汽车驱动桥壳静动态有限元分析
- 格式:pdf
- 大小:327.49 KB
- 文档页数:5
宽体矿用自卸车驱动后桥桥壳有限元分析摘要:为了解决宽体矿用自卸车驱动后桥桥壳在使用破话失效问题,研究宽体矿用自卸车驱动后桥桥壳在典型工况下整体应力、变形分布情况,发现驱动桥桥壳存在的较大安全裕度,为后续针对桥壳结构的优化提供一定指导意见。
关键词:宽体矿用自卸车桥壳有限元随着国民经济的快速发展,矿区开采任务不断增加,宽体矿用自卸车研究与应用已成为工程机械研究的前沿与热点之一,此外随着使用者对宽体矿用自卸车构造布局、操作控制能力认识的不断提高,宽体矿用自卸车驱动后桥桥壳作为宽体矿用自卸车的一个关键结构部件,由于工作环境恶劣,承载压力总量较高;由于行驶路况多变,承载压力时变性强,所以驱动后桥桥壳承载特性引起企业越来越广泛的关注。
1 模型分析计算1.1 有限元简化宽体矿用自卸车驱动后桥模型简化基本原则:去不必要的圆角;略去工艺结构;略去用于装配的小孔,这些结构对桥壳的局部强度影响不大;对模型非危险区域模型特征进行几何清理。
1.2 垂直载荷工况驱动后桥有限元载荷和约束边界条件为:加载:力点为板簧上表面,在板簧座上施加400000×3.0=1.2×106 N,此时动载系数为3.0。
约束:支点为轮距的相应点(辅助夹具下表面),将夹具左(图1)面A面固定,右下表面B面约束其Z方向位移为0,X和Y方向为自由状态。
宽体矿用自卸车驱动后桥桥壳应力变形分析:本桥壳在满轴载荷状态下单位轮距范围内变形量最大值为0.458 mm。
桥壳的材料为:ZG40Cr,由JB/T6402-1992可知:ZG40Cr屈服极限Reh最小值为345 MPa,抗拉强度Rm最小值为630 MPa,由上述应力和变形分析计算得知:桥壳应力最大值大小为348.59 MPa。
桥壳上应力大于345 MPa的体积极小,主要集中在板簧孔口处,根据将材料调质到HB230~270,材料最小屈服极限将达到480 MPa,这时将满足工程实际需求。
1.3 紧急制动工况驱动后桥有限元载荷和约束边界条件为:加载:力点为板簧上表面,在板簧座上施加400000×3.0=1.2×106 N,(按动载3倍计算)。
汽车驱动桥NVH性能分析与优化摘要:为实现汽车驱动桥NVH性能的分析与优化,本文中建立了驱动桥NVH性能分析与优化流程及方法,对分析过程中所应用的有限元、振动响应、声学仿真和拓扑优化等方法进行了综合研究,恰当地选取了分析方法、计算方法、分析软件。
然后,以某车在60~65km/h加速行驶工况出现噪声大的问题为例进行分析与优化。
最后,对优化后驱动桥进行整车NVH测试,验证了所建立的分析流程及方法的有效性。
关键词: 汽车驱动桥;有限元分析;振动响应;声学仿真分析;NVH测试前言(3)后驱动桥是汽车底盘传动系统的重要组成部分,同时也是主要噪声源之一,它的NVH性能对整车NVH性能有直接影响。
学者对后驱动桥NVH性能的分析与优化开展了大量研究。
虽然研究对汽车驱动桥NVH性能分析与优化做了很多工作,取得许多成果,但仍然存在一些不足。
1 驱动桥 NVH 性能系统分析流程模态分析对后驱动桥进行模态分析,目的是得到各阶模态频率,来确认其是否与其他激励源产生共振。
前期研究结果表明,后桥噪声主要是主减速器齿轮啮合冲击通过轴承传至后桥壳产生振动引起的辐射噪声,差速器在普通工况下一般不起作用,本文中主要是对后桥壳进行模态分析。
1.1 有限元建模采用 UG 软件系统建模,网格划分过程中,主减速器壳选取四面体单元划分,单元质量主要控制参数如表1所示,最后给各个部件赋相应的厚度和材料属性,如表2所示。
将模型导入ansys workbench软件,得到有限元模型。
2 振动响应分析振动响应分析的目的是确定响应较大部位,以实现后续精准优化。
频率响应分析是指结构对某载荷(可以是冲击载荷,也可能是一频率在一定范围内的载荷)的响应。
根据驱动桥噪声机理,以及驱动桥NVH性能分析需要,在进行频率响应分析前,需要先计算其轴承的载荷。
使用模态分析结果,计算桥壳振动响应,求解已知1~2000 Hz频段的所有结果。
将频率范围设成1~2000Hz。
选择模态叠加法来进行分析,ANSYS workbench求解,得到结果。
同轴式电驱动桥有限元模型的建立摘要:建立了某纯电动轻卡的同轴式电驱动桥壳的有限元模型,为后续有限元分析奠定基础。
关键词:同轴式,电驱动桥壳,有限元1电动汽车驱动桥壳的介绍电动汽车的驱动桥有桥壳、主减速箱、差速器、车轮传动装置等部件。
驱动桥(Drive Bridge)是动力传动系统的末端部件。
电动车的驱动桥有许多种传动结构的方案,是根据了整车参数,还根据了电机分布位置的不同而相应匹配上的,是本文选的传动结构。
2驱动桥壳几何模型的建立以某纯电动轻卡的驱动桥壳为研究对象,根据桥壳各部件厚度及相关尺寸,并对其进行合适的简化,建立驱动桥壳的几何模型。
可以简化对分析影响较小的注油孔、油道还有圆角、倒角和定位孔这些。
基于三维绘图软件SolidWorks,根绘制出驱动桥壳的三维实体模型,如图2所示,而桥壳简化后的三维模型,如图3所示。
1.法兰盘2.钢板弹簧座3.加强筋4.减速器壳体5.电机壳体6.进油孔7.半轴套管图2 驱动桥壳的三维的实体模型图3 驱动桥壳简化后的三维模型3驱动桥壳有限元模型的建立通过定义其材料属性以及网格划分,得到驱动桥壳的有限元模型,如图4。
在进行了网格划分后,总共生成了44102个节点,22707个单元以及平均0.34074的网格等级,最大的单元等级为0.99,用于之后的仿真分析计算。
图4 桥壳的有限元模型4结束语首先建立驱动桥壳的几何模型,然后把模型导入到Ansys workbench中,然后定义其材料属性并进行网格的划分,用于之后的仿真分析计算。
参考文献[1]王宏,黄嘉炜,李冠东,梅杰.某驱动桥壳有限元分析[J].农业装备与车辆工程,2021,59(06):155-158.[2]郑彬,张俊杰,李昭.汽车驱动桥壳静动态特性分析与多目标优化研究[J].机电工程,2020,(07):770-776.[3]刘艳萍,林方军,王海龙,张凯,刘志峰.基于Abaqus的35T驱动桥壳总成优化设计[J].机械传动,2022,46(05):167-172.。
3。
2 挖掘机后桥桥壳设计3.2.1 桥壳类型选择由于轮式挖掘机后桥桥壳是挖掘机上的主要部件,起着支承汽车荷重的作用,并将载荷传给车轮。
作用在驱动车轮上的牵引力、制动力、侧向力和垂向力也是经过桥壳传到车架和车厢上。
因此。
轮式挖掘机桥壳既是承载件又是传力件。
同时它又是主减速器、差速器及驱动车轮传动装置的外壳,而且工作负载高,负荷变化大,行驶路况多变,工作环境恶劣,综合各项因素接合毕业设计要求我决定使用三段可分式桥壳作为设计目标。
3。
2。
2 桥壳设计及计算1.桥壳设计桥壳的设计是一个参数探索的过程,对于一款桥壳的设计首先是参考一款目前已经成熟的桥壳参数,并根据设计目标进行参数修正,将参数修正后的结果进行理论和有限元分析,查看是否满足要求,如不满足,就继续修正参数,直到最终达到设计要求,对于本次设计的目标,参考了某公司7吨轮式挖掘机驱动桥的参数,并根据实际需要进行了多次参数修正和分析,最终得到设计模型。
2桥壳的静弯曲应力计算桥壳犹如一空心横梁,两端经轮毂轴承支承于车轮上,在平板座处桥壳承受汽车的簧上质量,而沿左右轮胎中心线,地面给轮胎以反力G /2(双胎时则沿双胎之中心),桥壳则承受此力2与车轮重力g之差值,即(G -g),计算简图如下图所示。
w2w桥壳按静载荷计算时,在其两座之间的弯矩M为M =(G - g)空s N - M2w2式中:G ——汽车满载静止与水平路面时驱动桥给地面的载荷,N;2g—-车轮(包括轮毂、制动器等)的重力,N; wB——驱动车轮轮距,m;s—-驱动桥壳上两座中心距离,m.由弯矩图可见,桥壳的危险断面通常在座附近.通常由于g远小于G /2,且设计时不易准确w2预计,当无数据时可以忽略不计.而静弯曲应力o则为wjo = x103 MPawj WV式中:M——见弯矩公式;W——危险断面处桥壳的垂向弯曲截面系数。
V在不平路面冲击载荷作用下的桥壳强度计算当汽车在不平路面上高速行驶时,桥壳除了承受静力状态下那部分荷载以外,还承受附加的冲击载荷。
ANALYSIS RESEARCH分析研究参考文献[1] 张接信,王爱超,黄柱安.垂直循环式立体停车设备的设计与应用[J]. 起重运输机械, 2016(7):41-43.[2] 机械式立体车库[J]. 物流技术:装备版, 2011(14):68,69.[3] 许立,任润,施志辉,等. 基于Pro/E的链传动多边形效应仿真分析[J]. 制造业自动化, 2009(5):93-95. [4] 白玉铭. 垂直循环式立体车库设计研究[D].哈尔滨:哈尔滨工程大学, 2007.[5] 杨国欣,刘乃庆,孙裕晶. 链传动多边形效应分析[J]. 农业与技术,1996(3):40-42.作者:陈明阳电子邮箱:605779014@收稿日期:2017-06-09NTE240型矿用车驱动桥壳结构强度与模态分析杨芙蓉1 陈锋锋2 董志明1 任学平21 北方重型汽车股份有限公司 包头 0140002 内蒙古科技大学 包头 014000摘 要:为验证NTE240型电动轮矿用自卸车驱动桥壳设计的合理性,利用Pro/E软件建立驱动桥壳的三维模型,导入Ansys Workbench建立桥壳的有限元模型,并通过Ansys Workbench进行驱动桥壳的结构静力学分析和模态有限元分析。
分析结果显示,该桥壳具有足够的静强度和刚度,并具有足够的抗振性。
上述分析结果可以为桥壳的结构优化设计提供参考依据。
Abstract: To prove that the drive axle housing of NTE240 electric wheel mining dump truck is reasonably designed, a three-dimensional model is established for drive axle housing by using Pro/E software, and the model is imported to Ansys Workbench to build finite element model of axle housing. In addition, Ansys Workbench is used for structural static analysis and modal finite element analysis of drive axle housing. The analysis results reveal that the axle housing has sufficient static strength and rigidity, and is highly resistant to vibration, which can provide reference for the structural optimization design of axle housing.关键词:矿用车;驱动桥壳;结构强度;模态Keywords: mining truck; drive axle housing; structural strength; mode中图分类号:TD57 文献标识码:A 文章编号:1001-0785(2018)02-0121-040 引言矿用自卸车主要用于露天矿山运输,少量用于采石场和大型建筑工程工地,在装料场与卸料场之间短距离往返运送矿石和岩石等物料。