精密机械系统的设计原理、性能和系统
- 格式:ppt
- 大小:1.08 MB
- 文档页数:68
机械精度设计基础机械精度设计基础机械精度是指产品或部件的尺寸、形状、位置、互相关系、表面性质和运动特性等方面满足用户要求的程度。
机械精度设计是机械领域中重要的一部分,需要掌握一定的基础知识与技能。
本文将在机械精度设计基础的主题下,对机械设计中常用的一些概念和方法进行介绍。
一、机械精度概念1.尺寸精度:产品或部件尺寸与设计尺寸的偏差。
2.形状精度:产品或部件的形状与设计形状的偏差。
3.位置精度:两个或多个相邻部件之间位置误差的程度。
4.互相关系精度:各部分之间的相互关系的精度。
5.表面精度:产品或部件表面质量的指标。
6.运动特性:产品或部件在运动过程中的性能。
机械精度的评定标准是根据国际标准或用户需求,如果不同厂家产品在同样的标准下可以有不同的机械精度指标。
二、机械精度控制方法1.公差控制法公差是产品零件加工、组装中的误差限度,例如在铣削、钻孔、切削、折弯等加工过程中,由于操作错误或机器本身的限制,导致偏差产生。
通常,需要对各个部件的偏差进行控制,也就是通过制定公差限制偏差范围的大小,来保证产品的机械精度。
公差控制方法的优点在于能够使制造成本降低,缺点是需要对零部件的生产加工过程进行大量检测和测试。
2.基准控制法基准控制法是根据国际或国内标准,通过对特定零件进行设计制定的精度标准。
在机械设计中,有时候需要对某个特定的零件进行衡量其机械精度的标准,即基准。
以此为基础可以对整个芯片芯片构件系统进行设计。
通过基准控制法对零件机械精度进行管理和控制,可以有效控制零部件之间的误差,使得整体机械精度提高,增加产品的质量和可靠性。
三、常用的机械精度设计工具1.零件分析法零件分析法是一种通过对加工零件零件生成的误差范围和影响因素进行分析的方法。
通过这种方法,可以确定零件的加工要素,检查机床、刀具等生产设备及其使用技能程度。
在精度高的产品生产过程中,采用零件分析法进行检测和调整可以得到比较准确且合理的产品精度。
2.设计分析法设计分析法是一种针对机械设计中的误差和偏差进行分析、优化和纠正的方法。
基于反步滑模的高精度机械系统控制高精度机械系统在现代工业中扮演着重要的角色,它们被广泛应用于精密加工、无人驾驶、航天航空等领域。
然而,由于环境干扰、摩擦力、不确定性因素等的存在,高精度机械系统的控制变得更加困难。
为了解决这个问题,许多研究者提出了各种控制算法,其中基于反步滑模的方法成为了一种有效的控制方式。
本文将介绍基于反步滑模的高精度机械系统控制,并阐述其原理与应用。
一、基于反步滑模的控制原理基于反步滑模的控制是一种非线性控制方法,它通过引入滑模面和滑模控制律实现对系统状态的快速稳定控制。
在高精度机械系统中,我们可以将其描述为以下形式的动态方程:\[M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = Bu + F_d\]其中,\(q\)表示系统的位置向量,\(\dot{q}\)表示系统的速度向量,\(\ddot{q}\)表示系统的加速度向量,\(M(q)\)是描述系统动力学特性的质量矩阵,\(C(q, \dot{q})\)是描述系统摩擦力的阻尼矩阵,\(G(q)\)是描述系统重力影响的重力矩阵,\(B\)是输入矩阵,\(u\)是输入控制信号,\(F_d\)是表示系统受到的外界干扰力。
为了设计滑模面,我们定义一个状态变量误差向量\(e\)如下:\[e = q_d - q\]其中,\(q_d\)表示期望的位置向量。
滑模面可以定义为:\[s = S(c)e + \dot{S}(c)\dot{e}\]这里,\(c\)是控制器的参数向量,\(S(c)\)和\(\dot{S}(c)\)是分别表示滑模面的增益矩阵和速度变化率的增益矩阵。
为了设计滑模控制律,我们需要引入一个控制输入项\(v\),通过以下公式计算得到:\[v = -k_1s -k_2 sign(s)\]其中,\(k_1\)和\(k_2\)是控制增益。
最终,控制器的输出可以通过以下公式计算得到:\[u = B^\top(v - \dot{S}(c)\ddot{e} - S(c)\dot{q} + F_d + C(q,\dot{q})\dot{q} + G(q))\]二、基于反步滑模的控制应用基于反步滑模的控制方法在高精度机械系统中应用广泛,并取得了良好的控制效果。
精密机械学基础课程设计1. 引言精密机械学是一门研究微观尺度下精密机械件的设计、制造与应用的学科。
通过本课程设计,旨在帮助学生掌握精密机械学的基本理论和实践技能,为将来从事相关领域工作奠定扎实的基础。
2. 课程目标本课程的主要目标如下:•了解精密机械学的基本概念和原理;•掌握精密机械件的设计方法和流程;•学习常用的精密加工技术和工艺;•能够分析和解决精密机械问题;•提高学生的实践操作能力。
3. 教学内容本课程的教学内容主要包括以下几个方面:3.1 精密机械学基础理论•精密机械学的定义和发展历史;•精密机械学的基本概念和原理;•精密机械零件的分类和特点;•精密机械设计的基本要素;•精密机械系统的分析方法。
3.2 精密机械件设计•精密机械件的设计思路和方法;•精密机械件的功能需求和约束条件;•精密机械件的工程图纸绘制;•常用的精密机械件设计软件介绍。
3.3 精密加工技术•精密加工的基本概念和流程;•精密加工的常见工艺和设备;•精密加工中的常见问题和解决方法;•精密加工中的质量控制和检测方法。
3.4 实践操作•使用CAD软件进行精密机械件的三维建模;•进行精密机械件的工程图纸设计;•学习使用精密加工设备进行实际加工操作;•进行精密机械件的装配和调试。
4. 教学方法本课程采用以下教学方法:•理论授课:通过讲解,让学生了解基本理论知识;•实验演示:通过实际演示,帮助学生理解和掌握实践操作技能;•实践操作:让学生亲自动手进行实践操作,提高实际操作能力;•讨论互动:组织学生进行讨论和互动,加深理解和交流。
5. 评估方式本课程的评估方式主要包括以下几个方面:•课堂考核:通过课堂测试和讨论,考察学生的理论掌握程度;•实验报告:要求学生按要求完成实验,撰写相关实验报告;•设计项目:学生独立设计完成一项精密机械件,并撰写设计报告;•课程作业:布置一定的课程作业,考察学生的实践操作能力。
6. 参考教材•精密机械学(第四版),陈鹤年等著,机械工业出版社,2019年。
M achining and Application机械加工与应用现代机械设计制造工艺和精密加工技术高 翊摘要:当前,我国经济水平不断提升。
在时代发展进步背景下,现代化技术的发展速度也日益加快,在各个领域中的应用也更加广泛。
以机械设计制造行业为例来说,机械产品生产技术的要求越来越高,生产标准也趋于标准化、精细化。
现代化技术的应用进一步优化了产品结构与质量,机械制造工艺的升级和精密加工技术的出现推动着机械行业的发展。
本文系统分析了现代机械制造工艺和精密加工技术的特点以及精密加工技术在现代机械设计制造过程中的应用。
关键词:现代机械设计;制造工艺;精密加工技术伴随着社会与科技的发展进步,机械产品设计与生产的精细化程度逐步提高。
当然,这主要得益于现代机械设计制造工艺和精密加工技术的广泛应用。
机械设计制造在整个工业产品生产中占据着至关重要的位置,同时它作为我国基础性产业,与我国经济发展水平和其他相关产业的发展有着十分密切的关系。
现代机械设计制造工艺与精密加工技术的应用于发展有效弥补了传统机械制造业的诸多弊端。
机械设计制造企业必须充分认识现代机械设计制造工艺与精密加工技术应用的重要性,提升自身产品的生产质量,这样才能在行业中始终保持良好的竞争优势。
为促进该项技术在实际生产中不断完善,人们还需注重对该工艺技术的秩序优化,使之向高精尖技术方向发展。
1 现代机械设计制造工艺和精密加工技术相关概述现代机械设计制造工艺和精密加工技术吸收了先进性、现代化、智能化的科学生产技术,主要是指在现代工业制造行业中成熟、广泛应用的技术。
该项技术贯穿于整个机械产品设计、生产的环节,并且取得了良好应用效果。
1.1 现代机械设计制造工艺现阶段,面对日益恶化的环境问题人们逐步提高了自身的环保与节能意识。
在此基础上,进行工业产品制造的过程中人们也给予产品制造环保性与节能性更高的关注度。
但实践中,我国机械制造行业仍然存在诸多问题制约着该行业的可持续发展。
天津滨海职业学院全日制高等职业教育毕业实践环节毕业设计(典型性项目)说明书开箱机的设计与原理全套图纸,加153893706作者:院系:天津滨海职业学院机电系专业:机电一体化年级:2011级学号:***********指导教师:时间:2014年3月主要内容简介顾名思义(原理)开箱机也叫纸箱板打开,箱子底部按一定程序折合,开箱机的动作是集取箱、成型、折盖、封底为一体。
首先将扁平的纸箱放在储料槽上(可储存10 0个纸箱),通过吸盘将纸箱从料槽中吸出,在吸取拉出的同时将纸箱成型,再折前后及左右盖,最后完成胶带封底。
整个动作为自动完成,采用P.L.C + 触摸显示屏控制。
设有缺料提前报警,无料自动停机的安全装置。
大大方便操作、管理、减少生产人员和劳动强度,是自动化规模生产必不可少的设备。
自动开箱机自动完成开箱、成形、下底折叶折曲.并现时完成下部分胶带粘贴,本机将叠成纸板的箱板自动打开,箱子底部按一定程序折合,并用胶带密封后输送给装箱机的专用设备。
关键字:集取箱、成型、折盖、封底为一体,开箱机,气缸,功率,气压,PLC,电机等。
目录第一章开箱机的前景 (5)第一节国内外相关技术的现状和发展趋势 (5)第二节来源及设计目的 (5)第三节开箱机的分类及特征 (6)一﹑分类 (6)二﹑开箱机特征 (6)第二章开箱机的设计原理及要求 (6)第一节设计原理 (6)一﹑合理优化的强大功能 (6)第二节设计条件 (7)第三节基本要求 (8)一﹑设备说明 (8)二﹑电控部分说明: (9)第三章开箱机的设计 (9)第一节开箱机的结构组成 (9)第二节开箱机总成设计 (9)第四章开箱机的技术参数及其他 (13)第一节开箱机技术参数 (13)第二节开箱机的技术特点 (14)一﹑技术特点 (14)二﹑开箱机的机械性能 (14)第三节性能及特点 (14)第五章标准件的选择 (15)一﹑电器件的选择 (15)二﹑气缸的选择 (15)三﹑电机的选择 (16)第七章开箱机的注意事项及使用说明 (17)一﹑开箱机的注意事项 (17)二﹑使用说明 (17)第八章开箱机一般需要检修的地方及如何维护 (18)一、一般性故障及排除方法: (18)二、开箱机贴带器异常排除说明: (18)三、 (19)第九章开箱机的设计总图机控制面板 (20)一.开箱机的零件图 (20)二﹑开箱机总图 (30)三﹑控制面板 (32)附件: (34)参考文献: (34)第一章开箱机的前景第一节国内外相关技术的现状和发展趋势我国的包装工业起步于上个世纪的70年代末80年代初,进口了大量包装材料和包装机械,这对加快我国包装工业的发展起了十分重要的作用。
数控机床组成、工作原理以及特点第一节数控机床的组成数控机床是机电一体化的典型产品,是集机床、计算机、电动机及拖动、动控制、检测等技术为一体的自动化设备。
数控机床的基本组成包括控制介质、数控装置、伺服系统、反馈装置及机床本体,见图2-1。
图2-1数控机床组成一、控制介质数控机床工作时,不要人去直接操作机床,但又要执行人的意图,这就必须在任何数控机床之间建立某种联系,这种联系的中间媒介物称之为控制介质。
在普通机床上加工零件时,由工人按图样和工艺要求进行加工。
在数控机床加工时,控制介质是存储数控加工所需要的全部动作和刀具相对于工件位置等信息的信息载体,它记载着零件的加工工序。
数控机床中,常用的控制介质有穿孔纸带、穿孔卡片、磁带和磁盘或其他可存储代码的载体,至于采用哪一种,则取决于数控装置的类型。
早期时,使用的是8单位(8孔)穿孔纸带,并规定了标准信息代码ISO(国际标准化组织制定)和EIA(美国电子工业协会制定)两种代码。
二、数控装置数控装置是数控机床的核心。
其功能是接受输入装置输入的数控程序中的加工信息,经过数控装置的系统软件或逻辑电路进行译码、运算和逻辑处理后,发出相应的脉冲送给伺服系统,使伺服系统带动机床的各个运动部件按数控程序预定要求动作。
一般由输入输出装置、控制器、运算器、各种接口电路、CRT 显示器等硬件以及相应的软件组成。
数控装置作为数控机床“指挥系统”,能完成信息的输入、存储、变换、插补运算以及实现各种控制功能。
它具备的主要功能如下:1)多轴联动控制。
2)直线、圆弧、抛物线等多种函数的插补。
3)输入、编辑和修改数控程序功能。
4)数控加工信息的转换功能:ISO/EIA代码转化,米英制转换,坐标转换,绝对值和相对值的转换,计数制转换等。
5)刀具半径、长度补偿,传动间隙补偿,螺距误差补偿等补偿功能。
6)实现固定循环、重复加工、镜像加工等多种加工方式选择。
7)在CRT上显示字符、轨迹、图形和动态演示等功能。