基于BP神经网络的武器装备电气系统故障诊断方法研究
- 格式:pdf
- 大小:179.79 KB
- 文档页数:3
文献综述电气工程及自动化BP神经网络研究综述摘要:现代信息化技术的发展,神经网络的应用范围越来越广,尤其基于BP算法的神经网络在预测以及识别方面有很多优势。
本文对前人有关BP神经网络用于识别和预测方面的应用进行归纳和总结,并且提出几点思考方向以作为以后研究此类问题的思路。
关键词:神经网络;数字字母识别;神经网络的脑式智能信息处理特征与能力使其应用领域日益扩大,潜力日趋明显。
作为一种新型智能信息处理系统,其应用贯穿信息的获取、传输、接收与加工各个环节。
具有大家所熟悉的模式识别功能,静态识别例如有手写字的识别等,动态识别有语音识别等,现在市场上这些产品已经有很多。
本文查阅了中国期刊网几年来的相关文献包括相关英文文献,就是对前人在BP神经网络上的应用成果进行分析说明,综述如下:(一)B P神经网络的基本原理BP网络是一种按误差逆向传播算法训练的多层前馈网络它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阀值,使网络的误差平方最小。
BP网络能学习和存贮大量的输入- 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer),如图上图。
其基本思想是通过调节网络的权值和阈值使网络输出层的误差平方和达到最小,也就是使输出值尽可能接近期望值。
(二)对BP网络算法的应用领域的优势和其它神经网络相比,BP神经网络具有模式顺向传播,误差逆向传播,记忆训练,学习收敛的特点,主要用于:(1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)数据压缩:减少输出向量维数以便于传输或存储;(4)分类:把输入向量所定义的合适方式进行分类;]9[BP网络实质上实现了一个从输入到输出的映射功能,,而数学理论已证明它具有实现任何复杂非线性映射的功能。
电力系统故障诊断技术发展趋势2011-09-28 来源:中国仪表网电力系统故障诊断是通过利用有关电力系统及其保护装置的广泛知识和继电保护等信息来识别故障的元件位置(区域)、类型和误动作的装置,其中故障元件的识别是关键问题。
电力系统故障诊断研究具有重要的现实意义。
随着电力系统规模的不断扩大和结构的日益复杂,大量的报警信息在短时间内涌人调度中心,远远超过运行人员的处理能力,易使调度员误判、漏判,为了适应各种简单和复杂事故情况下故障的快速、准确识别,需要电力系统故障诊断系统进行决策参考。
同时,由于电力系统调度自动化水平不断提高,越来越丰富的报警信息通过各变电所的远程终端装置(RTU),传送到各级电网调度中心,使得利用采集的实时信息进行电力系统故障诊断成为可能。
另外,对于电力系统故障的仿真分析和模拟培训,也可以通过电力系统故障诊断系统来提升调度员的经验和水平。
目前,国内外提出了许多电力系统故障诊断的技术和方法,主要有专家系统、人工神经网络、优化技术、Petri网络、模糊集理论、粗糙集理论、多代理技术。
本文首先综述了电力系统故障诊断的各种研究方法,评述了这些方法中需要改进之处,并进一步指出了该领域所需解决的关键技术问题和主要发展趋势。
它们对构建电力系统故障诊断智能辅助决策系统具有重要的指导意义,对保证电力系统的安全运行、减少事故的经济损失具有重要的理论和现实意义。
一、国内外研究发展状况1.1基于专家系统的诊断方法专家系统(expertsystem)利用专家推理方法的计算机模型来解决问题,己获得日益广泛的应用。
目前,专家系统用于电力系统故障诊断是比较成功的。
根据故障诊断的知识表示和所用推理策略的不同,专家系统主要有2类:1)基于启发式规则推理的系统。
此类系统把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,采用数据驱动的正向推理将所获得的征兆与知识库中的规则进行匹配,进而获得故障诊断的结论。