摩擦与润滑报告.
- 格式:ppt
- 大小:2.85 MB
- 文档页数:25
摩擦与润滑基本知识1. 摩擦产生的原因:当接触表面粗糙度较大时,接触表面凹凸不平处相互啮合,摩擦力的主要因素表现为机械啮合;当接触表面粗糙度较小时,两接触面的分子相互吸引,摩擦力的主要因素表现为表面分子的吸引力。
2. 根据物体的表面润滑程度,滑动摩擦可分为干摩擦、液体摩擦、界限摩擦、半液体和半干摩擦等。
2.1 干摩擦:在摩擦表面之间,完全没有润滑油和其他杂质,摩擦表面之间作相对运动时所产生的摩擦叫做干摩擦。
例如制动闸瓦与制动轮作相对运动时即产生干摩擦。
2.2 液体摩擦:在两个滑动摩擦表面之间,由于充满润滑剂,因而表面不发生直接接触,摩擦发生在润滑剂的内部,叫液体摩擦。
例如空气压缩机的主轴瓦。
2.3 界限摩擦:两个滑动摩擦表面之间由于润滑剂供应不足,无法建立液体摩擦,只能依靠润滑剂中的极性油分子在摩擦表面形成一层极薄的油膜,属于液体摩擦过渡到干摩擦的最后界限。
3. 零件磨损的主要形式:3.1 磨粒磨损:有硬质微粒进入摩擦表面间时,摩擦表面被硬粒切下或擦下切屑而形成的刮伤。
3.2 刮研磨损:由摩擦表面的微观不平度而发生的磨损,主要是较硬的一面对较软的一面形成切削。
3.3 点蚀磨损:表面上有重复的接触应力,在表面上引起微观裂痕,这些裂痕逐渐扩大,形成麻斑式的剥落。
3.4 胶合磨损:摩擦表面润滑油不足,当滑动速度较高、压强过大时,局部的摩擦变形热量和塑性变形热量,使较软的材料局部熔化,粘在另一表面上而被撕下来的磨损。
3.5 塑性变型:表面发生了塑性变形的一种摩擦。
3.6 金属表面的腐蚀:金属表面层氧化,变成松软多孔,易于脱落,丢失耐磨强度的状态。
实例一,摩擦的规律:同类纯金属间的摩擦因数比异类纯金属间和同类合金间的摩擦因数大得多。
4. 影响磨损的因素和减小磨损的途径4.1润滑:轴径与轴瓦建立液体摩擦的必要条件是a、合适的间隙配合,确保油膜形成;b润滑油充足,具备必要的压力和速度;c、轴径要有足够的转速;d、轴径与轴承配合表面的加工精度要适当;e、注油孔和油槽要设计在轴承承载区以外。
摩擦、磨损和润滑§1 摩擦在一定的压力下,表面间摩擦阻力的大小与两表面间的摩擦状态有密切关系,不同摩擦状态下,产生摩擦的物理机理是不同的。
一、摩擦状态按摩擦状态,即表面接触情况和油膜厚度,可以将滑动摩擦分为四大类,干摩擦、边界摩擦(润滑)、液体摩擦(润滑)和混合摩擦(润滑),如图所示。
1.干摩擦两摩擦表面间无任何润滑剂或保护膜的纯净金属接触时的摩擦,称为干摩擦。
在工程实际中没有真正的干摩擦,因为暴露在大气中的任何零件的表面,不仅会因氧气而形成氧化膜,且或多或少也会被润滑油所湿润或受到"污染",这时,其摩擦系数将显著降低。
在机械设计中,通常把不出现显著润滑的摩擦,当作干摩擦处理。
2.边界摩擦两摩擦表面各附有一层极薄的边界膜,两表面仍是凸峰接触的摩擦状态称为边界摩擦。
与干摩擦相比,摩擦状态有很大改善,其摩擦和磨损程度取决于边界膜的性质、材料表面机械性能和表面形貌。
3.液体摩擦两摩擦表面完全被液体层隔开、表面凸峰不直接接触的摩擦。
此种润滑状态亦称液体润滑,摩擦是在液体内部的分子之间进行,故摩擦系数极小。
这时的摩擦规律已有了根本的变化,与干摩擦完全不同。
关于液体摩擦(液体润滑)的问题,将在滑动轴承中进一步讨论。
4.混合摩擦两表面间同时存在干摩擦、边界摩擦和液体摩擦的状态称为混合摩擦。
二、干摩擦理论干摩擦理论主要有:(1)机械理论认为摩擦力是两表面凸峰的机械啮合力的总和,因而可解释为什么表面愈粗糙,摩擦力愈大;(2)和表面分子相互吸引分子-机械理论认为摩擦力是由表面凸峰间的机械啮合力F1两部分组成,因而这一理论可解释为什么当接触表面光滑时,摩擦力也会力F2很大。
但上述两种理论不能解释能量是如何被消耗的;(3)粘着理论;(4)能量理论等。
a) 结点b) 界面剪切c) 软金属剪切a) 结点b) 界面剪切c) 软金属剪切大量的试验表明,工程表面的实际接触面积约为名义接触面积的10-2~10-3,这样接触区压力很高,使材料发生塑性变形,表面污染膜遭到破坏,从而使基体金属发生粘着现象,形成冷焊结点(如图a 所示)。
Chap 11.外摩擦:发生在工件和工具接触面之间,阻碍金属流动的摩擦,称外摩擦,是影响材料变形的重要因素之一。
2.研究摩擦的意义:全世界工业能源的1/3被摩擦损耗掉,失效零件的80%是由于磨损造成的。
因此,发展摩擦学可以有效的节约能源。
Chap21.金属塑性成形过程中摩擦的特点和作用如何?特点:(1)在高压下产生的摩擦;(2)较高温度下的摩擦;(3)伴随着塑性变形而产生的摩擦;(4)摩擦副(金属与工具)的性质相差大。
作用:(1)不利的方面:(a)改变物体应力状态,使变形力和能耗增加;(b)引起工件变形与应力分布不均匀;(c)恶化工件表面质量,加速模具磨损,降低工具寿命,而且降低制品的表面质与尺寸精度;(2)利用:(a)增大摩擦改善咬入条件,强化轧制过程;(b)增大冲头与板片间的摩擦,强化工艺,减少起皱和撕裂等造成的废品。
2.金属塑性成形过程中摩擦的类型及各自的特征是什么?(1)干摩擦:完全没有润滑,金属与工具之间直接接触。
(2)流体摩擦:较厚的润滑层将金属与工具隔开,摩擦发生在流体内部的分子之间,与接触表面的状态无关,与流体的粘度,速度梯度等。
(3)边界摩擦:介于干摩擦和流体摩擦的一种摩擦类型。
(4)混合摩擦:摩擦表面上既存在干摩擦状态,也存在边界摩擦状态和流体润滑状态的一种摩擦类型。
Chap31.金属表层的结构组成如何?金属材料的表面层结构注意:加工硬化层也叫冷硬层和贝氏体层;氧化层又称污染层。
2.何谓表面粗糙度及表示方法有哪些?加工表面上具有的较小间距和峰谷所组成的微观几何形状特性,称为表面粗糙度。
表征材料表面微观几何形状特征,表面微凸体的高度与分布。
表示方法有:(1)轮廓算术平均偏差Ra 该方法能够充分反映表面微观几何特征但对于测量过于粗糙或光滑的表面不适用。
(2)微观不平度十点高度Rz 该方法测量简便,但只反映峰高,不反映峰的几何特征,受测量者主观影响较大,无周期性的宏观误差。
(3)轮廓最大高度Ry 对控制深加工痕迹有重要意义,保证小零件的表面质量,不如Rz反映的几何特征准确。
滚动轴承的摩擦系数与润滑一般条件稳定旋转摩擦系数参考值所示滑动轴承一般0.010.020.10.2各类轴承摩擦系数轴承型式摩擦系数.为便于与滑动轴承比较,滚动轴承的摩擦力矩可按轴承内径由下式计算:M=uPd/2(M:摩擦力矩,mN.m;u:摩擦系数,表1;P:轴承负荷,N;d:轴承公称内径,mm)。
摩擦系数u受轴承型式、轴承负荷、转速、润滑方式等的影响较大,一般条件下稳定旋转时的摩擦系数参考值如下所示。
对于滑动轴承,一般u=0.01-0.02,有时也达0.1-0.2。
复合轴承摩擦系数:0.03~0.18轴承型式摩擦系数uxx球轴承0.0010-0.0015角接触球轴承0.0012-0.0020调心球轴承0.0008-0.0012圆柱滚子轴承0.0008-0.0012满装型滚针轴承0.0025-0.0035带保持架滚针轴承0.0020-0.0030圆锥滚子轴承0.0017-0.0025调心滚子轴承0.0020-0.0025推力球轴承0.0010-0.0015推力调心滚子轴承0.0020-0.00254、滚动轴承润滑方式的选择滚动轴承是一种重要的机械元件,一台机械设备的性能能否充分发挥出来要取决于轴承的润滑是否适当,可以说,润滑是保证轴承正常运转的必要条件,它对于提高轴承的承载能力和使用寿命起着重要作用。
不论采用何种润滑形式,润滑在滚动轴承中都能起到如下作用:(1)减少金属间的摩擦,减缓其磨损。
(2)油膜的形成增大接触面积,减小接触应力。
(3)确保滚动轴承能在高频接触应力下,长时间地正常运转,延长疲劳寿命,(4)消除摩擦热,降低轴承工作表面温度,防止烧伤。
(5)起防尘、防锈、防蚀作用。
因此,正确地润滑对滚动轴承的正常运转非常重要。
滚动轴承的润滑设计的内容主要包括:合理的润滑方法的确定,润滑剂的正确选用,润滑剂用量的定量汁算及换油周期的确定。
滚动轴承润滑一般可以根据使用的润滑剂种类分为油润滑、脂润滑和和固体润滑三大类。
机械设计教案(68)第四章 摩擦、磨损及润滑概述大纲要求:了解机械零件的润滑状态;了解机械零件的摩擦与磨损规律;掌握常用润滑 材料和润滑方式;了解常用密封方法和密封件的性能与选用。
(2+1 学时) 重点内容:机械零件的摩擦状态、磨损规律。
常用润滑油和润滑脂的主要性能指标及选 用原则。
常用润滑方式。
常用密封方法。
常用密封件的性能及选用。
§4―1 摩擦学发展概况Jost 的报告,Tribology诞生,摩擦学研究得到世界各国的广泛重视,成果丰硕。
§4―2 摩擦静摩擦 滚动摩擦摩擦 摩擦 干摩擦动摩擦 滑动摩擦 边界摩擦流体摩擦 混合摩擦边界摩擦 流体摩擦 混合摩擦膜厚比λ≤ 1 λ > 3 1 ≤λ≤ 3F.P.Bowden ,Tabor在 1945年提出摩擦的粘着理论,1963 年又进一步提出修正的粘着 理论。
目前可以解释很多摩擦现象。
边界摩擦理论认为:边界膜 吸附膜 物理吸附膜 (靠润滑油中的极性分子形成――油性)化学吸附膜 (靠润滑油中的化学键结合形成)反应膜(靠润滑油中的 S、P、Cl等与金属表面的化学反应形成――极压性)维持边界膜是相互运动的摩擦表面所必需的,否则将会产生剧烈摩擦。
吸附膜 只在较低温度下存在。
反应膜 只在较高温度下(通常 150 o C~200 o C)才能生成。
反应膜牢固,但有腐蚀性。
添加剂的合理应用 ,见图4-10流体润滑(液体润滑) 动压液体润滑 (滑动轴承中讲述)静压液体润滑§4―3 磨损磨损的一般规律 ,图 4-6 ――磨合阶段、稳定磨损阶段、剧烈磨损阶段 跑合(磨合)的重要性――有合适的磨合期,按一定的规程进行缓慢、逐级加载,并注 意润滑油的清洁,防止磨粒磨损。
磨损按其机理可分为:粘附磨损磨粒磨损机械设计教案(68)疲劳磨损冲蚀磨损(流体磨粒磨损和流体侵蚀磨损)腐蚀磨损(机械化学磨损)§4-3 润滑剂、添加剂和润滑方法(一)润滑剂1.润滑油润滑油的种类润滑油的主要性质指标:⑴ 粘度――表征润滑油流动时的内部阻力。
摩擦磨损实验报告摩擦磨损是机械工程领域中非常重要的研究领域之一。
在工程实践中,物体之间的摩擦磨损现象经常发生,如机械零件在运动过程中的摩擦、轮胎与路面之间的摩擦等。
对摩擦磨损现象的深入研究和分析,可以为制造高品质的机械零件、提高机械传动效率、延长机械零件使用寿命提供基础和方向。
本实验采用球-盘式摩擦磨损试验机,对铜球和铜盘之间的摩擦磨损现象进行了研究。
通过测量铜球的质量变化和盘的重量损失,以及摩擦系数的变化,分析了摩擦磨损现象的特点和规律。
实验步骤1. 准备工作首先将球-盘摩擦试验机接通电源,打开加热器使得试验台的温度达到室温以上。
然后清洁试验台表面,将试验盘和铜球分别放置在试验台面上。
2. 实验操作打开摩擦试验机上的手动阀门,加入适量的机油到试验盘上,使其充分润滑。
然后将铜球放置在试验盘上,用扳手将附加的螺钉旋紧,使其固定在试验盘上。
接下来,打开摩擦试验机的电源,设定实验参数,如载荷大小、试验时间、旋转速率等,开始实验。
在实验过程中,通过计算器统计铜球经历的摩擦圈数,并及时记录实验数据。
3. 实验结束当实验时间达到设定时间后,关闭摩擦试验机的电源,停止试验。
然后将试验盘取下,用精密天平称量铜盘的重量,并计算铜盘的净重。
用精密天平称量铜球的质量,计算其在实验过程中的损失。
实验结果1. 铜球的磨损片断分析通过对摩擦试验机中铜球表面进行显微镜观察,可以看到铜球表面出现了明显的磨损痕迹,表现出不规则的形状和明显的划痕。
磨损片断的呈现表明了实验中铜球表面的摩擦磨损现象相当明显,在实验中出现了明显的摩擦现象。
2. 摩擦系数变化通过对球-盘式摩擦试验机的摩擦系数进行实时记录和卡片绘制,可以看到随着试验时间的延长,铜球与试验盘之间的摩擦系数逐渐变化,并表现出明显的上升趋势。
这说明,在实验中球-盘间的摩擦现象随时间的增加而加剧了。
通过测量实验过程中铜球质量的变化,可以看到铜球在实验过程中出现明显的损失。
在实验60min后,铜球的质量变化量达到了0.35g,这表明摩擦磨损现象相当明显,在实验过程中出现了明显的损耗现象。
机械工程手册第22篇摩擦、磨损与润滑机械工程手册第22篇摩擦、磨损与润滑摩擦、磨损与润滑是机械工程中一个非常重要的课题。
在日常生活和工作中,我们都会接触到各种各样的机械设备和零部件,而摩擦、磨损与润滑正是这些设备和零部件运行中不可或缺的因素。
本篇文章旨在从深度和广度的角度对这一主题进行全面评估,以帮助读者更全面、深刻地理解机械工程中的摩擦、磨损与润滑。
1. 摩擦摩擦是指两个物体间由于相互接触而产生的阻力。
在机械设备中,摩擦往往会给机械零部件的运行造成一定的影响。
摩擦的种类有很多,包括干摩擦、润滑摩擦、滚动摩擦等。
在摩擦的研究中,我们需要考虑摩擦系数、摩擦力的计算方法以及如何减小摩擦对机械设备的影响等问题。
2. 磨损磨损是指机械零部件在长时间摩擦作用下逐渐失去材料并减小其尺寸的现象。
磨损会导致机械零部件的损坏,降低设备的使用寿命,甚至造成设备的故障。
研究磨损的机理、预防磨损的方法以及对磨损进行评估都是非常重要的。
3. 润滑润滑是指通过给机械零部件表面涂抹润滑油或润滑脂等物质,以减小摩擦阻力,防止磨损,并保持机械设备正常运转的过程。
润滑对机械设备的正常工作起着至关重要的作用,因此研究不同润滑方式的特点、选用润滑材料的原则、润滑膜的形成机理等问题都是极为重要的。
以上是对机械工程中摩擦、磨损与润滑这一主题的整体概述。
接下来,我们将从不同角度对这些问题进行更深入的探讨,并结合个人观点和理解进行分析。
深入探讨1. 摩擦摩擦是机械运动中不可避免的现象,但我们可以通过一些手段来减小摩擦对机械设备的影响。
在摩擦的研究中,我们不仅需要了解摩擦系数的计算方法,还需要关注摩擦对机械设备运行稳定性和效率的影响。
我们还可以探讨不同润滑方式对摩擦的影响,以及如何选择合适的润滑方式来减小摩擦阻力。
2. 磨损磨损是机械设备长期运行中不可避免的问题,但我们可以通过一些措施来延缓磨损的发生。
研究磨损的机理和预防磨损的方法至关重要。
我们可以探讨不同材料的磨损性能、不同磨损机理对机械设备的影响,以及如何选择合适的材料和磨损预防方法来延长机械设备的使用寿命。