机载卫星通信设备BIT设计方案
- 格式:pdf
- 大小:711.91 KB
- 文档页数:4
TDMA卫星通信方式:第一部分TDMA卫星通信方式第一部分1.前言时分多址(TDMA)通信方式,是各站用所发数字信号调制同一无线频率,仅在特定的分配时间里发出电波进行通信的方式.这一通信方式的优点是,可充分发挥无线通信多址联接的特长,能用一部调制解调器与多个站同时进行通信,可使转发器工作在饱和状态(转发器输出的利用率达100)'缺点是收发信速度快,收发信须取得同步.近年来,随着数字通信技术的发展,卫星通信的趋向是FDMA方式将由从低速到高速得到广泛应用的TDMA方式所取代.此外,"用户无线通信",移动通信也在向TDMA方式的方向发展TDMA方式的硬件技术,初期是采用分立集成电路(Ic)'现在是低速处理部分采用微处理器,高速处理部分采用大规模集成龟路(LSI).在系统上,国际通信的同步基准——网同步等问题正在逐步得到解决,用一个波束覆盖工作区的单波束卫星通信将发展为用多个波束覆盖一个或多个工作区的多波束通信.在硬件技术方面,正在研究一种多波束卫星通信方式所必需的卫星交换——时分多扯(SS--TDMA)设备,这种设备能在星上选择交换输入输出突发信号.另外,为了能在在星上进行再生中继,各国正在研究星载TDMA设备.但如前所述,TDMA通信尚需如下一些复杂的功能,如压缩扩展,收发信同步,报头的生成以及与发信信号的合成,收信信号的分离等,这些技术尚欠成熟,需进一步研究开发.本文就TDMA方式的历史,实用TDMA卫星通信方式的原理及未来展望进行讨论.首先讨论的内容是TDMA通信的原理,包括同其他多址联接(MA)方式的比较,指出'I'DMA通信方式的特点及TDMA通信的发展概况.接着讨论TDMA通信的基本技术——收信同步,捕获发信同步及同步码的检出,并讨论TDMA通信用的突发脉冲^剐解调器及纠错方式.最后讨论TDMA设备构成,设备和系统举例,以及未来展望和研究课题.此外,往与TDMA设备一起使用的数字话音内插法(DSI),因不属TDMA方式特有技术,故本文不予涉及.2.概述±.1TDMA通信原理卫星通信中,位于能"旨到"同一颗卫星范围内的地球站,互相可』通过卫星直接进行通信.卫星通信的一大特点就是能做到多个站其用一个转发器互相进行通信(多址联接).多个站共用一个转发器,可避免通信电路之间的干扰.TDMA方式就是多址联接方式之一.TDMA通信的概念如图l所示.这一概念就是规定出收发信信号的基本周期——1TDMA帧(一定长度的时间,图1中表示为Tf),用在此帧内分配到的一对时隙跟对方站进行通信.下面讨论TDMA通信的基本功能.图1TDMA通信的概念(a)信息的压缩/扩展在TDMA通信中,是通过间歇(突发)发出无线电路信号进行信息的收发(通信)的, 因为是按时间分割使用同一额率的卫星电路,所以无线电路的传输速度远远高于可发送的数字信号的传输速度(通常为几倍~几千倍).为进~TDMA通信,须将终端或地面网发来的数字信号在时间轴上加以压缩,变换成高速突发信号.反过来,在收端接收到的是突发性高速信号,须扩展成与终端或地面网的时钟速度相同的信号.这种对信号的压缩/扩展过程是TDMA通信的特点之一.(b)同步为使各站发出的突发信号不致在卫星上相互重叠,须对各发信定时进行控制.为此各站具有共同的定时基准,设定发信定时(发信时间基准),须把各站到卫星的距离差考虑进去.从收信信号里检出特定的信号(基准站同步突发脉冲)作为时间基准的称作收信同步,决定向卫星发送信号的定时称作发信同步(或突发同步).例如,图1中的地球站一1是向TDMA帧的时隙T发出信号,而与地球站一1通信的地球站一n则向时隙T发送信号.这样一来,各站的发信信号在卫星的TDMA帻上按T.~T的顺序收信而不重台,卫星接收的信号被转发器放大后再发给各地球站.因此,上例中在时隙T.发出的信号,在地球站一n由时隙T接收.反过来,地球站一l接收地球站一n在时隙T发来的信号.(c)突发脉冲调制解调器.TDMA通信中,收和发的信号是突发脉冲信号,所以,稠铷解诩器颓在突发状态下工2作.这种调制解调器与收发连续信号的调制解调器不同,调制器只在有发信信号时才输出调翩信号,所以需要开关电路,而解调器为了能解调出收到的突发脉冲信号,需具有利用设置在各突发脉冲报头中的载波恢复码(cR)和时钟再生码(BTR)高速再生出载波和时钟的功能.(d)保护时间虽说是静止卫星,其实卫星在其轨道保持位置范围内还是经常秽动的.随着卫星与地球之间距离的变动(多普勒额移),收发信频率也会变动.所以,只要不是采用下述的SMAX网同步方式,突发脉冲串之间就需要一段无信号时间(保护时间GT).保护时间具有代表性的构成要素示于表1.它们的具体数值需根据卫星位置的保持精度,发信同步周期地球站H寸钟的AFC方式等参数分别加以研究.(e)帧结构决定TDMA帧周期的主要因素有:通信信号的容许时延"和压缩/扩展部分的存储量,建立TDMA同步基准的基准站同步突发脉冲的发信周期,突发脉冲(回路)的分配周期及修正各站发信时间位置的同步控制周期.通常多构成与上述3种周期相应的3层帧,TDMA的帧结构举例如图2所示.图中基帧(2ms)用于基准站同步突发脉冲的发信周期,复帧(20ms)用于分配突发脉冲的周期,面超帧(128Ores)用于控发信同步的周期.囊1保护时问的主要构成因素(--般站)单波束通信方式多波束通信方式反馈电路闭台电路(反馈电路)卫星距离变化率oo0发信时钟频率误差(簇差)o0O多昔勒频率误差o0O数字处理突发位置误差检出O(基准站)O(一般站)0(基准站)量亿误差l收发信同步控制O0O每转发器系统*在星上距离差O"OO基准站突发脉冲同步误差O,.●只在转换转戋器时需要鲁÷转戋器.星藏中继器构成帻的脉冲分为基准站同步脉冲(R,R),一般站同步腺冲(N),数据脉冲(D)及起始捕获脉冲,分别用于TDMA时间基准(从两个基准站发信)一般站时间基准,可发信的信息及起始捕获时的信号传输..备突发脉冲串中带有称作报头的前置码.报头由上述的保护时间(GT),载波恢复码3Ir———————一tI._l————————J匝巫囹丑强羹揎突靛(.I匝卫量硇丑工j]固和峙捕获寰发订订图2TDMA帕结拘举例时钟再生码蕨同步码(uW:独特鹃)构成.在这一部分进行载波恢复,时钟再生后,捡出同步码,从而获得TDMA同步时间基堆或应接收的数据的时阊位置.TDMA帧效率q可用下式定义:rt=(1帧中的有效信息毕特数/'1帧中的全部信息毕特数)×100(1)因此,为提高帧效率,就须缩短不直接传输信息的报头长度.具体地说,就是耍缩短CR,BTR及uw的长度,这就给在突发状态下工作的解调器提出一个研究课题.从提高填效率的观点来看,缩短保护时间也是很重要的.对应各种速度的信息及业务量变动的帧有两种构成方法,一是假设各数据脉冲串长度一定,使每1帧发出的脉冲数变化}二是假设每1帧的突发次数不变,而改变突发脉冲帚的长度.前者每一次突发都需要报头,视在帧效率比后者差,但在收发由各种速度构成的信息的场合,特别是在每呼叫一次分配一次电路的按需分配(DA)的场合,不会像晶者那样出现所谓"掉牙"现象,实质上可达到高的帧效率.反之,后者在周定分配电路的预分配(PA)龅场台,实质上也能达到高的帧效率.电路分配有如下几种方法:收发信信道均可改变的按需分配(DA),只可改变收信的耳标地址(vD),其可改变发信的起始地址(V0)后两者总称为变址(vA).(f)与地面无线通信的差别上面介绍了TDMA通信的原理,但卫星TDMA通信与地面无线(用户无线)TDMA 通信之间有授大的差别.卫星TDMA通信中,卫星位置的变动(多普勒频移),常引起传播路径及收信时钟的变化,而在地面无线TDMA通信中,只要不是以移动站为对象,就没有这种现象.传播路径长度厦收信时钟的变化,使得卫星ToMAtO.信比地面无线TDMA~信复杂多了,如保护时间的设定,从收端随时间位置变化的信号中检出同步码,跟踪发端卫星帧的实时发信定时的控制以及把收到的多普勒频移时钟换读威无多普勒频移时钟等.2.2与其他多址联接方式的比较多址联接方式,除TDMA方式外,还有频分多址联接(FDMA)及要求抗干扰,高保密的军用码分多址联接(CDMA)方式.(a)FDMAFDMA是将卫星转发器的频带加以分割分配给各地球站的方式.各地球站把发信及收信频带按对分配互相进行通信.顿分多址联接方式,根据用载波发送的信号是单渡遭还是多波遭,又分为每载波单路《s'CPC)和每载设多路(MCPc)方式(b)CDMA是给各地球站分配特定的码,再用这个码去调制(二次调制)通常的调制(例如PsK 调制等,在CDMA方式中往往称作一次调制)信号互相进行通信(两个调翩顺序反过来也可以)的方式.本方式与其他方式的不同点是,用一个转发器把频率和时间重叠的信号放大后,再向地球站发信.收信地球站用与发信站相弼的码从这些信号中进行逆调制,获得希望的一次调制信号,接着进行普通的解调,获得基带信号.在逆调制过程中,希望信号被压缩到硪来的带宽,所以,希望信号功率中只有处理增益部分得到了放大(BW/2f'其中,BW是扩展后的带宽,f是信号时钟频率).另一方面,其他电路信号及热噪声在逆调制过程中均不变化而保持一定,所以一次解啊器输入载噪比(CNR)只因处理增益被放大而得到了改善.表2按传输信号,复用等对上述多址联接方式加以分类,各自的特点示于表3.这些方式各有优缺点,可根据各种不同的目的加以采用.裘2多址联接方式的分类方式传输信号复用谓翩方式举侧同时放大载波数/转发器SCPC模拟/数字——低速FM/PSK}(连续或突发状态)FDMA多载波低速FM/PSKMCPC模拟/数字FDM/TDM(连续或囊发状态)TDMA数字TDM~PS.K(突发状态)单载波多载波CDMA,数字TDMPSK(突发状态)(频谱有重叠)表8多址联接方式的特点方式;优点j缺点FDMA(1)调制器工作速度低(2)不需复杂同步即可避免同其他站发信信号的干扰,容易实现多址联接.(3)可采用小地球站通信.(1)每一转发器的传输容量小(随着载波数的增加,传输效率明显降低).(2)不易适应各种速率的数字信号传输.5可最大限度利用转发器的发(D蛊(2)信功l(1)需采取同步措施避免同其他站发j信信号的干扰,基带处理电路复杂.容易传输各种速率的数字信号.(3)可灵活处理各站电路容量的变化.(4)容易实现多波束通信方式的波束间联接.(2)发信功率须与每一转发器相对应.I(1)固定分配各站波道(码),并可I(1)-N要宽频带转发器. CDMA!按需分配.!(2)频谱利用率(bit/s/Hz)低.每一转发器的传输容量是表示多址联接方式性能的重要参数之一,如图3所示,它是随接续数(/转发器)而变化的.FDMA方式中,传输容量随接续数的增加而降低,这是因为,由于转发器的非线性,多载波间的交调噪声随载波的增加——转发器输入功率的增加而增大了.因此,收发话音信号时,有时要采用话音激活技术(只在有话音时才向卫星发出信号),以降低转发器输入功率.CDMA方式的传输容量比其他两种方式小,这是因为转发器的频带受到限制,得不到充分的处理增益,波道数受到期燃,墓■靖辑图3多址复用联接方式中,载波敷与侍输容量(/转发器)的关系举例载波问干扰噪声的限制.另一方面,在TDMA方式中,由一个转发器间歇放大的载波是单波,所以,即使接续站数增多,也不需要转发器输入的回遇,只是由于TDMA~信所必需的报头等额外消耗,才使传输容量降低一些.由此可知,以通常的站数为前提的场台,TDMA多址联接方式可使每一转发器的传输容量达到最大同FDMA方式相比,TDMA方式有如下特点:(i)可最大限度利用卫星转发器发信功率如前所述,FDMA方式是用一个转发器放大多/卜载波,不能让转发器在饱和区工作,而TDMA方式是用一个转发器只间歇放大单载波,所以可让转发器在饱和区工作. (ii)容易传输各种速率的数字信息TDMA方式传送各种速度的信号不需特殊的电路,只增减每一单位时间(具体为帧周期)发出突发脉冲串的次数或改变突发脉冲串的长度就行了.(iii)容易实现多波束通信的波束间联接在多波束卫星通信方式中,用不同波束覆盖的地球站,如果不在星上连接各通信信道,6就不能相互通信]~TDMA方式各突发脉串间有保护时间,所以,通过在这个保护时间里换接各通信信道,很容易设定波束间的通信信道.2.8发展历史(1)历史TDMA~.信方式的开发史可追朔到1966年,当时,美国通信卫星研究所开发出第一颗卫星,通过它作了6Mb/8TDMA(MATE~)的实验'".实验证明,TDMA突发脉冲串间的保护时间是个现实的数值(本侧为2O0ns以下),明确了可以有效实现TDMA系统.1868年日本NTT电气通信研究所进行了13.644Mb/sTDMA(SMAX)方式的实验l;大致在同一时期,美国通信卫星研究所开发了突发脉冲串长度可变~5OMb/s~ITDMA(M—AT—1)方式,并做出了有实用价值的TDMA~备|而日本KDD研究所开发了传输速度为50Mb/s的时间一预分配TAsITDAA(TTT)方式1970年进行了后两者的双向实验.sMAx的最大特点是,在星上各站发来的突发脉冲串的时钟相位一致(取得网同步).从而,在此方式中,保护时间用一个码元即可,帧效率高.sMAx方式在电路分割方法上实现TVD方式,与PA方式相比,接续站数在20个以上,传输效率高一倍.MAT—l方式采用突发脉冲串长度可变的收信地址可变方式(1次突发/站),它是按需决定各站突发脉冲串长度的.TTT方式不是按需而是按照电路分配时间表改变突发脉冲串长度,基本上是固定分配方式,通过采用时分话音内插(TASI)技术,电路效率相当于按需分配方式.后来,各国进行了各种开发研究,世界上最早的商~TEMA系统t(传输容量为400 路话音)是加拿大于1976年推出的.日本NTT公司1982年应用了TDMA--60M和TDMA--1OOM方式",这两种方式与SMAX方式同样采用时钟完垒同步方式和低电平捕获法.前者的传输容量约为60Mb/s(480×64kb/s双向话音波道),是世界上头一个应用30/2OGHz频段的商用卫星通信系统.另一方面,国际通信卫星组织的TDMA~星通信方式,也在经过种种变迁之后选择了下述两种系统,~3OMHz带宽的转发器传输速度为6OMb/7s[;~TDMA系统]~72MHz 带宽的转发器传输速度为120Mb/s的TDMA系统.从1985年起,国际通信卫星组织一v号卫星带有效字话音内插的12OMb/sTDMA 方式投入了商用.(2)研究开发要点TDMA方式的研究开发要点集中在如下两个方面;①如何在频带受限情况下使传输容量达到最大}②如何在卫星发信功率受限情况下使传输容量达到最大.下面从传输容量(/转发器)的观点来讨论TDMA方式的性能.(a)频率受限条件下的传输容量传输容量T.(信遒)可用压缩率C.(BR/BR:TDMA时钟/信道发信信号时钟), TDMA~1纠错编码率R表示如下式:T:?R?e.(2)7转发器频带(B)是有限的,设额谱利用率为(bit/s/I-Iz),则BR-根据Bw和由式(3)加以限制:BR.≤B?"qf(3)因此,传输容量T可使用这些参数用式(4)表示:T=-q.?R?B/BR:(4)(b)功率受限条件下的传输容量在传输容量由发信功率决定的场合,TDMA时钟速度受到上限的限制.设电路中断指标E./N'.(dB)及c,N'dB)分别表示为(E/N.3TA(C/N3h,两者健BR.及B有式(5)的关系,为在一定C/N条件下获得所希望的E/No,BR存在有上限. [E/N.]=[C/N]一[BR/B](5)式中,[BR/B]=101gI.(BR-/B,)因此,传输容量T受式(6)的限制.T1-R?(B/BR)?1O([C/N]一[E/N.]T)(6)从以上分析可以说,TDMA通信的研究历史,主要是如何使式(5)和式(6)给出最大的T的历史.例如,为使1大,需缩短①载波恢复码,②时钟再生码,③独特码,④保护时间,并需@加长帻的长度'为缩短④和②,需研究具有快捕和低滑动特性的突发脉冲解调电路l为缩短@,需研究同步码,为缩短④,需研究高稳定时钟,AFC/APC方式及同步方法,另外,@的帧长随着随机存贮器(RAM)容量的增大而加长,大大有助于提高帧效率. 同样,为提高频谱利用率(1),需开发在非线性电路中误码率(或E/N.>恶化小且频谱宽度窄的调制解调方式,研制LB2相相移键控(PSK)效率更高的4相PSK 方式,偏移i相PSK方式,编码PSK方式等.当然,除了上述研究外,为使设备更经济,体积更小,并扩大其应用领域,还进行了LST化和IC化的研究.文献(1)宫:"新版衡星通信工学",予于(昭17)(2)川橘:"南星通信",j口于社(昭51).(3)J.J.SpiIker:"Digitalcommunicationsbysatellite".Prentice—Hall (1977).(4)宫:南星通信技衍,鬣子通信学会(昭55).(5)K.Feher:"Digitalcommunicationssate11ite/Earthstationengineeti—ng".Prentice—Hall(1981)-(6)V?K?Bhargava,D.Haccoun.R.MatyasandP?Nusph"DigitalCOrn—municationsbysatellite",JohnWileY&Sons(1981)(7)宫内,野坂:"岁衡星通信",麈棠因耆(昭60)8(8)官肉,更田,山本:"榭星通信一,柬柬鼋视大学出版局(昭6o,.(9)W.L.PritchardandJ.A.Scfuln:"SatelliteCommunicationSystems Engineering",Prentice—Hall(1986)?(10)CCI'J■RecommendationG.114"MeanOne-wayPropagationTime"? (I1)T?SekimotoandJ.Puentel"ASatdliteTimeDivisionMultiPleA- ceessExperiment",mun.,CON[-16,8(196g).(12)M?Takada,S.Nakamura,S?Kondo,Y.InoutM.OnoandH.Ikeda: "NewPCM-TDMASatelliteCommunicationSystemandV affable Destination",Int.Conf.onDigitalSatelliteCommunication(1969).(I3)W.G.Schmitt,O.G.Gabbard,E.R.CacciamaniW.G.MailletandW? W.Wu:MA T一1.INTELSTsExperimental700-channelTDM—A/DASYstem",ibid.(14)K.Nosakal"TTTSystem50MbpsPCMTDMASystemithTims PrcassignmentandTASIFeatures",ibid.(15)R.K.K*Aan:"TheTELESATTDMASystemICC75(June1975).(16)K.MiY auchi,H.FuketaandY.Watanab~:"DigitalTechniquefor DomesticSatolliteCommunicationSystemsofNTT",7thAIAA(1978).(17)INTELSA TTDMA/DSISYSTEMSPECIFICATIONBG一42—65E (1981).(上接18页)(20)T.FujinoandK.Fu.~iwara:"Multi—dimensionalSoft—DecisionUnique WordDetectiOn",ICC86(1985).(21)守茸,梗本,力口藤I"低c/N时汇糟时五:一,一F横出特性0一改善法", 昭6l信学穗全大,sl6—8。
中华人民共和国通信行业标准卫星通信地球站设备安装工程YD 5017-96 施工及验收技术规范1 总则1.0.1 本规范是卫星通信地球站设备安装工程中施工质量检查、随工检验和竣工验收的技术依据,适用于新建、扩建和改建的卫星通信建设工程。
本规范主要根据国内卫星通信TDM/QPSK/FDM(2Mbit/s)系统进网技术要求YD/T613-93、国内卫星通信网工程电路验收指标、国际通信卫星组织的卫星通信地球站标准(IESS—306,lESS—307,IESS—308)和操作指南(SSOG—306,SSOG—307,SSOG—308)等标准文件,结合工程实践编写。
1.0.2 凡本规范未列入的安装规格标准,应按照《国内卫星通信地球站工程设计规范》(GB—××××—××)办理。
1.0.3 各类设备的安装规格及所采用的器材规格程式均应符合本规范和施工图设计的有关要求。
原有设备的迁装和换装,其设备指标应根据甲乙双方共同协商的测试项目和指标要求办理。
1.0.4 本规范未包括的特殊项目及其指标要求,可由建设单位与设计、施工单位共同协商,拟定临时技术要求,在指定工程中试用并报部备查。
1.0.5 在施工过程中应严格执行本规范,施工单位要加强质量检查工作,确保工程质量。
建设单位应遵照本规范的要求及时检查施工艺和技术指标测试情况,并组织随工检验及签证。
1.0.6工程竣工验收工作应执行部颁《邮电基本建设工程竣工验收办法》的规定,其验收项目和方法应按本规范办理。
凡发现不符合本规范的项目,应查明原因,分清责任。
凡由于施工不良造成的,应由施工单位返修至合格为止。
1.0.7施工单位制订的操作规程应贯彻本规范的要求,不得与本规范相抵触。
2 施工前的准备2.1 对机房的要求2.1.1 开工前必须按工程设计对机房提出的工艺及有关要求进行检查,具备下列条件方可开工。
a)与机房有关房屋的土建已完成,室内墙壁干燥,地面及机房的内部装修完毕,机房门窗应齐全、严紧,能闭锁;b)预留孔洞、预埋件应符合施工图设计要求;c)天线基础已完成并符合施工图设计的要求;1)天线基础高度、方位及承载强度符合设计要求。
卫星通信地⾯系统构成卫星通信地⾯系统构成⼀、卫星通信地⾯系统构成卫星通信地⾯系统⼀般采⽤包括信关站、⽤户站等构成的星形结构。
信关站的容量较⼤,⼀般配置⼤⼝径天线,⽤于连接地⾯⽹络和卫星馈电波束。
⽤户站通过通信卫星与信关站进⾏通信。
通常,⽤户站向信关站传输的流量较⼩,⽽回程数据流量较⼤。
除此之外,卫星通信地⾯系统还包括⽹络运营中⼼,⽤于管理卫星⽹络和⽤户服务。
信关站⽤于连接卫星和地⾯⽹络,主要由射频分系统、基带分系统组成,基带分系统⼜包括卫星调制解调器、接⼊服务⽹、web 加速器、⽹络路由和安全系统等。
1.1.1 射频分系统信关站射频分系统包括天线、射频部件和中频部件等。
信关站天线尺⼨较⼤,⼀般直径达数⽶到⼗余⽶;射频部件包括滤波器、低噪放、功放等,中频部件主要为上下变频器件。
射频分系统与基带分系统交换中频信号,⽤于将卫星发送来的射频信号变换⾄中频,将基带分系统发来的中频信号上变频⾄射频并放⼤辐射到卫星上。
1.1.2 基带分系统调制解调器系统:对⽤户终端和信关站路由器及服务器之间的数据流量进⾏管理和控制,同时也可实现对前向、反向链路的功率、频率以及卫星⽹络带宽的管理。
接⼊服务⽹络(ASN):ASN 负责认证和授权⽤户访问,并实施服务质量(QoS)管理。
Web 加速器:⽤于提⾼基于 HTTP 和TCP 的应⽤程序的吞吐量和最终⽤户性能的软件,加速服务器位于⽹关,客户端软件嵌⼊⽤户终端。
⽹络安全和路由:此⼦系统实施流量安全和 QoS 策略,并将所有管理和数据流量路由到⽬标⽹络⽬的地。
它包括路由器、L2/L3 交换机、防⽕墙、流量整形器和 AAA、DHCP、TFTP 和 NTP 服务器。
1.2 ⽤户站典型⽤户站主要包括三部分:天线、室外单元(ODU)、室内单元(IDU)。
室外单元由馈源、接收设备(低噪声放⼤器和下变频器)、发射设备(⾼功放和上变频器)组成。
室外单元通过中频连接电缆连接到室内单元。
室内单元包括基带接收设备(中频下变频器和解调器)、基带发射设备(中频上变频器和调制器)等。
名词解释:1 卫星通信:是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。
2 宇宙通信:以宇宙飞行体或通信转发体为对象的无线电通信称为宇宙通信。
3 摄动:对静止卫星来说,由于地球结构的不均匀和太阳,月亮的引力的影响等,将使卫星轨道参数随时变化,不断偏离出开卜勒法则确定的理想轨道,产生一定的漂移这种现象称为摄动.填空:1 宇宙通信包括三种形式:(1)(地球站)与(宇宙站)之间的通信,(2)(宇宙站)与(宇宙站)之间的通信,(3)通过宇宙站的(转发或反射)进行地球站之间的通信。
2 卫星通信系统通常由(通信卫星),(地球站)(跟踪遥测及指令系统)和(监控管理系统)等四大部分组成。
3 通信卫星主要由(天线分系统),(通信分系统),(遥测指令系统),(控制分系统)和(电源分系统)等五部分组成。
简答:1卫星通信与其它通信手段相比,具有哪些明显的特点?答:(1)通信距离远,且费用与通信距离无关;(2)覆盖面积大,可进行多址通信;(3)通信频带宽,传输容量大;(4)机动灵活;(5)通信线路稳定可靠,传输质量高。
2 简述卫星通信的基本工作原理。
答:首先,经市内通信线路送来的电话信号,在一个地球站的终端设备内进行多路复用,成为多路电话的基带信号,在调制器中对中频载波进行调制,然后经上变频器变换为微波频率f1的射频信号,再经功率放大器、双工器和天线发向卫星。
这一信号经过大气层和宇宙空间,信号强度将受到很大的衰减,并引入一定的噪声,最后到达卫星。
在卫星转发器中,首先将微波频率f1的上行信号经低噪声接收机进行放大,并变换为微波频率较低的下行频率f2的信号,再经功率放大,由天线发向收端地球站。
由卫星转发器发向地球站的载波频率f2的信号,同样要经过大气层和宇宙空间,也要受到很大的衰减,最后到达收端地球站。
由于卫星发射功率较小,天线增益较低,所以收端地球站必须用增益很高的天线和噪声非常低的接收机才能进行正常接收。
卫星通信关键技术研究卫星通信关键技术研究小组成员:冉文,李鹏翔,杨亚飞小组分工:冉文(学号:15085208210015):程序审查,论文校订李鹏翔(学号:15085208210008):收集资料,编辑文献,结果分析杨亚飞(学号:15085208210023):仿真程序设计专业:电子与通信工程引言卫星通信系统具有覆盖范围广、受地理环境因素影响小等特点,从而使得卫星通信成为当前通信领域中迅速发展的研宄方向和现代信息交换强有力的手段之一。
目前,下一代卫星通信网络正朝着更高速率、更大带宽的方向发展,其与地面通信网络联合组成全球无缝覆盖的信息交换网络。
随着空间通信技术的飞速发展和业务需求的急速增长,有限的无线资源与多媒体业务不断提高的QoS要求之间的矛盾曰益尖锐,使得设计可以支持高速、高质量多媒体传输的资源管理策略成为当前空间通信领域关注的重点。
同时,卫星组网技术直接关系到卫星网络能否实现全球覆盖以及卫星网络的可扩展性问题,是卫星通信系统研宂中的关键问题。
相应的,路由协议、链路切换等都要针对卫星网络的特点重新设计,以星上路由交换为核心的新型卫星通信系统是空间通信领域的另一个研究重点。
卫星通信是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。
它是微波通信和航天技术基础上发展起来的一门新兴的无线通信技术,所使用的无线电波频率为微波频段(300MHz~300GHz,即波段lm~1min)。
这种利用人造地球卫星在地球站之间进行通信的通信系统,则称为卫星通信系统,而把用于现实通信目的的人造卫星称为通信卫星,其作用相当于离地面很高的中继站,因此,可以认为卫星通信是地面微波中继通信的继承和发展,是微波接力通向太空的延伸。
卫星通信是空间通信的一种形式,它主要包括卫星固定通信、卫星移动通信和卫星直接广播三大领域。
由于卫星通信具有覆盖面大、频带宽、容量大、适用于多种业务、性能稳定可靠、机动灵活、不受地理条件限制、成本与通信距离无关等优点。