土壤全氮有机碳的测定
- 格式:doc
- 大小:94.50 KB
- 文档页数:12
土壤水解性氮的测定(碱解扩散法)土壤水解性氮,包括矿质态氮和有机态氮中比较易于分解的部分。
其测定结果与作物氮素吸收有较好的相关性。
测定土壤中水解性氮的变化动态,能及时了解土壤肥力,指导施肥。
测定原理在密封的扩散皿中,用1.8mol/L氢氧化钠(NaOH)溶液水解土壤样品,在恒温条件下使有效氮碱解转化为氨气状态,并不断地扩散逸出,由硼酸(H3BO3)吸收,再用标准盐酸滴定,计算出土壤水解性氮的含量。
旱地土壤硝态氮含量较高,需加硫酸亚铁使之还原成铵态氮。
由于硫酸亚铁本身会中和部分氢氧化钠,故需提高碱的浓度(1.8mol/L,使碱保持1.2mol/L的浓度)。
水稻土壤中硝态氮含量极微,可以省去加硫酸亚铁,直接用1.2mol/L氢氧化钠水解。
操作步骤1.称取通过18号筛(孔径1mm)风干样品2g(精确到0.001g)和1g硫酸亚铁粉剂,均匀铺在扩散皿外室内,水平地轻轻旋转扩散皿,使样品铺平。
(水稻土样品则不必加硫酸亚铁。
)2.用吸管吸取2%硼酸溶液2ml,加入扩散皿内室,并滴加1滴定氮混合指示剂,然后在皿的外室边缘涂上特制胶水,盖上毛玻璃,并旋转数次,以便毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿露出一条狭缝,迅速用移液管加入10ml1.8mol/L氢氧化钠于皿的外室(水稻土样品则加入10ml1.2mol/L氢氧化钠),立即用毛玻璃盖严。
3.水平轻轻旋转扩散皿,使碱溶液与土壤充分混合均匀,用橡皮筋固定,贴上标签,随后放入40℃恒温箱中。
24小时后取出,再以0.01mol/LHCl标准溶液用微量滴定管滴定内室所吸收的氮量,溶液由蓝色滴至微红色为终点,记下盐酸用量毫升数V。
同时要做空白试验,滴定所用盐酸量为V0。
结果计算水解性氮(mg/100g土)= N×(V-V0)×14/样品重×100式中:N—标准盐酸的摩尔浓度;V—滴定样品时所用去的盐酸的毫升数;V0—空白试验所消耗的标准盐酸的毫升数;14—一个氮原子的摩尔质量mg/mol;100—换算成每百克样品中氮的毫克数。
土壤学实验教程 (生态学专业适用福建师范大学自编教材 2013年 9月实验规章制度⏹实验前要事先预习,明确实验研究意义、原理及操作过程,特别是所用仪器的操作规程及注意事项。
⏹实验过程中的每一环节必须认真操作,客观分析实验结果,不准随意改动原始数据。
⏹实验室内严禁吸烟,保持室内安静,不得大声喧哗。
⏹节约用水,安全用电,不浪费药品,易燃易爆的物品要远离火源操作和放置。
⏹精心维护所有仪器,凡损坏仪器者应如实地向教师报告,登记并做适当赔偿。
⏹实验过程中废液、废物应倒入指定地方,不准随意乱倒。
⏹实验室内的一切物品,未经本室负责教师批准,严禁带出室外,借物必须办理登记手续。
⏹实验完毕,将各种化学试剂放回原处,清洗仪器用具,清洁实验台面和地面,保持实验室整洁,方可离开。
目录实验一土壤样品采集与处理方法 ······························································(3 实验二土壤水分的测定 ··········································································(6 实验三土壤容重的测定 ··········································································(8 实验四土壤有机碳的测定 ·····································································(10 实验五土壤酸度的测定 ··········································································(13 实验六土壤速效氮的测定 ·······································································(18 实验七土壤速效磷的测定 ·······································································(21 实验八土壤速效钾的测定 ·······································································(28附录 ····································································································(34实验一土壤样品采集与处理方法【实验目的】通过实验,要求学生掌握野外取样方法、样品处理和保存方法。
有机质测定重铬酸钾容量法——外加热法(参考鲍士旦《土壤农化分析》土壤有机质测定方法)1.方法原理在外加热的条件下(油浴的温度为180℃,沸腾5min),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。
本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。
在氧化滴定过程中化学反应如下:2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2OK2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H202.主要仪器油浴消化装置(包括油浴锅和铁丝笼)、可调温电炉、秒表、自动控温调节器。
3.试剂配置(1)1.6mol·L-1(1/6K2Cr2O7,294.18)标准溶液。
称取经130℃烘干的重铬酸钾(K2Cr2O7,GB642-77,分析纯)78.449g溶于水中,定容于1000ml容量瓶中。
(2)H2SO4。
浓硫酸(H2SO4,GB625-77,分析纯)。
(3)0.6mol·L-1FeSO4溶液。
称取硫酸亚铁(FeSO4·7H2O,GB664-77,分析纯,)168.0g溶于水中,加浓硫酸15mL,稀释至1L。
用标准0.4mol·L-1(1/6K2Cr2O7)标定。
0.4mol·L-11/6K2Cr2O7标定:准确称取K2Cr2O7 19.6123g加浓H2SO470ml,冷却后定容。
准确称取三份0.4 mol·L-1 1/6K2Cr2O7各30ml于150ml三角瓶中,加入邻啡罗啉指示剂2-3滴,然后用0.6 mol·L-1FeSO4标定至终点,并计算出其浓度。
(4)指示剂邻啡罗啉指示剂:称取邻啡罗啉(GB1293-77,分析纯)1.485g与FeSO4·7H2O0.695g,溶于100mL水中。
土壤活性有机质测定方法土壤活性有机质分类:由于研究角度和方法有所不同,活性有机质产生了许多的称谓,如易氧化有机质(LOM);生物量有机质(MBOM);溶解有机质(DOM);轻组有机质(LFOM);颗粒有机质(POM)等。
每种指标的测定方法如下:一.易氧化有机质(LOM):土壤与氧化剂作用后,易被氧化、不稳定的有机质称作LOM。
目前常用的氧化剂有两种:K2CrO7与KMnO4。
KMnO4氧化法:(此方法较为常用)称取过100目筛,约含15 mg碳的土壤样品(如:有机碳含量为15g/kg,则称取1g土壤样品)于50 mL塑料旋盖的离心管中;加入25mL,333mmol/L高锰酸钾溶液,振荡1h,然后在时速2000 rpm下离心5 min,将上清液用去离子水以1∶250稀释,在分光光度计565 nm下测定稀释样品的吸光率,由不加土壤的空白与土壤样品的吸光率之差,计算出高锰酸钾浓度的变化,并进而计算出氧化的碳量(氧化过程中1 mmolKMnO4-消耗0.75 mmol 或9 mg碳)。
KMnO4氧化法:(此法是在测定全量有机质基础上降低某些反应条件,衍生出的测定方法)1、水合热法:称取磨细(过0.25 mm筛)风干土1.50 g,放入500 mL三角瓶中,准确加入0.5 mol/L K2CrO7水溶液10.0mL,轻轻转动,使土粒分散。
用量筒将20 mL浓H2SO4迅速直接注入土壤悬浊液,立即小心地转动三角瓶,使土壤与试剂充分混匀 1 min。
把三角瓶放在石棉网上30 min,然后注入水约200 mL,加3~4滴邻菲锣啉指示剂,用0.25 mol/L FeSO4标准溶液滴定过量的K2CrO7。
2、0.1 mol/L K2CrO7—1∶3H2SO4130℃氧化法:在油浴温度为130~140℃时将0.5 g风干土与0.1 mol/L K2CrO7)—1∶3H2SO410.0 mL共煮5 min,冷却后加入30 mL水,用0.1 mol/L FeSO4标准溶液滴定过量的K2CrO7二.生物量有机质(MBOM):生物量有机质是指能被土壤微生物分解利用的部分有机质。
试验步骤目录1、土壤pH 值的测定 (2)2、土壤温湿度的测定 (3)3、土壤有机质的测定 (3)4、全氮的测定 (3)5、无机氮(铵态氮、硝态氮)的测定 (4)6、可溶性有机氮 (4)7、微生物生物量氮的测定 (4)8、土壤酶活性的测定 (5)【1】土壤脲酶测定 (5)【2】蛋白酶活性的测定 (7)【3】硝酸还原酶 (8)【4】亚硝酸还原酶 (9)【5】羟胺还原酶 (10)1、土壤pH值的测定用电位法测定土壤 pH值,水与土之比为 2.5:1。
测定步骤如下:1.待测液的制备:称取通过2mm筛孔的风干土样10g于50m1高型烧杯中,加入25ml无二氧化碳的水或 1.0mol/L氯化钾溶液(酸性土壤测定用)或 0.01mol/L氯化钙溶液(中性、石灰性或碱性土测定用)。
枯枝落叶层或泥炭层样品称5g,加水或盐溶液50ml。
用玻璃棒剧烈搅动1-2min,静止30min,此时应避免空气中氨或挥发性酸的影响。
2.仪器校正:(以雷磁25型酸度计为例)①接通电源,按仪器要求预热。
量程开关层指向7-10或7-14档。
②装上已在蒸馏水中浸泡24h的指示电极——玻璃电极及参比电极——甘汞电极。
③校正。
a.将选择开关置于“pH”档位置。
b.将两电极插入装有标准缓冲液(如待测液为近中性,用pH6.86标准缓冲液;待测液为碱性,用 pH9.18标准缓冲液;待测液为酸性,用 pH4.01标准缓冲液)烧杯中。
c.温度补偿器尖头旋钮应指于待测液的温度位置。
d.将量程开关置于“7-0”档,或“7-14”档。
e.调零点调节器,使指针在pH 7位置。
f.按下读数开关,调节定位调节器,使指针指在标准缓冲液pH值位置。
g.放开读数开关,指针应在7处,如有变动,则调节零点调节器至7处,用蒸馏水冲洗电极。
3.测定①用滤纸将附于电极上的剩余溶液吸干。
②将甘汞电极插在上部清液中,玻璃电极插入土壤悬液中,检查零位。
③按下读数开关,指针所指即为溶液的pH值。
植物碳氮比测定方法
植物碳氮比是指植物中碳元素和氮元素的摩尔比值,是反映植物生长和营养状况的重要指标。
测定植物碳氮比对于研究植物生长、养分利用和土壤肥力有着重要意义。
下面介绍几种常用的植物碳氮比测定方法:
1. 全氮测定法:将植物样品切碎并干燥,然后用硫酸钾溶解,加入氢氧化钠使 pH 值达到 12 左右,再加入硫酸二氧化钼溶液,最后用分光光度计测量吸光度,计算出植物中的总氮含量。
再用元素分析仪测定植物中的总碳含量,即可计算出植物碳氮比。
2. 燃烧法:将植物样品切碎并干燥,然后在高温下将其燃烧,将产生的氮气和二氧化碳分别收集,并用元素分析仪测定其含量,即可计算出植物碳氮比。
3. 气相色谱法:将植物样品提取出有机物,然后用气相色谱仪测定样品中甲烷和氨气的含量,以此计算出碳氮比。
以上几种方法均有其优缺点,选择合适的方法需要考虑样品量、分析精度和实验设备等因素。
- 1 -。
1、土壤有机质的测定(重铅酸钾容量法)上壤有机质既是植物矿质营养和有机营养的源泉,又是上壤中异养型微生物的能源物质,同时也是形成上壤结构的重要因素。
测泄丄壤有机质含虽的多少.在一圧程度上可说明土壤的肥沃程度。
因为上壤有机质直接影响着土壤的理化性状。
测定原理在加热的条件下,用过量的重珞酸钾一硫酸(K=Cr:O;-H:SO.)溶液,来氧化上壤有机质中的碳,C「0二等被还原成C?3,剩余的重路酸钾(K=Cr:O:)用硫酸亚铁(FeSO,)标准溶液滴定,根据消耗的重铭酸钾量讣算出有机碳量,再乘以常数,即为丄壤有机质量。
其反应式为:重珞酸钾一硫酸溶液与有机质作用:2K:Cr:OT+3C+8H:SOF2K:SO:+2Cr: (SOj 3+3C0: t +8H:0硫酸亚铁滴左剩余重锯酸钾的反应:K:CrA+6FeS0, + 7H:S0F K:S0:+Cr: (SO 儿+3Fe: (SO J 严7比0测定步骤:1 •在分析天平上准确称取通过60目筛子(< 0. 25mm)的丄壤样品一0・5g(精确到O.OOOlg),用长条腊光纸把称取的样品全部倒入于的硬质试管中,用移液管缓缓准确加入L 重珞酸钾一硫酸(fcCrA-^SO,)溶液10ml,(在加入约3ml时,摇动试管,以使丄壤分散),然后在试管口加一小漏斗。
2•预先将液体石蜡油或植物油浴锅加热至185—1909,将试管放入铁线笼中,然后将铁线笼放入油浴锅中加热,放入后温度应控制在170—180°C・待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部汕液。
3•冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60 -70ml,保持其中硫酸浓度为1—1,此时溶液的颜色应为橙黄色或淡黄色。
然后加邻啡罗R林指示剂3—4滴,用1的标准硫酸亚铁(FeSO;)溶液滴左,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。
土样团聚体的分离及其有机碳含量测定编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(土样团聚体的分离及其有机碳含量测定)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为土样团聚体的分离及其有机碳含量测定的全部内容。
土样团聚体的分离及其有机碳含量测定1试验目的:通过测定①长期不同施肥土壤团聚体中有机碳含量;②不同团聚体中颗粒有机碳(POC)和矿物结合态有机碳(MSOC)含量;③团聚体中游离有机物(fPOM 即>250µm团粒中的有机碳),团聚体间POM(inter-POM,存在于53—250µm微团聚体间,)和物理保护性有机物(iPOM,存在于微团聚体内部 intra-POM,53-250µm)的有机碳含量,说明长期不同施肥对土壤团聚体分组中有机碳分布的影响。
2试验材料与方法:2.1试验试剂:(1)去离子水(2)比重为1.80g/cm3的NaI比重液:用密度计测定所配比重液比重,直到达到要求既可,即边测边配就可以。
(大概配1升需多少NaI还需在实验中确定,以便后面配液方便)。
(3)0.5%六偏磷酸钠溶液:称5g六偏磷酸钠加入1L蒸馏水中。
2。
2 试验器材:团聚体的湿筛分离:(1)土样预处理:5mm筛、铝盒、电子天平(精确到0。
001)、塑料或玻璃培养皿(直径14cm)、电子天平(精确到0。
01)、胶头吸管、蒸馏水瓶、冰箱。
(2)湿筛分离团聚体:团粒筛分仪,套筛(2000µm、250µm、53µm)、烧杯300ml(装分级后的团聚体烘干用,要知道重量,105℃下烘6小时称重)、烘箱、干燥器(用于冷却烘干样)、3号自封塑料袋(装烘干后的各级团粒)、电子天平(精确到0。
土壤微生物生物量的测定方法1土壤微生物碳的测定方法(熏蒸提取----仪器分析法)1.1 基本原理新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生物生物量碳,用一定体积的0.5mol/LK2SO4溶液提取土壤,借用有机碳自动分析仪测定微生物生物量碳含量。
根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。
1.2 实验仪器自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。
1.3 实验试剂1)无乙醇氯仿(CHCL3);2)0.5mol/L硫酸钾溶液:称取87g K2SO4溶于1L蒸馏水中3)工作曲线的配制:用0.5mol/L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、70ugC/L、100ugC/L系列标准碳溶液。
(其实一般情况下,仪器会自带的标曲,一般不用自己做的)1.4 操作步骤1.4.1 土壤的前处理(过筛和水分调节略)1.4.2 熏蒸称取新鲜(相当于干土10.0g,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。
将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO2,干燥器底部加入少量水以保持容器湿度。
盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分钟。
关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。
1.4.2 抽真空处理熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。
同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。
土壤农化分析常用指标测定方法土壤有机质测定一、原理170~180℃条件下,用一定浓度的K2Cr2O7-H2SO4溶液(过量)氧化土壤有机质,剩余的K2Cr2O7用FeSO4滴定,由消耗的K2Cr2O7量计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。
其反应式如下:K2Cr2O7与有机碳反应K2Cr2O7+8 H2SO4+3C→2Cr2(SO4)3+3CO2+8H2O过量的K2Cr2O7与FeSO4的滴定反应K2Cr2O7+4FeSO4+7 H2SO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O二、试剂1、0.4mol/L(K2Cr2O7-浓H2SO4)标准溶液:称取经130℃烘干的K2Cr2O7(AR)39.2245g61溶于水中,加热溶解后加入1000mL浓H2SO4定容至2000mL。
2、0.2mol/L FeSO4溶液:称取FeSO4(AR)56g溶于水中,加浓硫酸5mL,稀释至1L。
3、石英砂:粉末状。
三、实验步骤称取<0.25mm风干土0.5×××~1.0×××g于干燥试管中。
加入少量水润湿样品,准确沿避缓慢加入10.0mL K2Cr2O7-H2SO4混合液,摇分散土样,加入小漏斗,放入铁丝笼中。
将铁丝笼放入已开启185~190℃油浴锅中(使温度在170~180℃)沸腾准确5分钟;取出稍冷,擦净试管外壁油污(同时做空白实验);冷却后把溶液全部转移到200~250mL三角瓶中(最后体积控制在60~70mL),加入指示剂3滴,用已知浓度的FeSO4滴定。
四、结果计算有机质()100724.11.1100.3%30⨯⨯⨯⨯⨯⨯-=-WcVV式中:V0——滴定空白所用的FeSO4溶液的体积(mL);V——滴定样品所用的FeSO4溶液的体积(mL);c——0.2mol/L FeSO4溶液准确浓度;3.0——1/4碳原子的摩尔质量(g/mol);10-3——将mL换算为L;1.1——氧化校正系数;1.724——土壤有机碳换算成土壤有机质的平均换算系数。
1—4 土壤中氮的测定(全氮、速效氮)1—4。
1 土壤全氮量的测定(重铬酸钾—硫酸消化法)。
土壤含氮量的多少及其存在状态,常与作物的产量在某一条件下有一定的正相关,从目前我国土壤肥力状况看,80%左右的土壤都缺乏氮素。
因此,了解土壤全氮量,可作为施肥的参考,以便指导施肥达到增产效果。
方法原理土壤与浓硫酸及还原性催化剂共同加热,使有机氮转化成氨,并与硫酸结合成硫酸铵;无机的铵态氮转化成硫酸铵;极微量的硝态氮在加热过程中逸出损失;有机质氧化成CO2。
样品消化后,再用浓碱蒸馏,使硫酸铵转化成氨逸出,并被硼酸所吸收,最后用标准酸滴定.主要反应可用下列方程式表示:NH2·CH2CO·NH—CH2COOH+H2SO4=2NH2—CH2COOH+SO2+[O]NH2-CH2COOH+3H2SO4=NH3+2CO2↑+3SO2↑+4H2O2NH2—CH2COOH+2K2Cr2O7+9H2SO4=(NH4)2SO4+2K2SO4+2Cr2(SO4)3+4CO2↑+10H2O(NH4)2SO4+2NaOH=Na2SO4+2H2O+2NH3↑NH3+H3BO3=H3BO3·NH3H3BO3·NH3+HCl=H3BO3+NH4Cl操作步骤1。
在分析天平上称取通过60号筛(孔径为0.25mm)的风干土壤样品0.5-1g(精确到0.001g),然后放入150ml开氏瓶中。
2。
加浓硫酸(H2SO4)5ml,并在瓶口加一只弯颈小漏斗,然后放在调温电炉上高温消煮15分钟左右,使硫酸大量冒烟,当看不到黑色碳粒存在时即可(如果有机质含量超过5%时,应加1—2g焦硫酸钾,以提高温度加强硫酸的氧化能力)。
3。
待冷却后,加5ml饱和重铬酸钾溶液,在电炉上微沸5分钟,这时切勿使硫酸发烟。
4。
消化结束后,在开氏瓶中加蒸馏水或不含氮的自来水70ml,摇匀后接在蒸馏装置上,再用筒形漏斗通过Y形管缓缓加入40%氢氧化钠(NaOH)25ml。
土壤农化分析方法总结1土壤酸碱度(pH)的测定:电位测定法1.1原理:用水或中性盐可以提取出土壤中水溶性或交换性氢离子。
用PH玻璃电极做指示电极,甘汞电极为参比电极,测定浸出液的电位差。
因参比电极电位是固定的,因而电位差的大小决定于试液中的氢离子浓度。
用PH计直接读出PH值。
1.2主要仪器:pH酸度计、小烧杯、搅拌器。
1.3试剂配制:(1)pH4.01标准缓冲液。
称取经105℃烘干的苯二甲酸氢钾(KHC8H4O4) 10.21g,用蒸馏水溶解后稀释至1000ml。
(2)pH6.87标准缓冲液。
称取在45℃烘干的磷酸二氢钾(KH2PO4)3.39g和无水磷酸氢二钠(Na2HPO4)3.53g,溶解在蒸馏水中,定容至1000ml。
(3)pH9.18标准缓冲液。
称3.80g硼砂(Na2B4O7·10H2O)溶于蒸馏水中,定容至1000ml。
此溶液的pH值容易变化,应注意保存。
1.4操作步骤:称过1 mm筛风干土样10.0 g 于50 ml 高型小烧杯中,加入25 ml 无CO2水或1.0 M KCl溶液,搅动2分钟,使土体充分散开,放置半小时,用PH计测定。
既将电极球部插入土壤悬液中轻轻转动,待电极电位达到平衡,按下读数开关,测读PH值。
每测一个样液,用水冲洗电极球部,并用滤纸轻轻吸干水分,再进行第二个样液测定。
测5—6个样品,用PH标准缓冲液校正一次。
2土壤有机质的测定2.1土壤有机碳不同测定方法的比较和选用关于土壤有机碳的测定,有关文献中介绍很多,根据目的要求和实验室条件可选用不同方法。
经典测定的方法有干烧法(高温电炉灼烧)或湿烧法(重铬酸钾氧化),放出的CO2,一般用苏打石灰吸收称重,或用标准氢氧化钡溶液吸收,再用标准酸滴定。
用该方法测定土壤有机碳时,也包括土壤中各元素态碳及无机碳酸盐。
因此,在测定石灰性土壤有机碳时,必须先除去CaCO3。
除去CaCO3的方法,可以在测定前用亚硫酸处理去除之,或另外测定无机碳和总碳的含量,从全碳结果中减去无机碳。
其实还有简易的测定法,方法如下:1.将土壤经风乾过筛处理后,秤取20 g 之土样於50 mL 之烧杯内,加入20 mL 试剂水盖上表玻璃,并且持续搅拌悬浮液5 分钟。
若含有吸水性的土壤或盐类等其它复杂基质,可额外加入更多试剂水,并记录加入水量。
2.静置悬浮液约1 小时,使悬浮液的大部分固体沉淀,必要时利用过滤或离心取得水相层,以pH仪电极测定其pH 值。
这是美国土壤学会的标准测定法之一,只要不是过酸或过碱,基本上这个方法是最简易方便。
土壤农化分析方法总结1土壤酸碱度(pH)的测定:电位测定法1.1原理:用水或中性盐可以提取出土壤中水溶性或交换性氢离子。
用PH玻璃电极做指示电极,甘汞电极为参比电极,测定浸出液的电位差。
因参比电极电位是固定的,因而电位差的大小决定于试液中的氢离子浓度。
用PH计直接读出PH 值。
1.2主要仪器:pH酸度计、小烧杯、搅拌器。
1.3试剂配制:(1)pH4.01标准缓冲液。
称取经105℃烘干的苯二甲酸氢钾(KHC8H4O4) 10.21g,用蒸馏水溶解后稀释至1000ml。
(2)pH6.87标准缓冲液。
称取在45℃烘干的磷酸二氢钾(KH2PO4)3.39g和无水磷酸氢二钠(Na2HPO4)3.53g,溶解在蒸馏水中,定容至1000ml。
(3)pH9.18标准缓冲液。
称3.80g硼砂(Na2B4O7·10H2O)溶于蒸馏水中,定容至1000ml。
此溶液的pH值容易变化,应注意保存。
1.4操作步骤:称过1 mm筛风干土样10.0 g 于50 ml 高型小烧杯中,加入25 ml 无CO2水或1.0 M KCl溶液,搅动2分钟,使土体充分散开,放置半小时,用PH计测定。
既将电极球部插入土壤悬液中轻轻转动,待电极电位达到平衡,按下读数开关,测读PH值。
每测一个样液,用水冲洗电极球部,并用滤纸轻轻吸干水分,再进行第二个样液测定。
测5—6个样品,用PH标准缓冲液校正一次。
2土壤有机质的测定2.1土壤有机碳不同测定方法的比较和选用关于土壤有机碳的测定,有关文献中介绍很多,根据目的要求和实验室条件可选用不同方法。
全氮的单位一、引言全氮是指样品中所有氮的总量,包括有机氮和无机氮。
全氮是环境监测、水质评价、土壤肥力评价等领域中常用的指标之一。
本文将介绍全氮的单位及其相关知识。
二、全氮的单位1. 常用单位全氮的常用单位有毫克/升(mg/L)、克/立方米(g/m³)、毫克/千克(mg/kg)等。
其中,毫克/升和克/立方米主要用于水体中全氮的浓度表示,而毫克/千克则主要用于土壤中全氮含量的表示。
2. 转换关系不同单位之间可以通过简单的转换关系进行转换。
以水体为例,1 mg/L 的全氮含量相当于1 g/m³ 的全氮含量。
而在土壤中,1 mg/kg 的全氮含量相当于1 ppm(即1 mg/kg)的含量。
三、全氮测定方法1. 常见方法常见的测定全氮的方法包括:(1)凯氏消解法:适用于土壤样品中总有机碳和总氮含量分析;(2)Kjeldahl 法:适用于各种样品中总氮含量的分析;(3)氧化法:适用于水体和废水中总氮含量的分析。
2. 测定注意事项在进行全氮测定时,需要注意以下几点:(1)样品的制备:样品应当经过充分的混合和均质化处理,以确保测定结果的准确性;(2)仪器的选择:不同方法需要不同的仪器设备,选择合适的仪器设备可以提高测定结果的准确性;(3)实验操作规范:严格按照操作规范进行实验操作,避免误差产生。
四、全氮在环境监测中的应用1. 水质监测在水质监测中,全氮是评价水体富营养化程度和污染程度的重要指标之一。
通过对水体中全氮含量和其它指标如总磷、溶解氧等参数进行监测和分析,可以评价水体富营养化程度、藻类生长情况以及污染源等。
2. 土壤肥力评价在土壤肥力评价中,全氮是评价土壤肥力状况和作物生长情况的重要指标之一。
通过对土壤中全氮含量的测定,可以评价土壤的肥力状况,指导农业生产和土地利用。
五、结论全氮是环境监测、水质评价、土壤肥力评价等领域中常用的指标之一。
全氮的单位有毫克/升、克/立方米和毫克/千克等。
土样团聚体的分离及其有机碳含量测定1试验目的:通过测定①长期不同施肥土壤团聚体中有机碳含量;②不同团聚体中颗粒有机碳(POC)和矿物结合态有机碳(MSOC)含量;③团聚体中游离有机物(fPOM即>250µm团粒中的有机碳),团聚体间POM(inter-POM,存在于53-250µm微团聚体间,)和物理保护性有机物(iPOM,存在于微团聚体内部intra-POM,53-250µm)的有机碳含量,说明长期不同施肥对土壤团聚体分组中有机碳分布的影响。
2试验材料与方法:2.1试验试剂:(1)去离子水(2)比重为1.80g/cm3的NaI比重液:用密度计测定所配比重液比重,直到达到要求既可,即边测边配就可以。
(大概配1升需多少NaI还需在实验中确定,以便后面配液方便)。
(3)0.5%六偏磷酸钠溶液:称5g六偏磷酸钠加入1L蒸馏水中。
2.2 试验器材:团聚体的湿筛分离:(1)土样预处理:5mm筛、铝盒、电子天平(精确到0.001)、塑料或玻璃培养皿(直径14cm)、电子天平(精确到0.01)、胶头吸管、蒸馏水瓶、冰箱。
(2)湿筛分离团聚体:团粒筛分仪,套筛(2000µm、250µm、53µm)、烧杯300ml(装分级后的团聚体烘干用,要知道重量,105℃下烘6小时称重)、烘箱、干燥器(用于冷却烘干样)、3号自封塑料袋(装烘干后的各级团粒)、电子天平(精确到0.001)。
(3)团聚体中总POC、fPOC、inter-POC和intra-POC的提取超声波清洗机、研钵、烘箱、干燥器、电子天平(精确到0.01)、100ml离心管、真空抽气泵和干燥器、离心机、胶头吸管、300ml(装重组烘干用,要知道重量,105℃下烘6小时称重)、铝盒(装轻组烘干用,要知道铝盒重量,60℃下烘12小时称重)、离心管50ml(用于重组的六偏磷酸钠分散iPOM和砂粒用)2.3试验步骤:(1)土样预处理:过筛:原装风干土样过5mm筛,至于自封袋中备用。
土壤全氮的侧定-半微量开式法试剂(1)硫酸。
ρ=1.84g·mL-1,化学纯;(2)10mol·L-1NaOH溶液。
称取工业用固体NaOH420g,于硬质玻璃烧杯中,加蒸馏400mL溶解,不断搅拌,以防止烧杯底角固结,冷却后倒入塑料试剂瓶,加塞,防止吸收空气中的CO2,放置几天待Na2CO3沉降后,将清液虹吸入盛有约160mL无CO2的水中,并以去CO2的蒸馏水定容1L加盖橡皮塞。
(3)甲基红—溴甲酚绿混合指示剂。
0.5g溴甲酚绿和0.1g甲基红溶于100mL乙醇中。
(4)20g·L-1 H2BO3—指示剂。
20g H2BO3(化学纯)溶于1L水中,每升H2BO3溶液中加入甲基红—溴甲酚绿混合指示剂5mL并用稀酸或稀碱调节至微紫红色,此时该溶液的pH为4.8。
指示剂用前与硼酸混合,此试剂宜现配,不宜久放。
(5)混合加速剂。
K2SO4:CuSO4:Se=100:10:1即100g K2SO4(化学纯)、10g CuSO4 ·5H2O(化学纯)、和1g Se粉混合研磨,通过80号筛充分混匀(注意戴口罩),贮于具塞瓶中。
消煮时每毫升H2SO4加0.37g混合加速剂。
(6)0.02 mol·L-1(1/2 H2SO4)标准溶液。
量取H2SO4(化学纯、无氮、ρ=1.84g·mL-1)2.83mL,加水稀释至5000mL,然后用标准碱或硼砂标定之。
(7)0.01 mol·L-1(1/2 H2SO4)标准液。
将0.02 mol·L-1(1/2 H2SO4)标准溶液用水准确稀释一倍。
(8)高锰酸钾溶液。
25g高锰酸钾(分析纯)溶于500mL无离子水,贮于棕色瓶中。
(9)1:1硫酸(化学纯、无氮、ρ=1.84g·mL-1)。
硫酸与等体积水混合。
(10)还原铁粉。
磨细通过孔径0.15mm(100号)筛。
(11)辛醇。
测定步骤(1)称取风干垃圾(通过孔径0.149mm筛)1.0000g[含氮约1mg],同时测定土样水分含量。
(2)垃圾消煮①不包括硝态氮和亚硝态氮的消煮:将土样送入干燥的开氏瓶(或消煮管)底部,加少量无离子水(0.5~1mL)湿润土样后,加入加速剂2g和浓硫酸5mL,摇匀,将开氏瓶倾斜置于300W变温电炉上,用小火加热,待瓶内反应缓和时(10~15min),加强火力使消煮的垃圾液保持微沸,加热的部位不超过瓶中的液面,以防瓶壁温度过高而使铵盐受热分解,导致氮素损失。
消煮的温度以硫酸蒸气在瓶颈上部1/3处冷凝回流为宜。
待消煮液和垃圾粒全部变为灰白稍带绿色后,再继续消煮1h。
消煮完毕,冷却,待蒸馏。
在消煮土样的同时,做两份空白测定,除不加垃圾外,其他操作皆与测定土样相同。
②包括硝态氮和亚硝态氮的消煮:将土样送入干燥的开氏瓶(或消煮管)底部,加高锰酸钾溶液1mL,摇动开氏瓶,缓缓加入1:1硫酸2 mL,不断转动开氏瓶,然后放置5min,再加入1滴辛醇。
通过长颈漏斗将0.5g(±0.01g)还原铁粉送入开氏瓶底部,瓶口盖上小漏斗,转动开氏瓶,使铁粉与酸接触,待剧烈反应停止时(约5min),将开氏瓶置于电炉上缓缓加热45min(瓶内土液应保持微沸,以不引起大量水分丢失为宜)。
停火,待开氏瓶冷却后,通过长颈漏斗加加速剂2g和浓硫酸5mL,摇匀。
按上述①的步骤,消煮至土液全部变为黄绿色,再继续消煮1h。
消煮完毕,冷却,待蒸馏。
在消煮土样的同时,做两份空白测定。
(3)氨的蒸馏①蒸馏前先检查蒸馏装置是否漏气,并通过水的馏出液将管道洗净。
②待消煮液冷却后,用少量无离子水将消煮液定量地全部转入蒸馏器内,并用水洗涤开氏瓶4~5次(总用水量不超过30~35mL)。
若用半自动式自动定氮仪,不需要转移,可直接将消煮管放入定氮仪中蒸馏。
于150mL锥形瓶中,加入2020H2BO3—指示剂混合液5mL(注4),放在冷凝管末端,管口置于硼酸液面以上3~4cm处(注5)。
然后向蒸馏室内缓缓加入10 mol·L-1NaOH溶液20 mL,通入蒸汽蒸馏,待馏出液体积约50mL时,即蒸馏完毕。
用少量已调节至pH 4.5的水洗涤冷凝管的末端。
③用滴定馏出液由蓝绿色至刚变为红色。
记录所用酸标准溶液的体积(mL)。
空白测定所用酸标准溶液的体积,一般不得超过0.4mL。
4.2.2.5结果计算土壤全氮(N)量(g·kg-1)=()334210100.14)21(⨯⨯⨯⨯--mSOHcVV式中:V——滴定试液时所用酸标准溶液的体积(mL);V0——滴定空白时所用酸标准溶液的体积(mL);c——0.01 mol·L-1(1/2 H2SO4)或HCl标准溶液浓度;14.0——氮原子的摩尔质量(g·mol-1);10-3——将mL换算为L;m——烘干土样的质量(g)。
两次平行测定结果允许绝对相差:土壤全氮量大于1.0 g·kg-1时,不得超过0.005%;含氮1.0~0.6 g·kg-1时,不得超过0.004%;含氮<0.6 g·kg-1时,不得超过0.003%。
注释:注1.对于微量氮的滴定还可以用另一更灵敏的混合指示,即0.099g溴甲酚绿和0.066g甲基红溶于100mL乙醇中。
如要配制成20g·L-1 H2BO3—指示剂溶液:称取硼酸(分析纯)20g溶于约950mL 水中,加热搅动直至H2BO3溶解,冷却后,加入混合指示剂20mL混匀,并用稀酸或稀碱调节至紫红色(pH约5),加水稀释至1L混匀备用。
宜现配。
注2.一般应使样品中含氮量为1.0~2.0mg,如果土壤含氮量在2 g·kg-1以下,应称土样1g;含氮量在2.0~4.0 g·kg-1者,应称土样0.5~1.0g;含氮量在4.0g·kg-1以上,应称土样0.5g。
注3.开氏法测定全氮样品必须磨细通过100孔筛,以使有机质能充分被氧化分解,对于粘质土壤样品,在消煮前须先加水湿润使土粒和有机质分散,以提高氮的测定效果。
但对于砂质土壤样品,用水湿润与否并没有显著差别。
注4.硼酸的浓度和用量以能满足吸收NH3为宜,大致可按每亳升10g·L-1 H2BO3能吸收氮(N)量为0.46mg计算,例如20 g·L-1 H2BO3溶液5mL最多可吸收的氮(N)量为5×2×0.46=4.6mg。
因此,可根据消煮液中含氮量估计硼酸的用量,适当多加。
注5.在半微量蒸馏中,冷凝管口不必插入硼酸液中,这样可防止倒吸减少洗涤手续。
但在常量蒸馏中,由于含氮量较高,冷凝管须插入硼酸溶液,以免损失。
土壤有机质测定重铬酸钾容量法——外加热法方法原理在外加热的条件下(油浴的温度为180℃,沸腾5分钟),用一定浓度的重铬酸钾—硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。
本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。
在氧化滴定过程中化学反应如下:2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2OK2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。
从表3—4 中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。
例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下:滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。
但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终占时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。
从表3-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。
指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。
因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,其反应如下:加入磷酸等不仅可消除Fe3+的颜色,而且能使Fe3+/ Fe2+体系的电位大大降低,从而使滴定曲线的突跃电位加宽,使二苯胺等指示剂的变色电位进入突跃范围之内。
根据以上各种氧化还原指示剂的性质及滴定终点掌握的难易,推荐应用2-羧基二苯胺。
价格便宜,性能稳定,值得推荐采用。
主要仪器油浴消化装置(包括油浴锅和铁丝笼)、可调温电炉、秒表、自动控温调节器。
试剂(1)0.008mol·L-1(1/6K2Cr2O7)标准溶液。
称取经130℃烘干的重铬酸钾(K2Cr2O7,GB642-77,分析纯)39.2245g溶于水中,定容于1000ml容量瓶中。
(2)H2SO4。
浓硫酸(H2SO4,GB625-77,分析纯)。
(3)0.2mol·L-1Fe SO4溶液。
称取硫酸亚铁(Fe SO4·7H2O,GB664-77,分析纯)56.0g溶于水中,加浓硫酸5mL,稀释至1mL。
(4)指示剂①邻啡罗啉指示剂:称取邻啡罗啉(GB1293-77,分析纯)1.485g)与Fe SO4·7H2O0.695g,溶于100mL水中。
②2-羧基代二苯胺(O-phenylanthranilicacid,又名邻苯氨基苯甲酸,C13H11O2N))指示剂:称取0.25g试剂于小研钵中研细,然后倒入 100mL小烧杯中,加入0.18mol·L-1NaOH溶液12mL,并用少量水将研钵中残留的试剂冲洗入100mL小烧杯中,将烧杯放在水浴上加热使其溶解,冷却后稀释定容到250mL,放置澄清或过滤,用其清液。
(5)Ag2SO4。
硫酸银(Ag2SO4,HG3-945-76,分析纯),研成粉末。
(6)SiO2。
二氧化硅(SiO2,Q/HG22-562-76,分析纯),粉末状。
操作步骤称取通过0.149mm(100目)筛孔的风干土样0.1~1g(精确到0.0001g),放入一干燥的硬质试管中,用移液管准确加入0.8000mol·L-1(1/6K2Cr2O7)标准溶液5mL (如果土壤中含有氯化物需先加入Ag2SO40.1g),用注射器加入浓H2SO45mL充分摇匀,管口盖上弯颈小漏斗,以冷凝蒸出之水汽。