不同地区取样点土壤中木质素降解优势菌株的筛选及
- 格式:pdf
- 大小:1.47 MB
- 文档页数:7
Sdu微生物大实验土壤微生物的分离纯化与鉴定【实验目的】1、从各地区土壤中筛选含几丁质酶的真菌及含果胶酶的菌株;2、通过从土壤中分离纯化菌株,掌握培养基的制备与灭菌技术、微生物的筛选、分离纯化方法和无菌操作技术。
3、复习以前学过的各种染色方法,掌握生理生化试验的原理与方法。
4、掌握微生物的鉴定技术、菌种保藏技术。
【实验原理】1、微生物的分离与纯化:从混杂的微生物群体中获得只含有某一种或某一株微生物的过程称为微生物的分离与纯化。
此次实验采取平板分离法,该方法操作简便,普遍用于微生物的分离与纯化,其基本原理主要包括两个方面:a.选择适合于待分离微生物的生长条件或加入某种抑制剂造成只利于待分离微生物生长,而抑制其它微生物生长的环境,从而淘汰大部分不需要的微生物。
b.微生物在固体培养基上生长形成的单个菌落可以是由一个细胞繁殖而成的集合体,因此可通过挑取单菌落而获得一种纯培养。
获得单菌落的方法可通过稀释涂布平板法或平板划线法等技术来完成。
微生物的观察可以用显微镜观察其细胞形态,也可以用肉眼观察其菌落形态。
前者是微生物的显微镜观察技术,后者是微生物的肉眼观察技术。
2、霉菌:霉菌可产生复什分枝的菌丝体,分基内菌丝和气生菌丝,气生菌丝生长到一定阶段分化产生繁殖菌丝,由繁殖菌丝产生孢子。
霉菌菌丝体(尤其是繁殖菌丝)及孢子的形态特征是识别不同种类霉菌的重要依据。
霉菌菌丝和孢子的宽度通常比细菌和放线菌粗得多(约 3-10μm ),常是细菌菌体宽度的几倍至几十倍,因此,用低倍显微镜即可观察。
观察霉菌的形态有多种方法,常用的有直接制片观察法、载玻片培养观察法和玻璃培养观察法三种方法,本实验采用载玻片培养观察法。
3、果胶酶筛选培养基:配制以果胶为唯一碳源的筛选培养基,在该培养基上,只有能分解利用果胶的菌株才能够生长,依此来从土壤中筛选出能够产果胶酶的菌株。
刚果红(Congo Red,简称CR)是一种染料,它可与果胶形成红色复合物,但并不和果胶水解后的产物发生这种显色反应,在含有果胶的培养基中加入刚果红时,刚果红能与培养基中的果胶形成红色复合物。
石油污染对土壤微生物群落影响及石油降解菌的筛选鉴定摘要:近年来,随着经济的快速发展,人们对石油原材料和石油产品的需求量迅速增加。
然而,社会经济的发展导致了石油污染进一步扩大。
石油在开采、运输、储存、加工和生产过程中,会泄漏到环境中并随着水体和大气循环进入土壤,进而破坏土壤的组成和结构,影响其通透性。
石油是一种复杂的有机混合物,由各种极性和非极性的烷烃、环烷烃和芳香烃、胶质和沥青等物质组成。
针对石油污染土壤修复,按处置地点可分为原位修复技术和异位修复技术两大类。
本文重点对近年来国内外原位修复技术中的原位热脱附、原位高级氧化、气相抽提、生物通风、阴燃技术的应用研究进展进行了综述,分析了当前研究存在的问题,并对其发展方向做了展望。
关键词:石油污染;土壤微生物群落影响;石油降解菌;筛选鉴定引言石油烃-重金属复合污染土壤也日渐引起了国内外学者的高度重视。
研究表明,不同年代开发的油井周围土壤中重金属有效态和全量随着油井运行时间的增长呈现增高的趋势。
原油和钻井液中含有的重金属及油田开采区农业生产中化肥的施用,常导致土壤重金属浓度提高,致使油田开采区土壤呈现石油烃和重金属复合污染特征。
土壤中有机污染物和重金属复合污染的交互作用常会产生不同的环境行为和环境效应。
目前,有机-重金属复合污染的研究主要集中在农药、有机鳌合剂、石油烃及芳香类化合物与重金属之间的复合污染。
石油生产、运输和应用,农业机具清洗或泄漏等途径都会产生石油烃与重金属复合污染。
1材料与方法1.1试验材料试验采用土壤为远离油井污染的清洁耕作层黄绵土,有机碳含量6.26mg/kg,pH值为8.11,土壤颗粒机械组成为小于0.002mm的黏粒占10.97%,0.002~0.05mm的粉粒占72.05%,0.05~2mm的砂粒占16.98%。
供试原油为延长石油公司采自陕西安塞的原油,密度是0.858g/cm2,黏度系数为4.05mPa.s;柴油为普通商品油品,密度是0.854g/cm',黏度系数为3.45mPa.s。
纤维素降解细菌的筛选及酶活测定1 材料与方法1.1 含菌样品含菌样品取自校园里的腐烂树叶处的土壤。
1.2 培养基(1)CMC(羧甲基纤维素)培养基:CMC-Na15 g, NH4NO3 1 g,MgSO4 ·7H20 0.5 g,KH2PO4 0.5 g,琼脂2%,H201 000 mL,pH 自然,121 ℃灭菌。
(2)刚果红鉴定培养基:KH2PO4 0.2%,MgSO4 0.05%,(NH )2SO40.1%,琼脂2%,刚果红0.02%,CMC—Na 2%,NaC1 0.05%,pH自然。
(3)液体产酶培养基:CMC—Na 15 g,NH4 NO31 g,KH2PO4 1 g,MgSO4 0.5 g,H20 1000 mL,初始pH值霉菌调为5,细菌调为8 1.3 菌株的筛选初筛采用滤纸条崩解实验及刚果红平板识别,复筛采用液态产酶鉴定。
1.4 CMC酶活力的测定1.4.1 DNS法绘制标准曲线采用3,5一二硝基水杨酸比色定糖法(DNS) 测定酶解液中还原糖含量。
取9支比色管,分别按表顺序加入各种试剂,将各管溶液混匀,用空白管溶液调零,测520 nm处的光密度值,绘制标准曲线1.4.2 测酶活将菌株接种于发酵培养基,30℃,l80 rpm培养4 d,从培养基中取l ml菌液放人试管,加水稀释至5 ml,4000 rpm离心5 min。
移取上清液 0.5 ml于试管中,加入含 0.5% CMC—Na的柠檬酸缓冲液(0.05 mol/L,pH 4.4)1.5 ml,50℃水浴锅准确作用30 min,在每试管内加 1.5 ml DNS试剂,沸水浴 5 min,立即冷却,520 nm处测定其OD值,对比标准曲线,求葡萄糖含量。
酶活力计算公式:酶活力=葡萄糖量×10(10一稀释倍数)酶活力单位(u)=(1 mg葡萄糖/m1)·30 min。
2.流程分析(1)纤维素降解菌的筛选:将含菌样品富集培养后,取菌液0.1 mL 涂布于羧甲基纤维素平板中,待其长出菌落后,进行平皿划线法分离,分离到一系列纤维素降解菌。
秸秆分解菌的分离和筛选秸秆分解菌的分离和筛选秸秆是农作物收割后的残余物,由于其含有丰富的纤维素和木质素等有机成分,因此在农业废弃物资源化利用和环境保护方面具有重要意义。
然而,由于秸秆的结构复杂,分解速度较慢,对环境造成了一定的压力。
因此,寻找高效的秸秆分解菌成为了解决这一问题的重要途径。
秸秆分解菌是能够分解秸秆中的有机物质的微生物。
通过分离和筛选这些菌株,可以拓展所利用的菌种资源,进一步加速秸秆的分解过程。
本文旨在介绍秸秆分解菌的分离和筛选方法,并探讨其应用前景。
首先,分离秸秆分解菌的方法有多种。
其中一种常见的方法是通过分离培养基的方法,将秸秆样品接种于含有纤维素、木质素等有机物质的培养基上,利用这些有机物质作为唯一碳源,使得只有具有分解能力的菌株能够繁殖并形成菌落。
通过分离单菌落,筛选出具有高效分解秸秆能力的菌株。
另一种方法则是通过土壤样品的稀释涂布法。
将土壤样品逐渐稀释至一定浓度后,通过涂布于含有秸秆的固体培养基上,利用这些培养基中的有机物质来吸引分解菌进行繁殖。
最后通过分离、纯化单菌落,筛选出具有较高分解能力的菌株。
通过上述方法,分离出的秸秆分解菌株可以进行进一步的筛选。
在进一步筛选中,可以通过测定菌株的纤维素酶和木质素酶活性来评估其分解能力。
纤维素酶是一种能够水解秸秆中纤维素的酶,而木质素酶则能够降解秸秆中的木质素。
因此,菌株产生越多的纤维素酶和木质素酶,其分解能力就越强。
此外,还可以通过测定菌株对不同种类秸秆的分解情况来评估其适应能力。
由于不同种类的秸秆成分有所差异,因此对多种秸秆的分解能力较强的菌株,其分解能力更全面有效。
最后,根据筛选得到的菌株的特性,可以研究和开发相应的应用技术。
例如,可以将这些菌株制备成发酵剂,应用于农业废弃物的处理过程中,加速秸秆的分解和降解。
同时,可以进一步优化培养条件和发酵工艺,提高发酵效率和废弃物资源的利用率。
综上所述,秸秆分解菌的分离和筛选是利用微生物资源实现秸秆高效分解和资源化利用的重要途径。
石油污染土中微生物的分离鉴定及降解特性石油污染是环境污染中的一种常见问题,对自然环境和人类健康造成严重影响。
因此,寻找高效的石油降解菌是解决这一问题的重要途径。
本文从石油污染土壤中分离鉴定了一株降解菌,并探究了其降解特性。
(1)样品的采集及处理从受污染的土壤中取样,再分离出单个菌株。
将样品加入到NaCl0.9%的生理盐水中,摇动15分钟后,离心上清,然后采用1%的蒸馏水进行0.5小时热灭菌。
(2)分离鉴定将上述处理后的样品,分别接种于处理好的LB及玉米精蛋白培养基中,置于30℃恒温振荡培养箱中培养48h。
在此基础上,通过对菌落形态、菌株生长速度、菌落气味、荧光反应、产酶等特征,对细菌进行鉴定。
最终,筛选出一株石油降解菌。
(3)降解特性分析选取某种石油类物质,将其加入到LB培养基中,最终浓度设置在30mg/L左右。
将选出的石油降解菌接种进去,接种数量为OD600=0.1。
进液管任意长度分别设置于接种前及接种后,能够记录pH值及菌量。
取样分析的样品保持30℃培养48小时,过程中定时测量液体的pH值。
分析降解特性时,发现石油降解菌能够将石油类物质中的碳链分解,并分解成细胞利用的有机物质。
在石油降解过程中,菌落数逐渐增加;液态培养基中pH值不断降低,并最终将其稳定在中性状态。
另外,菌落色素通过两次衍生化反应生成焦磷酸一茎丙酮醇酯,之后通过JB-4消失化学反应结晶,能够得到石油降解特性的分析结果。
综上所述,石油降解菌是一种能够有效降解石油类物质的微生物。
因此,在现实中,可以对这类石油降解菌进行大规模培养及应用,以降低环境中的石油污染。
三种农用抗生素降解真菌的筛选及其降解性能王强锋1,2,朱彭玲2,夏中梅1,2,王赟2,曾芸2,侯勇1,2*(1.四川省农业科学院生物技术核技术研究所,成都610066;2.四川省兰月科技有限公司,成都610207)收稿日期:2018-03-19录用日期:2018-06-15基金项目:四川省财政创新能力提升工程青年基金项目(2015QNJJ-002);四川省财政创新能力提升工程优秀论文基金项目(2016LWJJ-001);四川省科技支撑计划项目(2017SZ0188)作者简介:王强锋(1988—),男,四川平昌人,助理研究员,从事土壤与环境微生物研究。
E-mail :wqf198808@朱彭玲与王强锋同等贡献*通信作者:侯勇E-mail :yonghou@摘要:为了从重金属污染的土壤中分离筛选出能降解土霉素、诺氟沙星、磺胺二甲嘧啶的真菌菌株,利用抗生素作为唯一碳源进行抗生素降解真菌富集驯化培养,分离纯化耐受真菌,将纯化后的菌株回接到以抗生素作为唯一碳源的液体培养基中,运用高效液相色谱法(HPLC )及紫外分光光度法对各菌株抗生素降解能力进行检测,并通过菌落形态学特征、ITS 序列和系统发育树对菌株进行分子鉴定。
筛选到4株抗生素降解真菌KS248、KS256、KS257、KS272,分别鉴定为轮状镰刀菌(Fusarium verticillioides )、腐皮镰刀菌(Fusarium solani )、聚多曲霉(Aspergillus sydowii )、微紫青霉(Penicillium janthinellum )。
其中,菌株KS248、KS256、KS257具有土霉素、诺氟沙星、磺胺二甲嘧啶降解能力;菌株KS272具有土霉素、诺氟沙星降解能力。
在抗生素初始浓度1500μg·L -1、30℃、150r·min -1条件下避光培养7d 后,菌株KS272降解土霉素、诺氟沙星能力最强,降解率分别达到40.29%、10.59%,菌株KS256降解磺胺二甲嘧啶能力最强,降解率达到18.53%。
微生物在土壤中的降解作用及其机理分析土壤是地球生态系统中最为重要的资源之一,它是地球上生物圈的支撑,同时也是生物多样性的根基。
土壤是一个复杂的生态系统,其中微生物是其重要的组成部分,对于土壤中许多化学物质的降解起着重要的作用。
微生物通过代谢一定的基质来生存,并分泌酶来分解有机物质,这些过程的产物会被其他微生物吸收并下降到土壤深层,从而维持了土壤生命的存在。
本文将对微生物在土壤中的降解作用进行深入研究,探讨其机理分析和发展前景。
一、微生物降解作用的类型土壤中的微生物依据其对有机物质的降解能力分为三大类:放线菌类、真菌和细菌。
其中细菌是最活跃和全面的降解菌类,它们能够降解土壤中的蛋白质、多糖、脂肪和碳水化合物等各种有机物质。
真菌则具有较强的降解木质纤维素、半纤维素和木质素的能力。
放线菌具有降解烷基苯的能力,是一种重要的土壤污染物微生物降解剂。
二、微生物降解作用的机理微生物降解有机物质过程中经历了四个阶段:物理、化学、生物和生态四个过程。
1. 物理变化土壤中的有机物质首先通过物理变化而变得更容易分解。
矿物质、水分、温度和土壤结构等因素能够影响有机物质的物理变化过程。
2. 化学变化当有机物质分解时,会产生一系列的化学反应。
其中有机质分割成碳、氢和氧等化学元素,这使得有机质在分解过程中释放出生命能源并向土壤中迁移。
此外,微生物分泌的酸和碱能够对有机物质进行深度降解。
3. 生物变化微生物通过分泌蛋白质、多糖和酶等生物分解物质来进一步转化有机物质。
这些化学物质大大加快了有机物质分解和质量转化过程。
通过代谢有机物质产生的能量被利用,并化为微生物体质。
微生物体质的生长使土壤厚度增加,从而促进了有机质的深度降解。
4. 生态变化有机物质的降解和微生物的生长都会进一步影响土壤中其他生物群落的分布和数量。
当大量的有机物质被降解时,会使土壤中的细菌、真菌和放线菌大量生长并进一步降解残留的有机物质。
此外,微生物还能够参与形成土壤团聚体,并通过滞留更多的水分和有机质,促进了土壤中其他的生物生长。