智能控制第6章 模糊神经系统网络
- 格式:ppt
- 大小:549.50 KB
- 文档页数:14
第一章:1、传统控制方法包括经典控制和现代控制,是基于被控对象精确模型的控制方式,缺乏灵活性和应变能力,适于解决线性、时不变性等相对简单的控制。
2、智能控制的研究对象具备以下的一些特点:不确定性的模型、高度的非线性、复杂的任务要求。
3、IC(智能控制)=AC(自动控制)∩AI(人工智能) ∩OR(运筹学)4、AC:描述系统的动力学特征,是一种动态反馈。
AI :是一个用来模拟人思维的知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。
OR:是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。
5、智能控制:即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境信息的变化作出适应性,从而实现由人来完成的任务。
6、智能控制的几个重要分支为模糊控制、神经网络控制和遗传算法。
7、智能控制的特点:1,学习功能2,适应功能3,自组织功能4,优化功能8、智能控制的研究工具:1,符号推理与数值计算的结合2,模糊集理论3,神经网络理论4,遗传算法5,离散事件与连续时间系统的结合。
9、智能控制的应用领域,例如智能机器人控制、计算机集成制造系统、工业过程控制、航空航天控制和交通运输系统等。
第二章:10、专家系统:是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。
11、专家系统的构成:由知识库和推理机(知识库由数据库和规则库两部分构成)12、专家系统的建立:1,知识库2,推理机3,知识的表示4,专家系统开发语言5,专家系统建立步骤。
13、专家控制:是智能控制的一个重要分支,又称专家智能控制。
所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。
14、专家控制的基本结构:15、专家控制与专家系统的区别:1,专家控制能完成专门领域的功能,辅助用户决策;专家控制能进行独立的、实时的自动决策。
智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点.4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能.1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人—机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务.3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
第六章模糊控制系统教学内容首先讲解用于控制的模糊集合和模糊逻辑的基本知识;然后讨论模糊逻辑控制器的类型、结构、设计和特性;最后举例说明FLC的应用。
教学重点模糊控制的数学基础,模糊逻辑控制器的类型、结构、设计和特性。
教学难点对定义的准确把握和理解,模糊逻辑控制器的类型、结构、设计和特性。
教学方法通过对数学基础的牢固掌握,对模糊控制进行深入的理解,课堂教授为主。
教学要求掌握用于控制的模糊集合和模糊逻辑的基本知识;模糊逻辑控制器的类型、结构、设计和特性6.1 模糊控制基础教学内容模糊集合、模糊逻辑定义及运算;模糊逻辑推理一般方法;模糊判决方法。
教学重点模糊集合、模糊逻辑定义及运算;模糊逻辑推理一般方法;模糊判决方法。
教学难点对抽象公式的理解、熟练运算;模糊逻辑推理一般方法。
教学方法课堂教授为主,课后作业巩固。
教学要求掌握模糊集合、模糊逻辑定义及运算;模糊逻辑推理一般方法;能够熟练使用模糊判决方法。
6.1.1 模糊集合、模糊逻辑及其运算设为某些对象的集合,称为论域,可以是连续的或离散的;表示的元素,记作={}。
定义6.1模糊集合(fuzzy sets)论域到[0,1]区间的任一映射,即: →[0,1],都确定的一个模糊子集;称为的隶属函数(membership function)或隶属度(grade of membership)。
也就是说,表示属于模糊子集F的程度或等级。
在论域中,可把模糊子集表示为元素与其隶属函数的序偶集合,记为:若U为连续,则模糊集F可记作:若U为离散,则模糊集F可记作:定义6.2模糊支集、交叉点及模糊单点如果模糊集是论域U中所有满足的元素u构成的集合,则称该集合为模糊集F的支集。
当u满足,则称此模糊集为模糊单点。
定义6.3模糊集的运算设A和B为论域U中的两个模糊集,其隶属函数分别为和,则对于所有,存在下列运算:(1) A与B的并(逻辑或)(2) A与B的交(逻辑与)(3) A的补(逻辑非)定义6.4直积(笛卡儿乘积,代数积) 若分别为论域中的模糊集合,则这些集合的直积是乘积空间中一个模糊集合,其隶属函数为:定义6.5模糊关系若U,V是两个非空模糊集合,则其直积U×V中的一个模糊子集R称为从U到V的模糊关系,可表示为:定义6.6复合关系若R和S分别为U×V和V×W中的模糊关系,则R和S的复合是一个从U到W的模糊关系,记为:定义6.7正态模糊集、凸模糊集和模糊数定义6.8语言变量定义6.9常规集合的许多运算特性对模糊集合也同样成立。
模糊神经网络算法研究一、引言模糊神经网络算法是一种结合了模糊逻辑和神经网络的计算模型,用于处理模糊不确定性和非线性问题。
本文将通过研究模糊神经网络的原理、应用和优化方法,探索其在解决实际问题中的潜力和局限性。
二、模糊神经网络算法原理1. 模糊逻辑的基本概念模糊逻辑是处理模糊信息的数学工具,其中包括模糊集合、隶属函数、模糊关系等概念。
模糊集合用来描述不确定或模糊的概念,而隶属函数表示一个元素属于某个模糊集合的程度。
模糊关系则用于表达模糊集合之间的关系。
2. 神经网络的基本原理神经网络是一种由人工神经元构成的计算系统,以模仿生物神经系统的运作方式。
其中的神经元接收输入信号、进行加权处理,并通过激活函数输出计算结果。
神经网络通过训练和学习来调整连接权值,以实现对输入输出之间的映射关系建模。
3. 模糊神经网络的结构和运算模糊神经网络结合了模糊逻辑的不确定性处理和神经网络的学习能力,并采用模糊化和去模糊化的过程来实现输入输出之间的映射。
常见的模糊神经网络结构包括前馈神经网络、递归神经网络和模糊关联记忆。
三、模糊神经网络算法应用1. 模糊神经网络在模式识别中的应用模糊神经网络在模式识别领域有广泛应用,例如人脸识别、手写识别和语音识别等。
由于模糊神经网络对于模糊和不完整信息的处理能力,能够更好地应对现实场景中的噪声和不确定性。
2. 模糊神经网络在控制系统中的应用模糊神经网络在控制系统中的应用主要体现在模糊控制器的设计和优化。
通过模糊控制器的设计,可以实现对复杂系统的自适应控制和非线性控制。
同时,模糊神经网络还可以与PID控制器相结合,提高系统的控制性能。
3. 模糊神经网络在预测和优化中的应用模糊神经网络在时间序列预测和多目标优化等问题中也有广泛应用。
例如,使用模糊神经网络来预测股票市场的趋势和交通流量的变化,以及应用模糊神经网络来优化生产调度和资源分配等问题。
四、模糊神经网络算法优化1. 模糊神经网络参数优化模糊神经网络的性能很大程度上依赖于其参数的设置。
模糊神经网络简介
模糊神经网络(Fuzzy Neural Network)是一种集结模糊数学和神经网络学习规则的人工神经网络。
它能够学习和识别模糊的、不确定的和模糊的数据集,这样就可以应对实际问题中模糊的、不精确的和模糊的数据。
介绍
模糊神经网络的基本元素是神经元,它们连接组成了一个网络。
每个神经元都有一个输入和一个输出,输入可以是模糊或者非模糊的。
神经元的输出可以是逻辑值或者模糊值。
模糊值是由神经元的激活函数决定的。
激活函数通常是Sigmoid 函数、ReLU函数或者其他类型的函数。
与传统神经网络不同的是,模糊神经网络的权重和阈值可以是模糊的。
模糊神经网络的学习方法可以分为监督学习和非监督学习。
监督学习指的是在给定输入和输出对的情况下,计算权重和阈值。
常用的算法有误差反向传播算法和梯度下降算法。
非监督学习指的是在没有输入和输出对的情况下,根据相似性和差异性自动聚类。
模糊神经网络广泛应用于模糊控制,模糊模式识别,时间序列预测和多目标最优化等领域。
它在工业、农业、医疗和金融等领域中也有着广泛的应用。
例如,模糊神经网络可以应用于电力系统稳定性分析、车辆指挥控制、医疗诊断和金融分析等。
结论
总之,模糊神经网络是一种重要的人工神经网络,它具
有模糊性、可学习性和鲁棒性等特点。
它已经广泛应用于各种领域。
在未来,随着人工智能的发展,模糊神经网络也将发挥越来越重要的作用。
智能控制系统中的神经网络控制算法研究智能控制系统,作为现代智能技术的重要应用领域之一,正逐渐在各个行业和领域中得到广泛应用。
智能控制系统的核心是算法,而神经网络控制算法作为其中一种重要技术手段,正在引起学术界和工业界的高度关注和广泛研究。
本文将从神经网络控制算法的基本原理、应用领域以及未来的发展方向等角度进行深入探讨。
第一部分:神经网络控制算法的基本原理神经网络控制算法是通过模拟人类神经系统的工作原理,将模糊控制、遗传算法等多种智能算法与控制系统相结合,形成一种新的控制方法。
神经网络控制算法的基本原理是神经元之间通过权值的连接来传递信号,并通过训练来调整神经元之间的连接权值,从而实现对控制系统的优化调节。
神经网络控制算法的基本结构包括输入层、隐层和输出层。
输入层接收外部的控制信号,隐层是神经网络的核心部分,通过神经元之间的连接进行信息传递和处理,输出层将隐层的结果转化为实际控制信号。
第二部分:神经网络控制算法的应用领域神经网络控制算法具有很强的适应性和优化能力,因此在许多领域都得到了广泛应用。
在工业自动化领域,神经网络控制算法可以对复杂的工业过程进行建模和控制,例如化工过程中的温度、压力和流量等参数控制。
在机器人技术领域,神经网络控制算法可以实现机器人的智能控制和路径规划,提高机器人的自主性和适应性。
在金融领域,神经网络控制算法可以用于股票价格预测和交易策略优化,提高投资者的收益率和风险控制能力。
第三部分:神经网络控制算法的未来发展方向虽然神经网络控制算法已经在多个领域得到应用,但仍然面临一些挑战和难题。
首先,神经网络控制算法的鲁棒性和可解释性需要进一步提高。
目前的神经网络模型往往是黑箱模型,难以解释其内部的决策过程,这在某些关键领域(如医疗和安全)可能会受到限制。
其次,神经网络控制算法在处理大规模数据和复杂问题时的计算复杂度较高。
如何提高算法的计算效率和准确性是一个亟待解决的问题。
此外,在人工智能和大数据的推动下,深度学习等新兴技术也对神经网络控制算法的发展提出了新的要求和机遇。