导数研究报告函数零点问题

  • 格式:doc
  • 大小:724.00 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数研究方程的根

函数与x 轴即方程根的个数问题解题步骤

第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可;

1、已知函数()e ,x f x x =∈R .

(Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;

(Ⅱ) 证明: 曲线y = f (x) 与曲线2112

y x x =++有唯一公共点. 【答案】解:(Ⅰ) f (x)的反函数x x g ln )(=,则y=g(x)过点(1,0)的切线斜率k=(1)g'.

1(1)g'x

1(x)g'==⇒=

k .过点(1,0)的切线方程为:y = x+ 1 (Ⅱ) 证明曲线y=f(x)与曲线12

12++=x x y 有唯一公共点,过程如下. 则令,,121121)()(22R x x x e x x x f x h x ∈---=---= 0)0('',0)0('0)0(,1)('')(',1)('===-=--=h h h e x h x h x e x h x x ,,且的导数因此, 单调递增

时当单调递减时当)('0)(''0;)('0)(''0x h y x h x x h y x h x =⇒>>=⇒<<0)(,0)0(')('===≥=⇒x R x h y h x h y 个零点上单调递增,最多有一在所以

所以,曲线y=f(x)与曲线1212++=

x x y 只有唯一公共点(0,1).(证毕) 2、已知函数()1x a f x x e

=-+(a R ∈,e 为自然对数的底数). (1)求函数()f x 的极值;

(2)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.

(1)()1x a f x e

'=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值.

②当0a >时,令()0f x '=,得x e a =,ln x a =.

(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>.

所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,

故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.

综上,当0a ≤时,函数()f x 无极小值;

当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值.

(2)当1a =时,()11x f x x e

=-+. 直线l :1y kx =-与曲线()y f x =没有公共点,

等价于关于x 的方程111x

kx x e -=-+在R 上没有实数解,即关于x 的方程: ()11x k x e -= (*)

在R 上没有实数解.

①当1k =时,方程(*)可化为

10x e

=,在R 上没有实数解. ②当1k ≠时,方程(*)化为11x xe k =-. 令()x g x xe =,则有()()1x

g x x e '=+. 令()0g x '=,得1x =-,

当x 变化时,()g x '的变化情况如下表:

当1x =-时,()min g x e

=-,同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1

,e ⎡⎫-+∞⎪⎢⎣⎭

. 所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭

时,方程(*)无实数解, 解得k 的取值范围是()1,1e -.

综上,得k 的最大值为1.

3、已知函数232)1(31)(x k x x f +-=

,kx x g -=3

1)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;

(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.

解:(1)由题意x k x x f )1()(2+-='∵)(x f 在区间),2(+∞上为增函数,

∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立

即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k

(2)设3

12)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h

令0)(='x h 得k x =或1=x 由(1)知1≤k ,

①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意…

②当1

x ),(k -∞ k

)1,(k 1 ),1(+∞ )(x h ' + 0 —

0 + )(x h ↗ 极大值3

12623-+-k k ↘ 极小值21-k ↗ 由于02

<,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<0

2212k k k ,解得31-

4、已知函数()()

ln ()x f x e a a =+为常数是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[一1,1]上的减函数.

(I)求a 的值;

(II) 若()21g x t t λ≤++在x ∈[一1,1]上恒成立,求t 的取值范围. (Ⅲ)讨论关于x 的方程2ln 2()

x x ex m f x =-+的根的个数。 解:(I ))ln()(a e x f x

+=是奇函数,则(0)0f =恒成立.0ln()0.e a ∴+=01,0.e a a ∴+=∴=(II )又)(x g 在[-1,1]上单调递减,,1sin )1()(max --=-=∴λg x g ,11sin 2++≤--∴t t λλ只需

.)1(011sin )1(2恒成立其中-≤≥++++∴λλt t 令),1(11sin )1()(2-≤++++=λλλt t h 则⎩⎨⎧≥+++--≤+,011sin 1012t t t ,

01sin 01sin 122恒成立而≥+-⎩⎨⎧≥+--≤∴t t t t t 1-≤∴t . (III )由(I )知,2ln ,)(2m ex x x x x x f +-=∴=方程为

令m ex x x f x x x f +-==2)(,ln )(221,21ln 1)(x x x f -=' , 当],0()(,0)(,),0(11e x f x f e x 在时∴≥'∈上为增函数;