福岛核电站事故分析报告
- 格式:ppt
- 大小:973.00 KB
- 文档页数:18
日本核电站事故的教训与经验总结近年来,核能发电被广泛应用于全球各地,被视为一种清洁、高效且可持续的能源形式。
然而,2011年的日本福岛核电站事故带来了沉重的打击,揭示出核能发电的巨大潜在危险。
本文将从事故背景、教训及经验总结等方面进行论述。
一、事故背景2011年3月11日,日本东北地区发生了一系列规模巨大的地震和海啸。
这场灾难不仅导致数万人死亡,还严重破坏了福岛核电站的设施,引发了全球关注。
核电站内部的冷却系统失效,导致核反应堆熔毁,散发出大量辐射物质。
二、教训总结1.灾害风险评估不足福岛核电站事故暴露出日本政府和相关企业在灾害风险评估方面存在失误。
虽然日本是地震多发的国家,但他们对核电站所承受的地震和海啸风险估计不足。
下一次类似的事故,我们必须严肃对待风险评估,确保核电站的抗灾能力。
2.安全措施不完备福岛核电站事故揭示出其安全措施不完备的问题。
安全阀失效,冷却系统失灵,这些都导致了核反应堆的熔毁。
核电站运营商应该牢记核电站安全的首要原则,投入更多资源用于安全措施的改善和更新。
3.应急计划不完善灾难来临时,福岛核电站缺乏有力的应对措施。
这不仅给救援行动带来困难,还加剧了灾害事态的扩大。
应急预案必须在设计时充分考虑各种情况可能出现的影响,提前进行演练和培训,以确保时间紧迫时的迅速响应。
4.信息透明度不足福岛核电站事故发生后,政府和运营商的信息公开不及时、不透明,导致了大量谣言和恐慌的蔓延。
政府和运营商应该及时向公众通报真实的情况,增加信息透明度,以避免公众误解和恐惧的产生。
三、经验总结1.加强核安全监管通过福岛核电站事故,我们认识到核能发电所带来的风险和危害。
为了防范潜在的核事故,必须建立更加严格的核安全监管机制,确保核电站的安全运行。
2.加大科技研发投入核能技术的研发和创新是确保核电站安全运行的关键。
各国应该加大对核能技术的科研投入,寻求更加先进、清洁、安全的核能发电解决方案。
3.注重国际间合作与信息共享核能事故是全球性的问题,各国应加强合作,共享信息和经验。
日本福岛核电站事故初步分析与AP1000核电技术一、日本福岛核电站事故概述2011年3月11日下午13:46 日本仙台外海发生里氏9.0级地震。
地震时,福岛第一核电站1号、2号、3号机组处于正常运行状态,4、5、6号机组处于停堆换料大修中。
地震后,1、2、3号机组自动停堆,应急柴油机启动。
大约一小时后,由于海啸袭击,造成福岛第一核电站应急电源失效。
致使1号、2号、3号堆芯失去冷却,堆芯温度逐渐升高。
最终导致1、3、2号机组由于反应堆堆芯燃料组件发生部分破损,产生氢气而相继爆炸(氢爆)。
根据日本及IAEA 官方网站发布的信息,地震发生时,4号机组所有核燃料已在乏燃料水池,5、6号机组的核燃料在反应堆厂内,但尚未启动运行。
截止3月21日21:00,福岛实际状况如下表所示:注:表中信息来自日本原子力产业协会JAIF二、事故后果事故发生后,1、3、2号机组相继爆炸,4号机组厂房轻微破损,使得放射性物质释放到大气中去。
据新闻报道,福岛第一核电站准备退役。
此次福岛核电站事故经济损失巨大,具体损失尚待后续评估。
放射性气体释放到大气当中,3月19日在1-4号机组产值边界西门放射性剂量率为0.3131mSv/h ( 11:30),北门为0.2972mSv/h(19:00);IAEA持续监测,3月20日21:00,辐射监测仪表测量的数据显示,福岛第一核电厂西门放射性剂量率为269.5μSv/h(5:40,3月20日)、服务厂房北部数据3054.0μSv/h (15:00,3月20日);3月21日22:00,辐射监测仪表测量的数据显示西门放射性剂量率为269.5μSv/h,北门为2019.0μSv/h (15:00)。
监测发现,放射性污染使得当地牛奶、新鲜蔬菜,如菠菜、春葱等的放射性剂量已经超过日本相关部门规定的食入限值。
在事故发生初期,由于1、2、3号机组事故状态没有得到有效控制,堆芯损坏程度不断加剧,放射性物质持续排放,导致福岛核电厂附近居民的应急撤离半径逐步扩大,从开始的撤离半径3km到后来的10km,最后扩大到20km,同时要求居住在20-30km范围内的居民留守室内,避免过量的放射性物质吸入以及沉降污染。
日本核泄漏抢救及影响分析历史罕见的强烈地震、海啸袭击日本之后,福岛第一核电站发生核泄漏事故。
连日来,日本采取了一系列紧急应对措施,但危情仍在持续。
日本核泄漏危机引起全球高度关注。
一、日本核泄漏现状分析日本发生特大地震后,该国核电系统遭受重创。
目前,已有分属于两座核电站的五个核反应堆因冷却系统失灵进入“紧急状态”。
由于地震导致电力中断,核电站冷却系统失灵,位于日本强地震震中附近的福岛第一核电站当地时间3月15日上午先后发生两起爆炸和起火事故,并向大气中直接释放了大量放射性物质,当局宣布核泄漏风险上升,核电站周边居民紧急撤离。
分析人士指出,冷却系统失灵为核电站面临的最大威胁。
地震发生后,因核电站操作系统的普通和应急供电能力全部中断,上述“沸水反应堆”内的冷却设备失灵,造成堆内压力不断攀升,现在已超过额定标准的2倍,对周边环境形成了巨大隐患。
福岛核电站内的工程技术人员正在抓紧抢修险情严重的1号反应堆。
“国际核能事件分级表”把核事件按严重程度分为零至7级,福岛核电站爆炸已被暂定为四级,4级意味着核事件可定性为“事故”,将“在当地产生影响”。
二、日核泄漏应对措施18日,在大地震中受损的福岛第一核电站反应堆继续冒出烟气,应对措施当中,为核电站“降温”是重中之重。
连日来,日本自卫队连同专业人员“三管齐下”,以防止核反应装置情况恶化,力图重启反应堆冷却系统。
措施一:直升机洒水。
从17日开始,自卫队两架直升机吊挂着大型“水桶”飞临核电站上空,向3号机组洒水。
飞机接近核电站上空时打开水阀泼洒水雾,为乏燃料池蓄水。
这一作业时而因辐射较高中断,而且由于直升机距反应堆过高,洒水效果不理想。
措施二:地面注水,与洒水目的一样,都是为核设施蓄水降温。
17日警方高压水车进入福岛第一核电站区域,向3号机组注水。
措施三:抢修电力。
通向核电站的输电线已经铺设,计划18日由东京电力公司提供电力,首先恢复因地震停止的1、2号机组电力系统。
日本核电站的核事故分析受3?11大地震影响,日本福岛第一核电站发生了4次爆炸,并伴随发生了放射性物质的泄漏,对日本及其附近海域造成了环境污染。
此次核事故引发了包括我国在内的各国对核设施安全的进一步关注。
事故的概况与性质2011年3月11日以来,由于受大地震和海啸的影响,日本福岛第一核电站的冷却系统失灵,反应堆的压力陡然升高。
在相关人员为反应堆降温过程中,先后发生两次氢气爆炸以及反应堆堆芯熔毁事件。
3月13日,日本官房长官枝野幸男表示,一号反应堆和三号反应堆“很有可能”已经发生了堆芯熔毁。
目前,上述事件造成了核泄漏,所产生的核辐射水平较之往常超标数百倍。
上述事件从性质上看,属于一种核事故。
一般来讲,核事故分为三类:第一类是携载核器件(包括核武器)的载体(如飞机、舰船、火箭、车辆等)发生事故(如起火、爆炸、坠落等),既未引起核器件的化学爆炸,也未引起核器件爆炸,核器件被完整地回收,环境也未受到放射性污染,也就是说也基本上没有辐射危害。
第二类是核器件或核设施中的化学物质爆炸(包括整装核弹头的化学爆炸),但未引起核爆炸。
可能引起此类事故的原因有:设备缺陷,突发供电事故,运输事故,核弹头或贮管和运输设备安全性下降或失效,火灾等。
此类事故容易引发对人体、动植物以及环境的核辐射,同时还可能造成非辐射危害,如铍、锂、铅等物质的危害,破坏人体健康(如导致白血病,癌症等)。
第三类是核爆炸,有核能释放并引起核器件(含核武器)爆炸的一切后果,包括光辐射、冲击波、早期核辐射、核电磁辐射和放射性沾染等。
尽管截止到目前为止,尚未发生过核武器爆炸事故,但发生过类似于前苏联切尔诺贝利核电站的核反应堆爆炸事故。
此类事故属特大事故,可对人员和环境造成极其严重和长期的伤害。
在此次日本福岛核电站事故中,核辐射通过水蒸汽和积水外排的方式泄漏出来,这并非核反应堆里的裂变层的放射性释放,也不是核爆炸事故而是化学反应事故,因此属于第二类事故。
事故的原因此次日本福岛核电站发生的核事故除了天灾的原因之外,还暴露出日本核电发展、运行、监管中存在的深层次问题。
IAEA专家组对福岛核事故的调查报告针对日本东部大地震和海啸引发的福岛第一核电站核事故调查报告目录总结41、介绍101.1 背景 101.2 调查目的161.3 调查范畴161.4 调查的开展 172、导致福岛第一核电站的事故序列182.1 福岛第一核电站182.2 福岛第二核电站252.3 东海核电站 253、要紧成果、结论和体会教训263.1 引言 263.2 背景 263.3 国际原子能机构差不多原则:总述283.3.1 差不多安全原则3:核安全的领导和治理 29 3.3.2 差不多原则8:事故预防293.3.2.1 自然外部事件293.3.2.2 严峻事故313.3.3 差不多原则9:应急预备和响应333.3.3.1 场外应急预备以爱护公众和环境 333.3.3.2 场内应急打算以爱护工作人员353.4 国际原子能机构安全标准 363.5 国际原子能机构安全活动 363.4.1 复原路线图363.4.2 外部危机373.4.3 场外应急响应373.4.4 严峻事故情形下的大规模辐射防护组织373.4.5 后续IRRS审查384、致谢39总结2011年3月11日,日本东部发生9级大地震,地震引发一系列庞大海啸,突击了日本东部沿海。
最大浪高是在宫古岛的姉吉,达到38.9米。
地震和海啸给日本大片地区造成打击,15391人死亡,此外还有8171人下落不明。
大部分人口流离失所,他们生活的村镇被破坏或夷为平地。
许多基础设施也由于这次侵袭而瘫痪。
除了工业之外,许多核电站设施也由于严峻的地振动和大范畴的海啸而受到阻碍,包括东海、东通、女川、以及东电公司的福岛第一和第二核电站。
这些核电站在设计上都安装有自动停堆系统,在检测到地震时实现了机组成功停堆。
然而,庞大的海啸对这些核设施造成不同程度的阻碍,并导致东电公司的福岛第一核电站发生严峻事故。
尽管地震发生时,所有的厂外供电都差不多丧失,但东电公司福岛第一核电站的自动系统在检测到地震时成功地将所有操纵棒插入三个正在运行的反应堆,所有可用的应急柴油发电机也按设计处于运转状态。
福岛核事故原因分析作者:苏秀彬日本是一个资源极度贫乏的国家,据统计,日本全国有18座核电站,总共60座核反应堆,大都是属于沸水反应堆。
由于沸水反应堆发电量高,没有二回路循环系统,相比压水反应堆,输出功率大,造价性对低廉,一直受到日本核电工业的青睐,日本新设计的第四代反应堆也是采用沸水反应堆。
福岛核电站位于北纬37度25分14秒,东经141度2分,地处日本福岛工业区。
它是目前世界最大的核电站,由福岛一站、福岛二站组成,共10台机组(一站6台,二站4台),均为沸水堆,受日本大地震和海啸影响,福岛第一核电站受损极为严重,其中1号-4号机组损毁最为严重。
目前,福岛第一核电站事故等级为最高级7级。
日本福岛第一核电站沸水堆又叫轻水堆,由压力容器及其中间的燃料元件、十字形控制棒和汽水分离器等组成。
沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。
福岛第一核电站结构设计图通常,为了安全起见,反应堆冷却系统有三种供电方式。
分别为电网供电,柴油机供电和汽轮机发电供给。
大地震摧毁了核电站的外部电力供应,循环冷却系统在没有电力供应的情况下停止运转,此时核电站紧急启动了柴油发电机组,来维持循环冷却系统的运行,但不幸的是海啸来了,海水灌入摧毁了发电机组。
发电机组损坏之后,核电站启动了备用电池,这种备用电池大概能维持循环冷却系统8小时运行所需要的电力。
在这8个小时内,需要找到另外一种供电措施。
通过卡车运来了移动式柴油发电机,更不幸的事情发生了,运过来的柴油发电机竟然因为接口不兼容无法连接,8小时过后循环冷却系统停止运转。
我们知道:福岛第一核电站一号但是停堆之后,反应堆中的放射性物质仍然有少量在继续衰变,放出衰变能。
这个能量大约占反应堆总输出功率的1%左右。
那么这样计算来看,停堆之后反应堆仍然有4.6万千瓦的输出,但是输出功率只占反应堆总功率的33%左右,也就是说实质上,停堆之后的福岛一号反应堆中总放射性衰变能在13.8.万千瓦左右。
日本福岛核事故的工程伦理分析2011年3月11日东京时间14时46分,日本东海域发生里氏9.0级特大地震并引发海啸。
致使日本福岛第一核电站发生核事故,史称“福岛核事故”。
该次事故按照国际核事件和放射性事件分级标准,国际原子能机构将这次事故定位为“七级事故”,并称该次事故为1980年切尔诺贝利灾难以来在核电厂发生的最严重事故。
本文拟针对日本福岛核事故中存在的工程伦理问题进行浅析核探讨,以求通过本事件中的工程伦理问题为我国核电事业的发展积累经验。
一、背景情况福岛第一核电站位于日本福岛县双叶郡大熊町,距离东京约220公里。
电站于1967年开始建设,共有6台运行机组,分别于1971年、1974年、1976年、1978年、1979年投入商业运营,全部为美国通用公司设计的沸水堆,总装机容量469.6万千瓦。
事故发生时,1~3号机组处于满功率运行状态,4~6号机组因检修换料处于计划停堆状态。
东京时间2011年3月11日14时46分,日本本州岛海域发生里氏9级特大地震。
该特大地震引发强烈海啸,在地震发生46分钟后,第一波4~5米高的海啸抵达福岛第一核电站,被设防能力为5.5米的防波堤挡在外面,但随后高达14~15米的第二波海浪漫过防波堤,涌入厂址,淹没了应急柴油发电机及其相关电源链接,造成1号至5号机组的全场断电。
电源丧失导致反应堆各类余热排出的手段失效,反应堆堆内水蒸发,裸露的核燃料元件的锆合金包壳在高温下和水蒸气反应产生大量氢气,1号至3号机组堆芯过热、燃料熔化、安全壳破裂,随后1、3、4机组厂房爆炸并引发火灾,导致放射性物质直接向环境释放,乏燃料水池也丧失冷却能力。
事故发生后,日本政府和东电公司及日本社会进行了紧急应对,但最终仍然造成了严重、失控的后果,对居民生活、生态环境均造成了不可磨灭的伤害于影响。
二、问题表述事故发生后,国际社会空前关注,日本政府以及东电公司也即刻采取一系列措施,但由于本次自然灾害远超福岛核电站设计基准措施,并且在事故缓解过程中,日本政府和东电公司应对不当,最终导致这场事故错上加错、雪上加霜,造成严重后果。
0 事故背景2011年3月11日下午,日本东部海域发生里氏9.0级大地震,并引发海啸。
位于日本本州岛东部沿海的福岛第一核电站停堆,且若干机组发生失去冷却事故,3月12日下午,一号机组发生爆炸。
3月14日,三号机组发生两次爆炸。
日本经济产业省原子能安全保安院承认有放射性物质泄漏到大气中,方圆若干公里内的居民被紧急疏散(疏散范围一直在扩大)。
1 日本福岛核电站概况日本福岛第一核电站(福島第一原子力発電所)位于福岛县双叶郡大熊町沿海。
福岛第一核电有6台机组,1号机组439兆瓦,为BWR-3型机组,1970年下半年并网发电,1971年投入商业运行;2号至5号机组为BWR-4型,784兆瓦,1974-1978年投产;6号机组为BWR-5型,1067兆瓦,1979年投产。
六台机组在同一厂址,全是沸水堆,均属于东京电力公司。
(以上叙述看似数据罗列,但是为事故埋下了第一个伏笔:一号机已经运行整40年了,退休正当时。
)图中从右至左依次为1至4号机组,5、6号机组在北侧稍远。
另有福岛第二核电站,这两天爆炸的是福岛第一核电站,与第二核电站无关,不表。
2 沸水堆预备知识考虑到中国大陆上只有压水堆(PWR)和重水堆(CANDU),(注意是中国大陆,台湾的是沸水堆,台湾在建的龙门电厂是更先进一点的ABWR),在此简单介绍一下沸水堆(BWR)。
沸水堆和压水堆都属于轻水堆,都是靠H2O做慢化剂和冷却剂。
都是用低浓缩铀做燃料。
目前全球400多台核电机组中,两百多压水堆,近一百台沸水堆。
下图是福岛一号核电站一号机的原理图:沸水堆基本运行过程:来自汽轮机系统的给水(深蓝色的管子)进入反应堆压力容器后,沿堆芯围筒与容器内壁之间的环形空间下降,在喷射泵(白箭头的起点)的作用下进入堆下腔室,再折而向上流过堆芯,受热并部分汽化。
汽水混合物经汽水分离器分离后(汽水分离的过程跟压水堆蒸汽发生器差不多),蒸汽(浅蓝色管道)通往汽轮发电机(几个黄色块分别为高压缸,三个低压缸,发电机,和AP1000一样),做功发电。