的光信号。
因此,精确进行辐射定标有着重要的意义。
同时,传统的定标技术也面临数据畸变和传感器亮度非均匀性等问题,要求对辐射模型和降雨模型等进行研究和求解。
总之,航天光学遥感器辐射定标是光学遥感技术中非常重要的一个环节,关系到遥感数据的定量分析和精确应用。
通过不断的研究和实践,相信在未来的发展中,航天光学遥感器的辐射定标方法及技术将得到不断完善及优化。
高光谱遥感数据处理与分析技术研究随着遥感技术的发展,高光谱遥感成为遥感技术的重要组成部分。
高光谱遥感是指在光谱范围内采集地物反射率或辐射值的遥感技术,其在地球物理、地球化学、生态环境等领域都有重要应用。
然而,高光谱遥感数据处理与分析技术仍然是一个瓶颈,需要更多的研究来进一步完善。
一、高光谱遥感数据预处理高光谱遥感数据预处理是高光谱遥感数据处理的一个重要环节,包括噪声去除、辐射定标、大气校正、几何校正等处理步骤。
噪声去除是指将高光谱遥感数据中的噪声、杂波等无用信息滤除,提高数据的信噪比。
在噪声去除中,常见的方法有均值滤波、中值滤波、小波变换等。
辐射定标是指将接收的辐射值转化为反射率,以便进行后续的数据分析。
常见的辐射定标方法有黑体法、大气放射率法、对比法等。
大气校正是指将大气吸收影响剔除,以得到真实的地物反射率谱线。
目前,较为成熟的大气校正方法有6S模型、MODTRAN模型等。
几何校正是指将高光谱遥感数据进行投影变换、姿态校正等处理,以使其在地理信息系统中能够被正确地显示、叠加、分析。
常见的几何校正方法有多项式拟合、三次样条插值等。
二、高光谱遥感数据分析高光谱遥感数据处理得到的地物反射率谱线具有连续、多元、细节等特点。
利用这些特点,可以提取地物的信息,对土地利用、植被生态、矿产勘探等领域进行分析。
土地利用研究是高光谱遥感数据分析的重要应用之一。
高光谱遥感数据可以提取土地覆盖类型、土地利用方式等信息,辅助制定土地规划和资源管理策略。
常见的土地利用研究方法有最大似然分类、支持向量机、神经网络等。
植被生态研究是高光谱遥感数据分析的重要应用之二。
高光谱遥感数据可以提取植被物理参数,如叶绿素含量、叶面积指数等,进而分析植被的健康状态、物种组成等信息,辅助植被监测和生态保护。
常见的植被生态研究方法有植被指数法、相对水分指数法等。
矿产勘探研究是高光谱遥感数据分析的重要应用之三。
高光谱遥感数据可以提取与矿物质量相关的信息,如矿物种类、矿物含量、矿物结构等,辅助矿产勘探和资源评价。
光谱成像仪定标技术研究的开题报告
一、选题背景和意义
随着科技的不断发展和进步,光谱成像技术在医学、生物、环保、材料科学等领域中得到了广泛应用。
光谱成像技术可以同时获得图像和光谱信息,实现对物质表面
的成分分析与显微形貌观察。
光谱成像仪是光谱成像技术的重要设备,其精度的高低
直接影响成像结果的准确度。
为了确保光谱成像仪的精度,需要进行定标,即校准仪
器的光学响应和灰度响应,使其达到更准确的成像效果。
二、研究内容和方法
本课题旨在探究光谱成像仪的定标技术,明确光学响应和灰度响应的定义和区别,分析定标标准的不同和优劣势。
主要研究内容包括:
1、光学响应的测量方法和实验设计;
2、灰度响应的测量方法和实验设计;
3、定标标准的评估与比较。
主要研究方法包括实验研究和文献调研。
实验研究将通过自行设计实验样本和分析数据,进行仪器的光学响应和灰度响应的测量,以及不同定标标准的评估与比较。
文献调研将通过查阅相关文献,了解现有研究成果和经验。
三、研究内容和目标
本研究旨在实现光谱成像仪精准定标,提高光学响应和灰度响应的准确度和稳定性。
主要目标包括:
1、实现高精度和稳定性的光学响应和灰度响应测量;
2、建立一套可靠的定标标准,提高仪器的成像准确度;
3、通过实验验证已建立的定标标准的优越性和实用性。
四、预期成果
本研究预期实现光谱成像仪的精准定标,建立一套可靠的定标标准,提高仪器的成像准确度。
预计成果包括:
1、定标技术研究报告;
2、可靠的光学响应和灰度响应测量方法和实验数据;
3、建立的定标标准及其验证实验数据。
遥感影像辐射定标摘要:1.遥感影像辐射定标的概述2.遥感影像辐射定标的方法3.遥感影像辐射定标的应用4.遥感影像辐射定标的未来发展正文:【一、遥感影像辐射定标的概述】遥感影像辐射定标是指通过一定的方法和技术,将遥感传感器获取的数字影像数据转换为实际辐射亮度的过程。
在遥感影像处理中,辐射定标是关键步骤之一,其目的是获取地表真实的辐射亮度信息,为后续遥感影像的解译和分析提供准确的数据基础。
【二、遥感影像辐射定标的方法】遥感影像辐射定标的方法主要分为以下几种:1.实验室定标:通过在实验室内模拟不同辐射亮度的场景,对遥感传感器进行辐射定标。
实验室定标可以获取较为精确的定标数据,但需要专门的设备和技术。
2.野外定标:野外定标是在实际的自然环境中进行的,通过对已知的辐射亮度进行测量,获取遥感传感器的响应值,从而实现辐射定标。
野外定标较为简便,但受实际环境因素的影响,定标数据的精度相对较低。
3.星上定标:星上定标是指在遥感卫星运行过程中,利用卫星上的仪器对太阳、地球等辐射源进行观测,从而实现遥感传感器的辐射定标。
星上定标具有较高的精度,但需要卫星具备相应的技术和设备。
【三、遥感影像辐射定标的应用】遥感影像辐射定标在许多领域都有广泛的应用,如:1.环境监测:通过对遥感影像进行辐射定标,可以获取地表真实的辐射亮度信息,从而实现对环境污染、生态破坏等问题的监测和评估。
2.农业应用:在农业领域,遥感影像辐射定标可以为农作物估产、病虫害预测等提供重要依据。
3.城市规划:通过对城市地区的遥感影像进行辐射定标,可以获取城市建设、土地利用等方面的详细信息,为城市规划和管理提供支持。
【四、遥感影像辐射定标的未来发展】随着遥感技术的不断发展,遥感影像辐射定标将面临更高的要求和挑战。
未来的遥感影像辐射定标将朝着以下几个方向发展:1.定标方法的改进:为了提高遥感影像辐射定标的精度和效率,未来将会出现更多新型的定标方法和技术。
2.星上定标技术的普及:随着卫星遥感技术的发展,星上定标技术将得到更广泛的应用。
成像光谱仪星上定标技术李晓晖;颜昌翔【摘要】成像光谱仪足同时获取地物图像和光谱信息的新一代光学遥感仪器.星上定标是成像光谱仪光谱图像数据定量化应用的基础.本文阐述了成像光谱仪星上定标的原理,按照星上定标采用的参考标准对星上定标技术进行了分类,介绍了星上辐射定标和光潜定标技术,并展望了成像光谱仪未来发展趋势.最后指出,绝对辐射定标已经成为成像光谱仪星上定标的幕本要求,太阳将逐步代替星上标准灯成为绝对辐射标准.基于不同参考标准的定标方法的综合应用将使星上定标精度和可靠性大人提高.随着定标精度的进一步提高,地而光谱定标装置将逐步空间化,基于探测器的星上辐射定标系统也将逐步得到应用.【期刊名称】《中国光学》【年(卷),期】2009(002)004【总页数】7页(P309-315)【关键词】成像光谱仪;星上定标;辐射定标;光谱定标【作者】李晓晖;颜昌翔【作者单位】中国科学院长春光学精密机械与物理研究所,吉林长春130033;中国科学院长春光学精密机械与物理研究所,吉林长春130033【正文语种】中文【中图分类】TP73成像光谱仪是同时获取地物图像和光谱信息的新一代光学遥感仪器[1],可为农作物估产、矿物勘探、资源普查、环境监测等提供新的研究手段。
按照搭载平台的不同,成像光谱仪可以分为星载成像光谱仪和机载成像光谱仪两大类,本文仅讨论星载成像光谱仪。
成像光谱仪的应用以定量化的数据为基础,因此需要对其进行准确定标。
成像光谱仪的定标包括辐射定标和光谱定标两方面。
辐射定标的任务是利用辐射参考标准,建立成像光谱仪的数字化输出与其接收的地面景物辐亮度之间的换算关系。
光谱定标的任务是确定成像光谱仪各光谱通道的光谱响应曲线及中心波长和半宽度。
发射过程中以及在轨运行期间,星载成像光谱仪的光学、结构和电子学部件会发生性能改变,导致实验室辐射定标建立的数字化输出和地面景物辐亮度之间的关系发生改变,同时也会使像面上谱线位置发生改变。