基于51单片机的四旋翼飞行器控制系统设计--
- 格式:doc
- 大小:53.50 KB
- 文档页数:4
本科毕业论文(设计)基于ARM 单片机的四旋翼飞行器 控制器设计系 (部)专 业学 号学生姓名指导教师提交日期中工 信商概要近几年,微小型的四旋翼无人机已逐渐成为无人机领域的研究热点。
由于其灵活性,机体结构简单,维修方便等优点,并且可以在空中悬停,垂直起飞和着陆。
所以它在军事和民用领域巨大的应用潜力,在架构设计和飞行控制国内外许多研究机构的研究也致力于四个旋翼无人机飞行控制系统,以实现四个旋翼无人机自主飞行]10[。
四旋翼无人机飞行控制系统的重要组成部分是其机载的传感器系统,由于它为机载控制系统提供了可靠的飞行状态信息,因此是实现四旋翼无人机自主飞行的重要设备之一。
本论文设计了一种基于ARM处理器作为主控制器的四旋翼飞行器,由MTi.G惯性导航一体机,高精度声纳传感器和无线遥控器为主的机载传感器系统。
该系统已经完成了航班状态信息的采集和处理,与空气中的控制器,实现了四旋翼飞行器空中自主悬停控制。
使用现有的机载控制器硬件平台的ARM嵌入式控制器的功能是构建一个功能完善,和机载传感器系统(微型姿态航向参考系统和声纳传感器)的采集和处理测量的数据,对采集到的数据以及遥控数据进行一定的PID算法的计算]2[,进而控制四个无刷直流电机的转动,实现可四旋翼飞行器的稳定飞行。
关键字:四旋翼无人机声纳传感器无刷直流电机Four rotor aircraft design based on ARM single chipmicrocomputerABSTRACTIn recent years,quadrotor helicopter has become a hotspot of the research about unmanned aerial vehicle(UA V).It has high maneuverability,easy maintance,simple configuration, and the ability of agile hovering,vertical taking off and landing(VTOL).Because of their huge potential application values for civil and military utilization,researches on the architecture of flight control system(FCS)are conducted by many universities and companies to achieve autonomous flight control of quadrotors.Onboard sensor system is a very important component of flight control system because it will supply reliable flight informations of quadrotor for the flight controller.In this paper,a self assembled quadrotor helicopter is used as the airframe for the flight control system design.An attitude measuring method based on ARM processor is proposed, which gives out attitude informations of medium and low accuracy. The data acquisition and processing about the flight information of quadrotor is accomplished.The qutonomous hovering control of quadrotor cooperating with flight control system onboard is achieved.A complete platform of flight control system onboard is estibalished by there—development of ARM embedded controller to make it possible for the scource code to be run on the ARM embedded controller.Onboard data accquiration and processing are implemented.Then PID algorithm for computing some of the collected data, and then control four brushless DC motor rotation, achieve stable flight four rotary wing aircraft.Keywords:Quadrotor ARM AHRS Sonar Four brushless DC motor rotation目录1 绪论 (1)1.1 研究的前景与意义 (1)1.2 国内外的研究现状 (1)2 设计任务 (3)2.1 设计要求 (3)2.2 使用说明 (3)3 四轴飞行器样机结构与硬件选择 (4)3.1 样机结构与系统结构 (4)3.2 硬件设计与选型 (6)3.2.1 核心板 (6)3.2.2 陀螺仪 (6)3.2.2 超声波模块 (7)3.2.3 电源模块 (8)3.2.4 电机模块 (9)3.2.5 无线通信与显示 (10)4 程序设计与调试 (12)4.1 飞行器姿态导航的数据的采集 (13)4.2 声呐传感器数据的采集 (14)4.3 电机的控制 (15)4.5 调试 (16)结论 (18)参考文献 (19)致谢 (20)附录 (20)1 绪论1.1 研究的前景与意义四旋翼无人飞行器拥有很多优点和广阔的应用前景。
四旋翼飞行器飞行控制系统研究与设计1. 引言1.1 研究背景四旋翼飞行器是一种具有垂直起降能力和灵活操控特性的无人飞行器,近年来在军事、民用航空领域得到广泛应用。
四旋翼飞行器的飞行控制系统仍然是一个挑战性问题,需要不断的研究和改进。
在过去的几十年里,飞行控制系统技术取得了巨大的进步,从传统的PID控制方法到现代的神经网络控制和模糊控制方法,不断地推动着飞行器飞行性能的提升。
在四旋翼飞行器这种特殊结构的飞行器上,如何设计一套高效稳定的飞行控制系统仍然是一个值得研究的课题。
通过对四旋翼飞行器的飞行控制系统进行研究与设计,可以进一步提高其飞行性能、安全性和自动化程度,为未来无人机飞行技术的发展奠定基础。
本研究旨在探讨四旋翼飞行器飞行控制系统的设计原理和方法,为实现四旋翼飞行器的稳定飞行和智能控制提供技术支持。
1.2 研究目的研究目的主要是为了探索四旋翼飞行器飞行控制系统的设计与优化方法,以提高飞行器的稳定性、灵活性和控制精度。
本研究旨在深入分析传统飞行控制方法和先进飞行控制方法的优缺点,结合四旋翼飞行器的特点,提出有效的飞行控制系统设计方案。
通过实验验证,验证设计方案的有效性和实用性,进一步完善飞行控制系统的性能。
最终目的是为了提高四旋翼飞行器的自主飞行能力和应用领域的拓展,推动飞行器技术的发展和应用。
希望通过本研究的成果,为未来四旋翼飞行器的设计与控制提供参考和指导,为飞行器的性能优化和智能化发展做出贡献。
2. 正文2.1 飞行控制系统概述飞行控制系统是四旋翼飞行器的重要组成部分,它负责控制飞行器的姿态、位置和飞行参数,以确保飞行器稳定、安全地飞行。
飞行控制系统的设计和实现是四旋翼飞行器研究的关键内容之一。
飞行控制系统通常由传感器、执行器和控制算法组成。
传感器用于测量飞行器的姿态、位置、速度等信息,将这些信息传输给控制算法。
控制算法根据传感器数据计算出合适的控制指令,通过执行器控制飞行器的动作,实现飞行器的姿态和飞行参数控制。
微型四旋翼控制系统设计0 前言无人飞行器(UAV)自主飞行技术多年来一直是航空领域研究的热点,并且在实际应用中存在大量的需求,例如:侦察与营救任务,科学数据收集,地质、林业勘探,农业病虫害防治,以及视频监控,影视制作等。
通过无人飞行器来完成上述任务可以大大降低成本和提高人员安全保障。
无人飞行器的主要优点包括:系统制造成本低,在执行任务时人员伤害小,具有优良的操控性和灵活性等。
而旋翼式飞行器与固定翼飞行器相比,其优势还包括:飞行器起飞和降落所需空间少,在障碍物密集环境下的可控性强,以及飞行器姿态保持能力高。
由国际无人运输系统协会(International Association for Unmanned Vehicle Systems)组织的一年一度的国际空中机器人竞赛(International Aerial Robotics Competition),为自主旋翼式飞行器的应用潜力研究提供了一个很好的展示平台。
该竞赛吸引了来自全世界不同国家研究团队的参与,来完成预先设定的自主飞行任务。
在无人飞行器自主飞行的众多技术当中,飞行器自主飞行控制算法的设计一直是控制领域众多研究者最关心的问题之一。
经典的控制策略在飞行器系统的某个特定作用点上往往首先将系统模型线性化,然后在此基础上运用经典控制理论对系统进行分析和控制,控制精度和控制能力偏弱。
相比之下,运用现代非线性控制理论设计的控制算法,其性能明显优于经典控制算法。
小型四旋翼飞行器与其它飞行器相比,其优势在于其机械结构较为简单,并且只需通过改变四个马达的转速即可实现控制,且飞行机动能力更加灵活。
另一方面,小型四旋翼飞行器具有较高的操控性能,并具有在小区域范围内起飞,盘旋,飞行,着陆的能力。
飞行器可以飞至离目标更近的区域,而不像传统直升机由于其巨大的单旋翼而不能近距离靠近目标。
同时,小型四旋翼飞行器研究也为自动控制,先进传感技术以及计算机科学等诸多领域的融合研究提供了一个平台。
基于STM32四旋翼飞行控制系统毕业设计目录1前言11.1背景与意义11.2国内外研究现状11.3论文主要工作22总体方案设计32.1方案比较32.2方案论证与选择33飞行器原理与结构53.1飞行器原理53.2飞行器结构64单元模块设计84.1各单元模块功能介绍及电路设计84.1.1电源84.1.2STM32F407最小系统94.1.3下载电路114.1.4飞控姿态模块114.1.5无刷电机连接电路124.1.6串口接口电路124.2特殊器件的介绍124.2.1无线数传模块124.2.2飞控姿态模块135软件设计165.1软件设计原理及设计所用工具165.2主要软件设计流程框图及说明175.2.1串口中断流程图175.2.2外部中断流程图185.2.3主程序流程图186系统调试206.1通信系统206.2姿态传感器调试216.2.1传感器数据分析与处理216.2.2姿态解算236.2.3数据中断286.3PID调试306.3.1PID姿态控制306.3.2飞控系统PID调试337系统功能、指标参数367.1系统能实现的功能367.2系统指标参数368结论388.1回顾388.2展望389总结与体会3910谢辞4011参考文献41附录:421.硬件电路图422.PCB图433.部分程序444.外文翻译461前言1.1背景与意义近年来得益于现代控制理论与电子控制技术的发展,四轴飞行器得到了广泛的关注,在民用与工业领域,具有广泛的应用前景。
甚至无人机在战争中得到广泛的应用。
当下无人机发展火热,其中以四旋翼飞行器的发展最为突出。
四旋翼飞行器其具有以下特点:(1)体积小巧,可以工作在恶劣的,危害人类健康和生命的环境中,最大限度地减少人员伤亡,飞行器可以全天工作无需休息,工作效率高。
(2)支持配备高端电子产品,多种外设相连接,如照相机、机械臂等,可以实现一些娱乐功能。
例如在高空电力线巡检中,无人机能在工作人员的操控下进行工作,可以代替人工对巡检对象实施接近检测,减少工人的劳动强度。
摘要本设计采用瑞萨R5F100LEA单片机作为主控制器。
超声波传感器实时发送飞行高度数据给主控系统,主控制器通过判断、分析、处理产生控制信号进而控制各个电机,使其在不同的飞行高度具有不同的速度,保证了飞行器在某一高度范围内飞行;主控制器读取MPU6050陀螺仪的数据,通过对采集数据的分析,使飞行器做出相应的姿态调整,来保持飞行器能够平稳飞行;激光传感器能够对白色场地上的黑线进行识别,达到循迹的目的。
本设计通过对飞行控制系统的总体框架设计,实现了飞行控制系统的硬件设计和软件设计,并对设计中的关键技术问题进行了研究,最终实现了四旋翼飞行器的一键启动自主飞行控制。
关键词:R5F100LEA 传感器姿态控制四旋翼飞行器1. 四旋翼自主飞行器简介1.1 结构形式四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
四旋翼飞行器的结构形式如图 1.1 所示。
图1.1 四旋翼飞行器结构形式1.2 工作原理传统直升机是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。
四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。
由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。
四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。
但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。
图 1.2 四旋翼飞行器垂直和俯仰运动四旋翼飞行器结构形式如图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
基于ARM的四旋翼无人飞行器控制系统刘乾;孙志锋【摘要】为改变传统以单片机为处理器的四旋翼无人飞行器的控制方式,提出了一种基于嵌入式ARM的飞行控制系统的设计和实现方案.详细介绍了控制系统的总体构成以及硬、软件设计方法,包括传感器模块、电机模块、无线通信模块.试验结果表明,该设计结合嵌入式实时操作系统,保证了系统的高可靠性和高实时性,能满足飞行器起飞、悬停、降落等飞行模态的控制要求.%In order to change the conventional control of four-rotor unmanned aerial vehicles using microcontroller as the processor,a solution of flight control system based on embedded ARM was presented. The main function of the system, the hardware structure and the software design were discussed in detail, including the sensor module, the motor module, the wireless communication module. With embedded real time operating system to ensure the system' s high reliability and real-time performance, the experiments results show that the requirements of flight mode are satisfied,including taking off,hovering,and landing and so on.【期刊名称】《机电工程》【年(卷),期】2011(028)010【总页数】4页(P1237-1240)【关键词】ARM;四旋翼无人飞行器;控制系统【作者】刘乾;孙志锋【作者单位】浙江大学电气工程学院,浙江杭州310027;浙江大学电气工程学院,浙江杭州310027【正文语种】中文【中图分类】TP277;TH3近年来,随着新型材料以及飞行控制技术的进步,小型四旋翼低空无人飞行器得到了迅速发展,在军事和民用领域具有广阔的应用前景。
四旋翼飞行控制系统设计与实现随着现代科技的飞速发展,四旋翼已经成为了人们日常生活中不可或缺的一部分。
四旋翼的出现,使得人们在很多领域都有了更多的可能性,比如:物流配送、航拍、农业植保等等。
但是,一个稳定可靠的四旋翼离不开一个好的飞行控制系统。
在本文中,将介绍四旋翼飞行控制系统的设计与实现。
1.硬件设计四旋翼飞行控制系统中最重要的就是硬件。
初学者所能看到的一些开发板对控制四旋翼的控制系统来说并不够用。
因此,需要一些基于STM32这样的MCU的开发板,比如:Pixhawk、Naze32、Ardupilot等等。
在选择硬件时,要考虑到自身的需求,比如,是否需要更多的端口,是否需要更高的速度、功率等等。
因此,不同的开发板在不同的领域都有不同的特点。
2.软件设计除了硬件外,软件设计也是非常重要的。
现在,一些开源项目像是PX4和Ardupilot等等成为了非常流行的选择。
这些项目中集成了丰富的功能,比如稳定控制、导航、GPS等等。
在硬件之外,软件同样也是四旋翼飞行控制中不可缺少的一环。
3.算法设计算法设计是四旋翼飞行控制系统中更为重要的一部分。
它对于飞行控制系统来说是最核心的一个环节。
一般来说,包含许多不同的算法,比如飞行姿态控制、高度控制、飞行路径规划等等。
其中,PID控制算法是飞行控制系统中非常重要的一种算法。
在飞行控制算法中,PID控制算法常常被用来控制飞行姿态和高度。
PID的核心思想是通过不断调整参数来控制系统的输出,让误差最小化。
4.调试优化在完成硬件、软件和算法设计之后,需要进行调试和优化。
因为四旋翼是一个复杂的系统,存在很多的变量,因此,需要不断地进行调整才能够达到最佳效果。
在调试时,可以使用仿真器和数据记录器来帮助我们调试算法和优化四旋翼的飞行性能。
同时,在调试时要注意各个部分之间的相互联系,因为一个小细节往往会影响到整个飞行系统。
总结四旋翼的飞行控制系统设计不仅需要考虑硬件和软件的设计,同时还需要考虑到算法和调试优化。
四旋翼飞行控制算法设计与实现随着科技的不断进步,无人机已经成为了各个领域的重要工具,其中四旋翼飞行器凭借其便捷、灵活、成本低廉以及适用范围广泛的特点已经成为了最常用的一种飞行器类型。
四旋翼飞行器在航拍、货物运输、军事作战等领域均有应用,然而,四旋翼飞行器的稳定飞行和精确控制一直是其发展的瓶颈,因此,如何设计出一种高效的算法实现对于四旋翼飞行器的控制是很关键的。
一、四旋翼飞行器的工作原理四旋翼飞行器通过四个电动马达驱动四个螺旋桨旋转,通过旋转螺旋桨产生的推力来实现飞行,其中的电子设备通过对四个电机的电量、转速进行控制,从而实现四旋翼飞行器的航向、速度、高度、姿态控制等功能。
二、四旋翼飞行器的飞行控制系统四旋翼飞行器的飞行控制系统为多层次的控制系统,包括姿态控制、速度控制和高度控制等不同层次的控制。
其中姿态控制是最基础和关键的一层控制,其主要作用是控制飞行器的姿态,即旋转、俯仰和横滚等方向,保持飞行器的平衡状态;速度控制是根据需求来控制飞行器的飞行速度,以实现在实际应用中的不同需求;高度控制则是根据需求来控制飞行器的飞行高度,以实现相应的任务。
三、四旋翼飞行器的控制算法现在的控制算法主要包括PID控制、模糊控制、自适应控制和神经网络控制等等。
其实算法的选择主要取决于控制的需求和场景,基本上没有哪一种算法是万能的。
在实际控制中,我们通常根据不同的需求来对这些算法进行组合,配合使用,从而达到更高效的控制效果。
(一)PID控制PID控制算法是一种常用的控制算法之一,其是根据系统实时误差动态调整控制量的一种控制方式,具有相应的运行稳定性和效率。
PID算法的执行过程中会通过对误差的积分、微分和比例控制方式进行相应的调整,从而期望使得系统输出量达到期望值,从而实现对四旋翼飞行器的控制。
(二)模糊控制模糊控制是一种基于模糊集合理论的控制方法,其通过定义一连串的模糊规则和推理技术,对系统的各种状态进行监控和控制。
相较于PID控制算法,模糊控制算法更加适用于复杂、非线性和不确定性的环境之下,这些特点都很符合四旋翼飞行器控制的需求。
四旋翼飞行器飞行控制系统研究与设计四旋翼飞行器是一种由四个旋翼推进的飞行器,它因其灵活性和稳定性而被广泛用于各种领域,如航拍、无人机、军事侦察等。
在四旋翼飞行器的飞行过程中,飞行控制系统起着至关重要的作用,它能够确保飞行器稳定、安全地飞行。
对四旋翼飞行器飞行控制系统的研究与设计显得尤为重要。
四旋翼飞行器的飞行控制系统主要包括传感器、控制器和执行机构三个部分。
传感器用于感知飞行器的飞行姿态及环境信息,控制器根据传感器反馈的信息进行控制指令的生成,执行机构则负责执行控制指令,调节飞行器的姿态和位置。
通过这三个部分协同工作,飞行控制系统能够实现对飞行器的精确控制,确保其稳定飞行。
传感器是飞行控制系统的基础,它能够感知飞行器的姿态、位置、速度等信息。
常见的传感器包括陀螺仪、加速度计、磁力计、气压计等。
陀螺仪用于感知飞行器的角速度,加速度计用于感知飞行器的加速度,磁力计用于感知地磁场信息,气压计用于感知大气压力信息。
这些传感器可以为控制器提供飞行器当前的状态信息,从而帮助控制器生成相应的控制指令。
控制器是飞行控制系统的核心部分,它根据传感器反馈的信息,利用控制算法生成控制指令,使飞行器按照预定的轨迹飞行。
常见的控制算法包括PID控制、模型预测控制、自适应控制等。
PID控制是一种经典的控制算法,它通过比例、积分、微分这三个部分来调节飞行器的姿态。
模型预测控制则是基于飞行器的动力学模型,利用预测算法来实现更加精确的控制。
自适应控制则是根据飞行器的实际动态特性,在飞行过程中不断调整控制参数,以适应飞行条件的变化。
这些控制算法可以根据飞行器的具体要求进行选择,以实现对飞行器的精确控制。
针对四旋翼飞行器的飞行控制系统设计,需要考虑以下几个方面:飞行器的动力学特性、飞行任务需求、传感器选择、控制算法选择、执行机构选择。
需要对飞行器的动力学特性进行建模分析,了解飞行器的飞行特性,如姿态稳定性、飞行动力学等。
需要根据飞行任务需求确定传感器的选择,如选择何种陀螺仪、加速度计等。
图5
如图4,当执行“写”的命令时,就会把我们做好DB块db9的前十个字节通过读写器的数据块DB1写进芯片。
同样,如图5当执行“读”的命令时,就会把芯片中的数据通过读写器的数据块DB1传送到我们做好数据块块db8的
后右后左前右前左
图1四轴飞行器电机驱动原理图
根据选择的量程对陀螺仪和加速度数据进行转换,因为我们加速度的量程为±4g/S ,所以要除以8192,陀螺仪,所以要除以65.5。
Accel_x )/8192;//加速度处理Accel_z )/8192;//加速度量程±4g/S Accel_y )/8192;//转换关系8192LSB/g 某个值时不积分)
else ERRORX_In =0;//油门小于定值时清除积分值if (ERRORX_In >ERR_MAX ERR_MAX ;
else if (ERRORX_In <-ERR_MAX -ERR_MAX ;//积分限幅
图2PID 子程序流程图
PID 子程序开始
读取四轴遥控器的横滚控制量
计算外环的横滚误差
外环横滚误差=遥控器摇杆+微调-飞机
的横滚角
外环的横滚误差积分限幅外环的横滚误差积分
算出外环的PID 值计算内环的误差
内环横滚误差=外环输出-飞机的Y 轴
陀螺仪值
内环的陀螺仪误差积分
内环的陀螺仪误差积分限幅
算出内环的PID 值
内环的PID 值限幅
去控控四轴电机动作。
四旋翼飞行器控制系统设计摘要:本文对四旋翼飞行器的结构及特点进行了简单介绍,研究了基于四元数法的四旋翼飞行器姿态解算方法,同时对其进行了仿真分析,得出了有益结论,为进一步研究提高提供参考依据。
Abstract: The structure and characteristics of the four-rotor aircraft were briefly studied in this paper, and the attitude algorithmmethod of four-rotor aircraft based on the quaternion is studied, its simulation analysis is made and useful conclusions are drawn to providereference for the further research and improvement.关键词:四旋翼飞行器;姿态解算;惯性测量单元;四元数算法Key words: four-rotor aircraft;attitude algorithm;inertial measurement unit;quaternion algorithm中图分类号:V249.1 文献标识码:A 文章编号:1006-4311(2014)20-0213-020 引言在日常生活和工程中,四旋翼飞行器的应用非常广泛,是目前人们研究的热点。
本文笔者分析了四旋翼飞行器的结构和特点,对四旋翼飞行器的姿态解算采用了四元数法,得出了数学模型,将四旋翼无人飞行器数据代入数学模型,对其进行仿真分析,得出了有益结论。
1 结构和特点分析四旋翼飞行器飞行的直接动力源采用的是四个旋翼,旋翼对称分布在机体的前后、左右四个方向,且处于同一高度平面,它的结构和半径都相同,旋翼2 和旋翼4 顺时针旋转,旋翼1 和旋翼3 逆时针旋转,飞行器的支架端对称的安装着四个电机,飞行控制计算机和外部设备安放在支架中间空间。
四旋翼飞行器控制系统设计曹凯;马贝;王翔武【摘要】The quadrotorcraft attitude control is the core of the four rotorcraft control system. In this study, the attitude control system of four rotorcraft is designed by analyzing the flight principle and model of the four rotorcraft. In this system, the STM32 series processor is used as the main chip, MPU6050 triaxial acceleration set, the triaxial gyroscope inertia measurement unit, magnetometer, and other sensors to detect posture information. The system is based on the idea of modular design and the sensor uses a simple structure of the digital interface to exchange data. The closed-loop control of attitude angle is carried out by double closed-loop PID control algorithm. Finally, the experimental results show that the flight effect of the four rotorcraft is stable on the experimental platform, and the system meets the requirements of flight attitude control of four rotorcraft.%四旋翼飞行器姿态控制是四旋翼飞行器控制系统的核心.通过分析四旋翼飞行器的飞行原理,模型建立,设计了四旋翼飞行器的姿态控制系统;在该系统中采用STM32系列处理器作为主控芯片,MPU6050三轴加速度集和三轴陀螺仪惯性测量单元、磁力计等传感器用于姿态信息检测.本文中传感器使用结构简单的数字接口对数据进行交换,运用模块化的思想对系统进行设计.使用PID控制算法进行姿态角的闭环控制,最终实验结果表明,在实验平台上四旋翼飞行器飞行效果稳定,系统满足四旋翼飞行器飞行姿态控制的要求.【期刊名称】《计算机系统应用》【年(卷),期】2018(027)001【总页数】5页(P61-65)【关键词】PID控制;STM32控制器;四旋翼飞行器;姿态控制【作者】曹凯;马贝;王翔武【作者单位】西安工业大学电子信息工程学院, 西安 710032;西安工业大学电子信息工程学院, 西安 710032;西安工业大学电子信息工程学院, 西安 710032【正文语种】中文四旋翼飞行器是指可以实现自主或遥控飞行,且不需要操作人员、具有四个旋翼的飞行动力装置[1];与常规旋翼式飞行器相比,其分布对称、结构简单紧凑、易于维护、机动性能强,不需要类似于直升机上面的尾桨来抵消反扭矩.因此特别适合在空间比较狭小,人员难以到达的地方展开任务.随着微电子和传感器技术等相关科学的不断发展,特别是在民用和军事领域有很多应用,促进了四旋翼飞行器的快速发展[2].可执行的任务越来越复杂和多样化,功能越来越完备,成为世界范围内研究较为热门的一个领域.四旋翼飞行器技术的不断成熟和门槛的逐步降低不断吸引着越来越多的四旋翼飞行器爱好者投入到了四旋翼飞行器的研制中.文献[3]通过对四旋翼飞行器动力学和运动学分析,建立其数学和物理模型,在此基础上提出了一些控制算法,并进行验证.文献[4]采用 Atmega128作为主控芯片,使用了气压传感器,红外传感器,三轴加速度计,两轴陀螺,三轴磁力计等传感器,完成对四旋翼飞行器硬件系统的设计与实现,最终能完成定高,悬停等任务.本文在四旋翼飞行器飞行原理基础之上进行四旋翼飞行器控制系统的硬件和软件的设计,将设计的四旋翼飞行器进行试验试飞,得出相关结论.1 飞行器基本工作原理四旋翼飞行器的控制由四旋翼飞行器上四个电机旋转速度变化来实现的,无需复杂的传动装置,机械结构相对简单.四旋翼飞行器在飞行时的动作可分为6种,即沿轴向的线性运动和围绕轴向的旋转运动.线性运动为沿着 x,y,z方向的运动,线性运动即为前后左右位置上的变化,旋转运动则可分为滚转运动(roll)、俯仰运动(pitch)、偏航运动(yaw).如图1所示,按照布置方式可分为X和十模式.两种模式对于姿态测量和控制而言没有差别.本设计中考虑到四旋翼飞行器前方可能会安装摄像头等一些传感器,为了不遮挡视线,所以本论文中使用X模式布置方式[4].图1 两种四旋翼飞行器模式示意图四旋翼飞行器的运动可以分解为平动与转动两种运动,平动主要研究飞行器的位置,转动则主要分析飞行器的姿态.大地坐标系(惯性坐标系或者导航坐标系,用e、N或者G表示)用于研究飞行器相对大地的运动状态以及空间位置坐标.机体坐标系(用b或B)坐标原点取机体的重心,用于研究飞行器相对于重心的旋转运动,在图2四旋翼飞行器动力模型图中xB方向指向飞行器的前(横滚轴)、yB方向指向飞行器的右(俯仰轴)和zB方向指向飞行器的下(偏航轴)方向.选取导航坐标系N为参考坐标系[5],以坐标轴xN指向北、yN指向东和zN指向重力方向.M和F分别代表飞行器受到转矩和升力.四旋翼飞行器产生基本动作的原理为:由于旋翼飞行器陀螺效应和空气动力扭矩效应的存在,为使其效应消失,四旋翼飞行器上两两相邻的电机转速方向是相反的,保证4个电机转速一致时机身不发生转动.当四个电机转速相同并且同时增大时,四旋翼飞行器升力将克服四旋翼飞行器的自身重力产生Z轴方向垂直向上的力,使得四旋翼飞行器垂直上升.当升力小于重力时,垂直下降,当升力等于重力时,便保持悬停状态.X轴方向的两个电机不同时处于同一水平面时产生的运动叫俯仰运动,即电机1、4的转速不发生变化,电机2、3的转速增大,则会导致电机2和电机3上产生升力不同,从而导致四旋翼飞行器发生X轴方向的俯仰运动.滚转运动和俯仰运动类似,区别在于滚转运动机身是沿着Y轴方向发生倾斜[6].偏航运动中巧妙的使用了于反扭矩的存在,使得四旋翼飞行器跟随旋翼自转.当四旋翼飞行器对应的转速方向相同的两个电机转速和另外两个电机转速速度不一样时,四旋翼飞行器将会顺着电机转速快的那两个电机旋转方向旋转,实现绕Z轴顺时针或是逆时针的变化,即为偏航运动. 图2 四旋翼飞行器动力模型2 系统结构和姿态解算飞行器系统结构图如图3所示.在此系统中磁力计、加速度计、陀螺仪组成姿态测量系统,主控制器将姿态测量系统的数据进行姿态解算得到当前四旋翼飞行器的飞行姿态,再结合遥控器给定的信号作为PID控制器的输入,随后通过PID控制器输出PWM信号到电子调速器,控制电机转速发生不同的变化,实现对四旋翼飞行器姿态的控制.图3 飞行器系统结构图通过姿态测量系统首先的到传感器的原始数据,获取初始姿态,使用四元数对姿态进行更新,为了便于程序实现四旋翼飞行器控制.由于四元数线性方程组计算量小,易于操作,比较贴近工程实际,欧拉角转换成四元数算法进行姿态更新,通过互补滤波器进行姿态修正,然后对四元数进行规范化处理,进行下一次的姿态更新[7].2.1 初始姿态获取在研究物体转动和位置变化中,常用来唯一的确定定点转动位置的三个一组参量,由俯仰角θ、偏航角ψ和滚转角组成,各轴之间的角度变化用欧拉角来表示,需要分别绕三个坐标轴转动三次方能实现.从导航坐标系n到载体坐标系b的姿态转换矩阵如公式(1)所示.欧拉角的更新方程公式(2):2.2 四元数姿态更新定义一个四元数,如公式(3):通过旋转轴和绕该轴旋转的角度可以构造一个四元数,如公式 (4):其中,α 是绕旋转轴旋转角度,cos(βx)、cos(βy)、cos(βz)为旋转轴在 x、y、z方向的分量,由此确定旋转轴.四元数单位化,如公式(5):欧拉角表达形式简单、便于理解,四元数计算过程简单,传感器中以欧拉角形式输出各姿态量,使用欧拉角转四元数的方式作为姿态更新方法.公式(4)和公式(5)是它们之间的相互转化的公式.由四元数表示方向余弦矩阵如下:3 四旋翼飞行器软件系统设计软件系统中的包含的主要模块有主逻辑模块、传感器数据采集模块、数据处理模块、初始化模块、电机驱动模块、无线遥控模块、飞行控制模块、报警模块等.软件设计采用模块化的思想对四旋翼飞行控制系统进行设计,模块主要包括数据采集与处理模块、控制算法模块、指令收发模块等等.系统上电后首先对系统的硬件进行初始化,此过程中完成四旋翼飞行器上各传感器校准以及电子调速器的自检等,此时如果四旋翼飞行器控制板上出现问题,板上的LED等会发出故障信号主要包括各姿态传感器以及电调电机的自检和传感器校准.完成初始化后,系统等待遥控控制指令,判断是否解锁,解锁后STM32对姿态传感器MPU6050采集到的数据姿态解算,然后给每个电机给定一个输出量,实现对四旋翼飞行器的控制,同时四旋翼飞行器上的信息和各个传感器数据传输给上位机,飞行控制主程序流程图如图4所示.图4 飞行控制器主程序流程图图5是捷联式惯性导航原理图,捷联式惯性导航系统在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏,是一种自主式导航系统.它省去了惯性平台,陀螺仪和加速度计直接安装在飞行器上,使系统体积小、重量轻、成本低、维护方便.此四旋翼飞行器位姿解算中使用的就是捷联式惯性导航.图5 捷联式惯性导航原理图四旋翼飞行器的控制目标是按照操作者的控制在有操作时按照完成指定的操作任务,无操作时保持悬停状态.本文使用PID控制器对四旋翼飞行器进行的姿态控制,原理图如图6所示.PID控制无需对系统进行精确地建模,以姿态欧拉角的期望值与当前姿态角度的计算值之差作为PID控制器的输入,输出PWM控制量到每个电机,三个PID输出量叠加到不同的位置的电子调速器上,驱动电机速度发生变化,使飞行器能够完成三维空间的各种运动[9].图6 姿态 PID 控制整体流程图四旋翼飞行器系统是一个非线性系统,当四旋翼飞行器处于悬停和稳定平稳飞行时,可已经四旋翼飞行器系统近似为线性系统[10].实际对四旋翼飞行器的控制对象是电机和螺旋桨,螺旋桨的转动是通过电机转动而转动,从而产生力矩和扭矩,然后作用于四旋翼飞行器.陀螺仪得到各姿态的角速率,经过积分得到各姿态角.由于对四旋翼飞行器控制时,实时性要求很高,同时微处理器处理信息、发送指令、无刷电机相应都会产生微秒级的延迟.假如不进行校正,会直观地发现滞后比较严重,所以要进行校正,使响应提前达到稳定的范围之内.系统中采用PID控制器,使用比例参数决定系统的相应速度,积分参数消除四旋翼飞行器系统的稳态误差,微分参数可以使整个系统的相位提前,又可以消除飞行器抖动,从而保证整个系统的稳定.根据每个四旋翼飞行器系统的实际情况,选择合适的控制参数才能得到理想的飞行结果.4 结论论文中该系统主控芯片采用STM32F103微控制器,利用四元数算法得到姿态解算,设计了改进的变参数PID控制算法的姿态控制系统.本论文的优点全面分析和设计了四旋翼飞行器的硬件和软件,最终实现四旋翼飞行器指定的功能,并试验.使用STM32芯片,便于以后对功能进行扩展,如添加GPS模块、图传模块等.在于经过大量的飞行测试,表明该飞行控制系统能够实现四旋翼飞行器稳定的姿态控制,实现了定点悬停、定高悬停、前后侧向飞行等功能.图7 四旋翼飞行器室外悬停PID参数的调节需要耐心细致的工作态度才能得到比较好的结果.通过不断地试验,所设计的原型样机已经能够实现平稳的飞行(如图7,飞行器室外悬停),基本达到了预期的目的.参考文献【相关文献】1 米培良.四旋翼飞行器控制与实现[硕士学位论文].大连:大连理工大学,2015.2 郭宝录,李朝荣,乐洪宇.国外无人机技术的发展动向与分析.舰船电子工程,2008,28(9):12–21.3 赵敏.浅谈四旋翼飞行器的技术发展方向.科技创新与应用,2016,(16):100.4 吕强,郭善亮,王冬来,等.基于 DSP 四旋翼飞行器姿态控制系统硬件设计.计算机与数字工程,2011,39(7):144–146.5 刘峰,吕强,王国胜,等.四轴飞行器姿态控制系统设计.计算机测量与控制,2011,19(3):583–585,616.6 张广玉,张洪涛,李隆球,等.四旋翼微型飞行器设计.哈尔滨理工大学学报,2012,17(3):110–114.7 张镭,李浩.四旋翼飞行器模糊PID姿态控制.计算机仿真,2014,31(8):73–77.8 陈永冰,钟斌.惯性导航原理.北京:国防工业出版社,2007.9 张金楼.经济型运动载体航向姿态测量系统的研究与开发[硕士学位论文].西安:西安电子科技大学,2007.10 刘焕晔.小型四旋翼飞行器飞行控制系统研究与设计[硕士学位论文].上海:上海交通大学,2011.。
四旋翼飞行器飞行控制系统研究与设计四旋翼飞行器是无人机中常见的一种飞行器类型,在军事、民用等领域有着广泛的应用。
而对于这种飞行器,飞行控制系统的研究与设计是其性能和稳定性的关键。
一、四旋翼飞行器的工作原理四旋翼飞行器是一种通过四个独立的旋翼进行飞行的飞行器。
它的工作原理是通过调节不同旋翼的转速和倾斜角度,控制飞行器的姿态和飞行方向。
通过这种方式,飞行器可以实现上下、前后、左右的飞行运动,并且可以在空中悬停。
二、四旋翼飞行器飞行控制系统基本组成四旋翼飞行器的飞行控制系统主要由传感器、控制算法和执行器三部分组成。
传感器用于获取飞行器的姿态和状态数据,控制算法用于根据传感器数据计算控制指令,执行器则用于执行控制指令,调节旋翼的转速和倾斜角度。
1. 传感器传感器是飞行控制系统的数据获取部分,主要用于获取飞行器的姿态、位置和运动状态等数据。
常见的传感器包括陀螺仪、加速度计、磁力计、气压计等。
陀螺仪用于测量飞行器的角速度,加速度计用于测量飞行器的加速度,磁力计用于测量飞行器的方向,气压计用于测量飞行器的高度。
这些传感器可以提供给控制算法所需的姿态和状态数据,为飞行器的控制提供支持。
2. 控制算法控制算法是飞行控制系统的核心部分,它主要用于根据传感器数据计算控制指令,调节飞行器的姿态和飞行状态。
常见的控制算法包括PID控制、模糊控制、自适应控制等。
PID控制是一种经典的控制算法,它通过比例、积分和微分三部分组成,可以根据误差信号调节执行器输出,实现对飞行器的精确控制。
模糊控制是一种基于模糊逻辑的控制方法,可以处理复杂的非线性系统,对于四旋翼飞行器的控制具有一定的优势。
自适应控制是一种基于自适应参数的控制方法,可以根据飞行器的动态特性实时调节控制参数,适应不同的飞行环境和工况。
3. 执行器执行器是飞行控制系统的执行部分,主要用于控制飞行器的旋翼转速和倾斜角度,调节飞行器的姿态和飞行状态。
常见的执行器包括电动调速器、舵机等。
基于STM32的四旋翼飞行器控制系统设计四旋翼飞行器是一种由四个旋翼驱动的无人机。
它具有垂直起降和悬停的能力,能够在空中保持稳定飞行。
基于STM32的四旋翼飞行器控制系统设计需要考虑飞行器的姿态控制、飞行模式控制、传感器数据获取与处理等方面,同时还需要实现与地面站的通信和数据传输。
首先,飞行器的姿态控制是控制系统设计的核心。
通过采用传感器获取飞行器的姿态信息,如加速度计、陀螺仪和磁力计等,利用PID控制算法对飞行器进行姿态调整,使其保持平衡和稳定飞行。
STM32可以通过配置外设,如ADC和定时器,来获取传感器数据,同时使用GPIO口来控制电机的转速,实现四旋翼飞行器的姿态控制。
其次,飞行模式控制是四旋翼飞行器控制系统中的另一个重要方面。
飞行模式通常包括手动模式、自稳模式和定点悬停模式等。
在手动模式下,飞行器由遥控器控制飞行方向和速度。
在自稳模式下,飞行器利用姿态控制算法来保持平衡和稳定飞行。
在定点悬停模式下,飞行器根据传感器数据和定位信息,实现在空中固定位置悬停。
通过STM32的串口通信模块与遥控器通信,可以实现飞行模式的切换和控制。
另外,传感器数据获取与处理也是四旋翼飞行器控制系统设计的重要部分。
飞行器需要获取传感器数据,如高度、速度和位置等信息,并进行处理,以进行姿态控制和飞行模式控制。
STM32可以通过配置串口通信、I2C或SPI总线来获取和处理传感器数据,同时利用内部的计算和存储单元进行数据处理和算法运算。
最后,与地面站的通信和数据传输是四旋翼飞行器控制系统设计中的另一个重要方面。
地面站可以通过无线通信方式与飞行器进行通信,获取飞行器的状态信息和传感器数据,并发送飞行指令和控制信号。
通过配置STM32的无线通信模块,如WiFi或蓝牙模块,可以实现与地面站的通信和数据传输。
除了以上提到的关键设计方面,四旋翼飞行器控制系统设计还需要考虑电源管理、动力系统控制(电机控制)、GPS定位和导航等问题。