MEMS电容加速度计
- 格式:ppt
- 大小:2.03 MB
- 文档页数:28
基于MEMS技术的加速度传感器设计与制造加速度传感器是一种能够测量物体加速度的微型传感器。
它被广泛应用于各种领域,如汽车安全系统、虚拟现实设备、运动跟踪设备等。
基于微机电系统(MEMS)技术的加速度传感器具有体积小、能耗低、成本低以及集成度高等优势。
本文将重点讨论基于MEMS技术的加速度传感器的设计与制造。
一、设计阶段在设计基于MEMS技术的加速度传感器之前,需要明确传感器的工作原理和性能指标。
加速度传感器通过测量微小质量在加速度作用下产生的惯性力来测量加速度。
在设计之初,需要明确量程、精度、频率响应等性能指标,以满足特定应用的需求。
1. 惯性力测量原理基于MEMS技术的加速度传感器利用微型质量与惯性力的相互作用关系进行测量。
一般来说,传感器中的微型质量会受到加速度作用下的惯性力,导致压电材料产生压电效应,通过对压电材料的检测,可以得到加速度的测量结果。
2. 量程和精度量程表示传感器能够测量的最大加速度范围。
在选择量程时,需要考虑传感器受力范围。
过大的量程可能导致传感器饱和,而过小的量程则无法满足需求。
精度表示传感器的测量误差,是评估传感器性能的重要指标。
在设计过程中,需要选择合适的压电材料、结构和电路,以提高传感器的精度。
3. 频率响应频率响应是指传感器对于输入信号频率的响应程度。
频率响应决定了传感器在不同频率下的工作性能。
在设计中,需要对传感器的机械结构和电路进行优化,以提高其频率响应。
二、制造阶段在设计完成后,就需要进行基于MEMS技术的加速度传感器的制造。
制造过程中需要关注材料选择、加工工艺和封装方式等因素。
1. 材料选择制造加速度传感器所需的材料应具备良好的力学性能和电学性能。
常用的材料包括硅、玻璃、金属等。
硅是MEMS制造中最常用的材料,具有良好的耐温性能和加工性能。
2. 加工工艺加速度传感器的制造通常采用微电子加工工艺,包括光刻、薄膜沉积、离子刻蚀等步骤。
通过光刻技术,在硅片上制作出加速度传感器的微结构。
MEMS加速度计传感器专用ASIC简介及设计王浩(无锡华润上华科技有限公司设计服务中心,上海,200072)摘要:MEMS做为本世纪前沿技术,有着非常广阔的前景,越来越受到业界专注。
本文介绍了华润上华设计中心研发的3轴加速度计的原理及ASIC电路设计,该电路由前置放大器、增益失调调节电路、模数转换器、温度感应器及数字信号处理电路等组成。
本电路结构简单,精度高,功耗低,能很好地满足系统中惯性及加速度的测量。
关键词:微电机系统;加速度计;模数转换器;前置放大器;温度传感器;增益失调校准MEMS Accelerometer ASIC Introduction and DesignWANG Hao(Design service center,CSMC technologies Corporation,Shanghai200072,China)Abstract:As advanced technology of this century,MEMS has a very broad prospect and is increasingly focused by the industry.This paper introduces the principle and ASIC circuit design of the3-axis accelerometer developed by CSMC Design Center.The circuit consists of preamplifier,gain offset adjustment circuit,analog-to-digital converter, temperature sensor and digital signal processing circuit.The circuit has the advantages of simple structure,high pre-cision and low power consumption,and can well satisfy the measurement of inertia and acceleration in the system. Key words:MEMS;Accelerometer;ADC;PA;TS;GOC1概述传感器是工业4.0时代的重要角色,随着物联网在工业领域的应用推广,越来越多的设备需要采用传感器采集数据,进一步去挖掘数据的价值,通过数据分析提升设备效率,预测一些可能发生的事情,减少停机损失,让工厂更贴近市场需求。
met常见检测方法【实用版3篇】《met常见检测方法》篇1MEMS(Micro-Electro-Mechanical Systems,微机电系统)是一种基于微电子技术的新型传感器技术。
MEMS 加速度计是一种常用的MEMS 传感器,它可以测量物体在三个轴向上的加速度。
以下是几种常见的MEMS 加速度计检测方法:1. 激光束扫描法:利用激光束扫描MEMS 加速度计的表面,通过检测激光束反射回来的时间来计算加速度计的位移。
这种方法具有非接触、高分辨率和快速响应的优点。
2. 电容式测量法:MEMS 加速度计通常采用电容式传感器结构,通过测量电容值的变化来感应加速度。
这种方法具有结构简单、灵敏度高和响应速度快等优点。
3. 压电式测量法:压电材料在电场作用下会发生形变,从而产生电荷。
利用这一原理,可以测量MEMS 加速度计的变形量,从而计算加速度。
4. 磁阻式测量法:利用磁阻效应,通过测量磁阻值的变化来感应加速度。
这种方法具有灵敏度高、结构简单和响应速度快等优点。
5. 光纤光栅法:利用光纤光栅的特性,通过测量光栅的变形量来计算加速度。
这种方法具有非接触、高分辨率和快速响应的优点。
6. 谐振式测量法:利用MEMS 谐振器的振动频率与加速度之间的关系,通过测量谐振器的振动频率变化来计算加速度。
这种方法具有灵敏度高、结构简单和响应速度快等优点。
《met常见检测方法》篇2"MET" 可以指代多种不同的事物,因此需要更具体的上下文才能回答这个问题。
以下是一些可能与"MET" 相关的常见检测方法:1. MET 基因扩增检测:MET 基因扩增是一种常见的致癌机制,特别是在肺癌中。
MET 基因扩增的检测方法包括荧光定量PCR、数字PCR 和NGS 等。
2. MET 蛋白表达检测:MET 蛋白表达通常通过免疫组化(IHC)或免疫印迹(Western blot) 等方法进行检测。
3. MET 突变检测:MET 基因突变也是一种常见的致癌机制。
MEMS压电式加速度计MEMS(Micro-Electro-Mechanical Systems)压电式加速度计是一种利用压电效应测量加速度的传感器。
它基于微纳技术制造而成,具有小型化、低功耗、高性能等优势,在汽车、航空航天、智能手机等领域广泛应用。
MEMS压电式加速度计的主要原理是利用压电材料的特性。
压电材料是一种在受到力或压力作用下会产生电荷的材料。
当压电材料受到加速度作用时,会产生应变,从而产生电荷。
通过测量这个电荷的大小,就可以确定加速度的大小。
MEMS压电式加速度计由压电传感器和信号处理电路组成。
压电传感器通常采用层状压电片结构,其中包含了压电材料和电极层。
当压电材料受到加速度作用时,会产生电荷,在电极间形成电压。
信号处理电路会将这个电压转换为数字信号,并进行处理和分析。
MEMS压电式加速度计具有以下优势。
首先,它是一种小型化的传感器,体积小、重量轻,可以方便地集成到其他设备中。
其次,它具有低功耗的特性,适合于电池供电的应用。
此外,它的响应速度快,可以检测频率较高的加速度变化。
最后,它的测量精度高,可以达到微米级的精度要求。
MEMS压电式加速度计在汽车行业中得到广泛应用。
例如,在车辆的安全系统中,可以通过加速度计来检测车辆的碰撞、翻滚等情况,从而触发安全气囊的打开。
此外,它还可以被用于车辆的悬挂系统、刹车系统等方面的控制和监测。
在航空航天领域,MEMS压电式加速度计可以用于火箭、导弹等飞行器的姿态控制和导航系统中。
通过测量加速度,可以确定飞行器的姿态和位置,从而实现精确的导航和控制。
在智能手机等消费类电子产品中,MEMS压电式加速度计可以用于屏幕旋转、手势识别等功能。
通过感知手机的倾斜、旋转等动作,可以实现屏幕的自动旋转、游戏的控制等功能。
总之,MEMS压电式加速度计是一种应用广泛的传感器,具有小型化、低功耗、高性能等优势。
它在汽车、航空航天、智能手机等领域发挥着重要的作用,为这些领域的发展和进步做出了贡献。
I. 近十年硅微电容式加速度计发展综述I.1. 概述MEMS加速度计具有非常广泛的应用,由于其批量制造低成本的特性,在过去的若干年广泛应用于消费电子市场,取得了巨大的成功。
然而MEMS加速度计的发展并不止步于此,新的研究成果不断出现,使人们相信MEMS加速度计不仅能在其擅长的小型化低成本低功耗方向更进一步,而且还具有冲击中高性能应用的潜力。
MEMS电容式加速度计主要有两种实现形式,一种是面内检测(In-plane),另外一种是面外检测(Out-of-plane),也就是z轴敏感的加速度计。
而两者对比见下表所示:同时在04年以前的工作中,硅微加速度计的精度在不断提高,同时面内和面外敏感的加速度计由于其各有特点,应用目标也不尽相同,因此都取得了很大的进步。
下图为04年前电容式加速度计的发展趋势,可以看出面外传感的加速度计在性能上相对面内传感的结构有优势。
同时加速度计的性能也在按照类似摩尔定律的规律提升。
从05年到15年,硅微电容式加速度计又经历了一段发展时期,展现出了两条相对独立的发展路线,逐渐诞生了一些产品可以适用于高端应用领域。
同时也在低成本方面有了进一步的突破。
I.2. 主要团队成果介绍A. Colibrys结构简介:其目标定位实现一系列高性能MEMS加速度计,可能用于飞行器航姿稳定系统以及更严格的空间应用。
因此采用了面外敏感(z轴敏感)的原理来实现高精度加速度计。
该公司代表性产品RS9000系列采用了一种三层硅的结构,如下图所示:每层硅片采用DRIE(深反应离子刻蚀)技术实现了非常厚的检测质量,从而降低了结构的布朗噪声。
提高了分辨率。
该三层结构中,顶层和底层为固定电极。
中间层为检测质量和支撑系统,同时三层硅通过一种Silicon Fusion Bonding(SFB)的键合技术连接在一起,保证了不同硅片之间的平衡性,同时也可以实现一个密封的腔体,从而能够控制结构所处环境的气体阻尼。
最新动态:在这个基础上,colibrys 2012年发表的文章介绍了一款导航级Sigma-Delta MEMS加速度计。
Colibrys加速度计惯性传感器MS1000 –初步数据表单轴模拟加速度计MS1000是专为惯性应用而设计的最好的同类电容式体硅MEMS加速度计。
其优异的长期零偏和比例因子重复性,低运行偏差,优异的振动行为(VRE)和低噪声,可用于非常精确和具有成本效益的战术级测量。
内部电子电路集成了一个具有差分模拟±2.7V输出的信号调理器,一个内置自检和一个温度补偿传感器。
功能原理框图主要特性 (±10g)•运行中偏置稳定性: 15 µg•非线性: ±0.3% FS•优异的长期零偏重复性: 1.2mg•恶劣环境中的可靠性•低噪声: 34 µg/√Hz•LCC20, 密封包装重要参数, 典型值MS1002 MS1005* MS1010 MS1030* MS1100* Unit加速度全量程± 2 ± 5 ± 10 ± 30 ± 100 g剩余偏置建模误差0.14 0.35 0.7 2.1 7.0 mg长期零偏重复性0.24 0.6 1.2 3.6 12.0 mg运行中偏置稳定性 3 7.5 15 45 150 µg剩余比例因子建模误差120 120 120 120 120 ppm比例因子敏感性1350 540 270 90 27 mV/g轴不对准10 10 10 10 10 mrad分辨率(1Hz) 7 17 34 102 339 µg rms非线性 (IEEE norm) 0.3 0.3 0.3 0.3 0.3 % FS工作温度-40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 °C运行功耗10 10 10 10 10 mW尺寸9 x 9 9 x 9 9 x 9 9 x 9 9 x 9 mm2特色应用(未全列入):航空航天 & 国防: 海军 &陆地:惯性测量单元 (IMUs) 寻北、天线、声纳定位航空电子设备(固定翼和旋翼):FCS,自动驾驶仪,姿态系统(AHRS,待机) ,武器发射系统 - 平台稳定性GPS辅助引导&导航无人机系统ROV制导,武器发射系统,船舶导航和控制移动测绘列车定位(GPS航位推算)短程制导,机器人MWD–随钻导向MS1002 参数除非另有说明,所有数值都是在环境温度(20°C)和 3.3 V 供电 VDD 下测得。
侵彻武器用MEMS大g值加速度计
屈新芬;苏伟
【期刊名称】《兵工自动化》
【年(卷),期】2002(021)003
【摘 要】侵彻武器穿入地面等坚硬物质的加速度可达重力加速度的2万倍至几十
万倍,要求所用加速度传感器既能抗击该工作环境,又能识别冲击与钻入的整个过程.
美国侵彻武器用MEMS大g值加速度计属电容传感器,其工作原理采用2个电参
数完全相同的电容,1个作检测电容,1个作参考电容,将被测加速度值的变化转换成
电容量的变化而实现.该加速度计由结构单元和信号处理电路组成.实验结果表明,尚
需对2组成部分进一步集成,对机械静电阻尼进行优化,对封装深入研究.
【总页数】4页(P7-10)
【作 者】屈新芬;苏伟
【作者单位】中国工程物理研究院,电子工程研究所,四川,绵阳,621900;中国工程物
理研究院,电子工程研究所,四川,绵阳,621900
【正文语种】中 文
【中图分类】TH824.4
【相关文献】
1.MEMS高量程压阻加速度计侵彻双层钢靶性能测试 [J], 石云波;周智君;唐军
2.基于MEMS的高g值加速度计及在炮弹侵彻双层钢靶试验中的应用 [J], 文丰;
石云波;周振;任勇峰
3.弹体侵彻中加速度计的机械滤波仿真研究 [J], 智丹;石云波;陈艳香;杨志才;董胜
飞
4.三维编织复合材料抗侵彻性能--准静态侵彻实验与弹道侵彻有限元计算的对比
[J], 顾伯洪;丁辛
5.侵彻武器用MEMS大G值加速度计 [J], 屈新芬;杨晴;等
因版权原因,仅展示原文概要,查看原文内容请购买
噪声对MEMS加速度计性能的影响研究与分析随着科技的飞速发展,MEMS(微电子机械系统)技术已经被广泛应用于众多领域,例如汽车、飞行器、工业自动化等。
而其中的MEMS加速度计作为一种重要的传感器,在自动化控制、导航等领域有着不可替代的作用。
然而,在日常生活中,我们常常会遭遇不同程度的噪声,而这些噪声也会对MEMS加速度计的性能产生不同的影响。
本文将对噪声对MEMS加速度计性能的影响进行研究和分析。
一、MEMS加速度计的工作原理MEMS加速度计即微机电系统加速度传感器,其核心是微型机械振动系统,通常由微型质量臂、振动臂和微电极组成。
当受到外力作用时,微型质量臂和振动臂之间会发生应变,从而导致微电极输出电压值的变化。
通过对这一变化进行测量,便可以得出加速度的大小和方向。
二、噪声的种类及影响噪声是指外界环境中任何与人们期望采集的信息无关的干扰源。
在MEMS加速度计的应用中,噪声主要包括以下几种。
1.机械噪声机械噪声通常来自MEMS设备所处的机械环境,例如机器或车辆的运动产生的震动、等静压力引起的工作面振动等。
这种噪声会对加速度计的测量精度产生较大的影响,导致输出结果不准确。
2.温度噪声温度噪声是由于温度变化导致的机械和电学性能变化引起的噪声,温度变化不仅可能导致微型机械系统本身发生形状变化,也会带来对周围元器件的热扰动,从而对加速度计性能产生影响。
3.电磁干扰电磁干扰通常由电流流过电导体产生的磁场引起。
这种噪声会影响MEMS加速度计的电路,导致电路输出的信号变得不稳定,从而引起误差。
三、噪声对MEMS加速度计性能造成影响的原因MEMS加速度计是一种高度精密的设备,任何微小的干扰都可能导致性能的下降。
噪声影响MEMS加速度计的性能的主要原因包括以下几个方面。
1.振动引起的惯性力影响振动会造成微弱的不均匀对称性分布,导致其产生惯性力影响,其中最重要的是中心偏位和振动耦合导致MEMS加速度计的输出信号不稳定。