窄带电力线通信技术-longsy教程文件
- 格式:docx
- 大小:22.33 KB
- 文档页数:5
电力线通信(PLC)技术与应用【摘要】PLC是利用室内的电力线实现每个房间灵活地上网,同时还可以满足多终端随时移动地需求,即PLC室内互联;解决宽带接入的最后300米的问题,即PLC宽带接入。
本文就电力线通信(PLC)技术与应用展开分析和探究。
【关键词】电力线;通信技术;应用技术背景用户通信发展的特点:用户对通信新业务体验的要求日益明显,而宽带、无线、移动是其重要特征。
用户通信一般集中在家庭、企业等少数区域。
一、PLC技术应用概述电力线通信应用分为两部分的内容(1)利用室内的电力线实现每个房间灵活地上网,同时还可以满足多终端随时移动地需求,即PLC室内互联;(2)解决宽带接入的最后300米的问题,即PLC宽带接入。
PLC技术标准PLC标准主要分为两大类:第一类是有关PLC通信技术的专用标准,有室内联网准:UPA(DS2Aitanna Technologv)、Homeplug1.0>HomePlug Turbo->HomeplugA V和楼宇接入标准:(Opera Technologyt及HomePlug BPL)。
二是相关的EMC标准主要有:CISPRI/89/CD和EN60950-1:2001.PLC 芯片发展2007年前,PLC室内互联产品主要面向互联网接入等较低速的应用,虽然DS2有较成熟的200M产品,但是价格太高,没有得到大规模发展。
且当时市场主流产品为85M电力猫,其抗干扰性较差,实际带宽难以保证iTV传送。
2007年后,Intellon200M的芯片面世;DS2芯片新增各种新的特性解决邻居网络等问题;同时,iTV、高清下载的应用在全球逐步发展起来;运营商对高性能的PLC产品的需求度提升;PLC应用与市场众多电信运营商采用电力猫作为iTV室内互联的解决方案:BT、Telefonica、neuf、FT、新加坡电信等;国内iTV业务急需室内互联解决方案,很多地市公司开始关注电力猫,如:苏州、广州、四川等;小结二、PLC室内联网技术评估室内互联技术对比PLC 室内互联各种技术比较中,PLC在保持速度可用的同时,具有环保与免布线的优点。
鼎信低压窄带载波通信技术在用电信息采集中的应用及分析结合西吉县供电局用电信息采集建设及不同采集模式实际应用情况,提出低压线路窄带载波通信模式在用电信息采集建设中的重要性,重点分析了青岛鼎信窄带采集通信技术特点和技术优势,通过对比,阐述和分析鼎信模块在该单位成功应用情况,并对用电信息采集建设水平的提升提出建议。
标签:用电信息采集;窄带;载波;通信;应用用电信息采集建设是智能电网建设的一项重要环节,是面向客户服务最直接的技术手段。
国家电网公司近几年大面积开展用电信息采集工程建设,要求要实现“全覆盖、全采集、全费控”的建设目标。
以宁夏电力公司西吉县供电局为例,自2009年开展用电信息采集工程试点以来,已经历了四年建设期,完成10万余用户的采集建设任务,通过四年的采集建设和应用,积累了一定的采集运维技术和经验,对不同采集模式的优缺点、不同采集设备技术的应用情况具有一定的研究。
本文重点对西吉县供电局低压采集建设中应用青岛鼎信低压窄带通信模块情况进行分析,为用电信息采集建设及应用提供参考。
1 不同采集模式应用情况西吉县供电局自2009年即开展用电信息采集建设,首先实现了县城用户全覆盖建设目标。
在县城采集建设中,远程通信方式全部采用GPRS通信,本地通信先后采用低压宽带载波、低压窄带载波、微功率无线和RS485总线四种采集模式。
经过几年运行,发现低压宽带载波采集模式由于采集距离短、维护工作量大及采集信号衰减快等原因,不适合大部分县城及所有农村用户的采集,目前已经中止应用;微功率无线由于在县城受到建筑物干扰,采集效果非常不稳定,所以在县城采集建设中也未应用,重点在农村大面积应用。
目前县城重点采用低压窄带采集模式和RS485采集模式,从应用效果来看,RS485采集模式采集数据较稳定,但要在每个表箱安装一块GPRS采集器,投资很大,每块表通过485线同采集器连接,接线麻烦,维护工作量大,不适合大面积采用,目前西吉县城有30%用户采用此种采集模式。
低压电力线载波通信技术嘿,咱今儿个就来唠唠低压电力线载波通信技术。
你说这玩意儿神奇不神奇?就好像是在那错综复杂的电力线里藏了无数条信息高速公路!想象一下,家里的电线不再仅仅只是传输电能的通道,还能同时传输各种数据和信息。
这就好比是本来只能走马车的小道,一下子变成了能跑各种豪车的大马路!以前咱得专门拉各种通信线,现在可好,直接利用现成的电力线,多省事啊!这低压电力线载波通信技术啊,就像是一个默默无闻的大功臣。
它悄咪咪地在幕后工作,让我们的生活变得更加智能和便捷。
比如说,家里的智能电表,不就是通过它来传递数据的嘛!你都不用人工去抄表了,它自动就把数据给传上去了,多厉害呀!而且哦,它的应用可广着呢!在智能家居领域,它能让各种设备之间轻松沟通,实现各种联动。
你想想,你还没到家呢,就能提前让家里的空调打开,等你一进门,哇,那叫一个凉爽!这不比你到家再开空调舒服多啦?这都是低压电力线载波通信技术的功劳呀!再看看那些工厂、企业,有了它,各种设备的监测和控制也变得更加简单高效。
不用再拉一堆乱七八糟的线了,直接利用电力线就行,这得省多少事儿啊!它就像是一个神奇的魔法,让原本普通的电力线变得充满了无限可能。
这技术是不是很牛?咱就说,要是没有它,咱的生活得失去多少便利呀!你说它怎么就能这么厉害呢?其实啊,这都是科技人员们努力钻研的结果。
他们就像一群勤劳的小蜜蜂,不断地探索、尝试,才让这低压电力线载波通信技术变得越来越好。
咱可不能小瞧了这技术,它虽然不声不响的,但却在默默地为我们的生活添砖加瓦呢!以后啊,说不定它还能给我们带来更多的惊喜和便利。
咱就好好享受这科技带来的福利吧,哈哈!你说是不是这么个理儿呢?反正我觉得这低压电力线载波通信技术真的是太了不起啦!。
电力通信网是为了保证电力系统的安全稳定运行而应运而生的。
它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。
目前,它更是电网调度自动化、网络运营市场化和管理现代化的基础;是确保电网安全、稳定、经济运行的重要手段;是电力系统的重要基础设施。
由于电力通信网对通信的可靠性、保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此,世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网。
一、概要我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成了一个以北京为中心覆盖全国30个省(市、区)的立体交叉通信网。
整个中国电力通信的发展,从无到有,从小到大,从简单技术到当今先进技术,从较为单一的通信电缆和电力线载波通信手段到包含光纤、数字微波、卫星等多种通信手段并用,从局部点线通信方式到覆盖全国的干线通信网和以程控交换为主的全国电话网、移动电话网、数字数据网,无不展现出电力通信发展的辉煌成就。
随着通信行业在社会发展中作用的提高,以电力通信网为基础的业务不再仅仅是最初的程控语音联网、调度时时控制信息传输等窄带业务,逐渐发展到同时承载客户服务中心、营销系统、地理信息系统(GIS)、人力资源管理系统、办公自动化系统(OA)、视频会议、IP电话等多种数据业务。
电力通信在协调电力系统发、送、变、配、用电等组成部分的联合运转及保证电网安全、经济、稳定、可靠的运行方面发挥了应有的作用,并有利的保障了电力生产、基建、行政、防汛、电力调度、水库调度、燃料调度、继电保护、安全自动装置、远动、计算机通信、电网调度自动化等通信需要。
虽然电力通信的自身经济效益目前不能得以直接体现出来,但它所产生并隐含在电力生产及管理中的经济效益是巨大的。
同时,电力通信利用其独特的发展优势越来越被社会所重视:(1)近67万km的35kV及以上输电线路是架设电力特殊光缆的极好资源,经济、快速、安全、可靠;(2)遍布全国各大城市的电缆管道和电杆是建设光纤接入网的极好资源;(3)电力线通信(PLC)技术的日益成熟,为用户接入提供了首选手段;(4)其它具有电力特色的技术,如无源光纤接入、无线宽带、多点扩频系统等,使电力资源得到充分有效的利用和发挥。
无线窄带通信建设方案1. 简介无线窄带通信技术是一种低功耗、低数据传输速率、覆盖范围广的无线通信技术。
它可以应用于物联网、远程监控、智能家居等领域。
本文将介绍无线窄带通信的原理和建设方案。
2. 无线窄带通信原理无线窄带通信技术基于远距离传输原理,其核心思想是将数据信号调制到特定频率的无线载波上,在接收端解调还原出原始数据。
相比于宽带通信技术,窄带通信技术的主要优势在于低功耗和长传输距离。
窄带通信技术适用于低速率、低功耗的应用场景。
3. 无线窄带通信建设方案3.1 硬件设备选型在搭建无线窄带通信系统时,选择合适的硬件设备至关重要。
关键的硬件设备包括无线窄带模块、天线和无线接收器。
建议选择经过验证且具有良好性能的设备,以确保通信的稳定和可靠性。
3.2 频率规划在无线窄带通信系统的建设中,频率规划是一个重要的步骤。
需要根据实际应用需求和可用频段选择合适的通信频率。
同时,需要考虑到频率的可用性、干扰情况和合规要求等因素。
3.3 网络拓扑设计网络拓扑设计决定了无线窄带通信系统中各个节点之间的连接方式。
可以选择星型、网状或者混合拓扑结构。
在设计过程中,需要考虑网络的层级关系、节点之间的距离以及信号覆盖范围等因素,以实现全面覆盖和高效通信。
3.4 数据传输协议选择数据传输协议是无线窄带通信系统中的关键组成部分。
建议选择支持窄带通信的协议,如LoRaWAN(Low Power Wide Area Network)或NarrowBand IoT(NB-IoT)等。
这些协议具备低功耗、低成本和长距离通信的特点,非常适合无线窄带通信系统的应用。
3.5 安全性和隐私保护在无线窄带通信系统建设中,安全性和隐私保护是至关重要的。
建议采用加密和认证等安全机制来保护通信数据的安全性,同时需遵守相关隐私保护法规和标准,确保用户数据的隐私不被泄露。
3.6 传输距离优化无线窄带通信的一个优势是能够实现较长的传输距离。
然而,信号的传输距离受到多种因素的影响,如地形、障碍物、天气条件等。
660中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集巾国·海南电力线通信(PLC)技术综述曹惠彬(国电通信中o、北京100761)SURVEYoFPoWERLINECoMMUNICATl0N(PLC)TECHNoLoGYCAoHui—bin(StateGridTelecomCenter,Beijing100761,China)ABSTRACT:ThepaperpresentsthegeneralinⅡoducfion,classification,functionalorientation,mainapplications,networkarchitecture,Hewprogress,standaIdization,andEMCissuesofpowerlinecommunication(PLC)technology.KEYWORDS:PowerlinecolnlllUnication;Techniquenclassification;Funetionalorientation:Networkarchitecture;Standardization:EMC摘要:论述了电力线通信技术概况、技术分类、功能定位、主要用途、网络体系结构特征、发展动态、标准化进展、EMC问题等.侧重于宏观分析,不涉及技术细节。
关键词:电力线通信;技术分类;功能定位;网络体系结构特征:标准化:电磁兼容1概述电力线通信(PowerLineCommunication)是利用电力线实现信息传递的通信方式的统称,简称PLC。
要了解电力线通信,首先必须对电力线有一个基本的了解。
电力线大致分为五类:(1)各种输电线:包括特高压输电线(UHV,1000kV及以上)、超高压输电线(明V,750、500或330kV)、高压输电线(HV,220kV);(2)高压配电线;110、66、35kV;(3)中压配电线:lO(20)kV:(4)低压配电线:380/220V;(5)室内用户线:我国一般为单相220V。
宽带PLC和窄带PLC通信技术浅较20世纪20年代,通信行业迎来了快速发展的时期,通信技术不断进步。
总的说来通信技术可以分成两个主要的类别:第一类是宽带电力线通信;第二类是窄带电力线通信。
所谓宽带电力线通信指的是那些通信速率大于1MHz并且工作频率大于2MHz的通信技术,而窄带电力线通信指的是速率不超过1MHz并且工作频率不超过500kHz的通信技术。
1 电力线通信技术概述1.1 宽带PLC技术在宽带PLC技术发展的初始时期,通信技术标准是多种多样的,但是随着时代的发展和技术的进步,现阶段宽带PLC技术正在逐步走向统一。
总的来说,目前比较常见的200Mbit/s PLC技术主要有三个:第一个是HomePlug AV;第二个是UPA PLC;第三个是HD-PLC。
就HD-PLC技术而言,日本是使用该技术比较多的国家,其他国家使用的相对较少;HomePlug AV和UPA PLC在全球范围内都有使用者,因此目前两者处于竞争市场份额的状态。
一般来讲,宽带电力线通信技术主要有两个主要用途:第一,用于室内联网。
这里的室内联网指的是以宽带电力线通信技术为媒介将室内的不同房间都置于有网络的状态;第二,用于楼宇接入。
相较于室内联网,宽带电力线通信技术在楼宇接入的应用还处于不断完善的状态,比较容易在最后的300米出现问题。
1.2 窄带PLC技术目前不同国家对窄带PLC技术的频带要求有所不同,具体来讲:欧洲国家将窄带PLC技术的频带规定在3~148.5kHz之间;而美国的联邦通讯委员会将窄带PLC技术的频带规定在9~490kHz之间;日本也对窄带PLC技术的频带进行了约束,限制在10~450kHz之间;就我国而言,我国比较重视3~90kHz的频带。
在窄带PLC技术的发展的初始时期传输速率是比较小的,最大只能达到几个kbps。
此外,在传输数据的过程中经常遭受干扰,在干扰的影响之下经常出现各种各样的问题,从而使得传输结果出现错误。
电力线上网技术PLC技术,俗称"电力线上网",英文为Power Line munication,简称PLC,是指利用电力线传输数据和话音信号的一种通信方式,以前该技术只作为长距离调度的通信手段,随着Internet技术的飞速发展,利用220V低压电力线传输高速数据的价值越来越为人们所重视,因为它具有不用布线、覆盖X围广、连接方便的显著特点,被认为是提供"最后一公里"解决方案最具竞争力的技术之一。
一、PLC技术的起源及发展英国NORWEB通信公司在1990年就开始对电力载波通信进行研究,1995年,该公司又与加拿大Nortel公司联手,共同开发这项新技术。
1996年9月在CIGRE 大会期间向各国代表展示了技术原理和演示产品,提供了在曼切斯特进行20户小X围试验的录像资料,传输速率达到1Mbps ,利用包交换规约以及先进的网络调制技术,可以实现数字化声音和数据传输,但由于资金上的原因,于1999年放弃该项工作;1998年,美国lntelogis公司推出了passPort商业化PLC产品,用于户内联网,最高速率为350kbps。
由于技术不成熟,亦未能大规模商用,以使PLC技术在研究和改进中发展。
到2001年初,PLC专用芯片制造技术的进展明显加速,美国lntellon公司用于户内联网的14Mbps芯片达到实用水平;欧洲西班牙DS2公司的芯片速率也达到45Mbps;随之,许多国家的研究机构开展了PLC 技术的研究和开发,如美国的Intellon、Inari(Intelogis)、ITRAN等公司,韩国的Xeline 公司,欧洲的AS、Polytrax等公司,PLC芯片的传输速率从1Mbps发展到2Mbps、14Mbps、45Mbps。
瑞士AS公司1998年开始进入PLC技术研究领域,1999年在德国RWE公司实验取得成功,2000年与欧洲、东南亚以及拉丁美洲的20个大型企业或电信运行商联合建设了实验系统,试验的用户数超过2000个,并全部取得了成功。
电力线通信技术及其应用作者:李洪民来源:《数字技术与应用》2013年第06期摘要:本文介绍了利用电力线传输数据和媒体信号的通信方式,并就该技术的具体应用作了介绍,该技术是把载有信息的高频加载于电流然后用电线传输接受信息,再把高频从电流中分离出来并传送到终端以实现信息传递关键词:电力线通信电力猫调制载波中图分类号:TN91 文献标识码:A 文章编号:1007-9416(2013)06-0042-02电力线通信(Power Line Communication,英文简称PLC)技术是利用电力线传输数据和媒体信号的一种通信方式,该技术是把载有信息的高频加载于电流然后用电线传输接受信息再把高频从电流中分离出来并传送到计算机或电话等终端以实现信息传递。
该技术最大的优势是不需要重新布线,只是在电力线上实现数据语音和视频等多业务的承载实现四网合一,终端用户只需要插上电源插头就可以实现因特网接入。
在中国,三网已经开始进行融合,这对电力线通讯(Power Line Communication--PLC)需求也就越来越强烈。
电力猫的出现,则是PLC技术的最新发展。
电力猫即“电力线通讯调制解调器”,是通过电力线进行宽带上网设备的俗称。
使用家庭或办公室现有电力线和插座组建成网络,来连接PC、ADSL modem、机顶盒、音频设备、监控设备以及其它的智能电气设备,来传输数据,语音和视频。
它具有即插即用的特点,能通过普通家庭电力线传输网络IP数字信号。
1 基本原理在发送数据时,利用调制技术将用户数据进行调制,把载有信息的高频加载于电流,然后在电力线上进行传输;在接收端,先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到终端设备,以实现信息传递。
PLC设备分局端和调制解调器,局端负责与内部PLC调制解调器的通信和与外部网络的连接。
在通信时,来自用户的数据进入调制解调器调制后,通过用户的配电线路传输到局端设备,局端将信号解调出来,再转到外部的Internet。
电力通信几种主要传输方式的应用分析摘要:电力通信作为确保整个电网运行系统运行安全、稳定、可靠的重要载体,为确保其运行满足支撑电网系统安全运行的要求,就需要将对电力通信业务传输质量的提升作为重点关注对象之一。
本文就电力通信的三种传输方式进行分析,其中有SDH技术、线载波技术以及光载无线技术,以期参考。
关键词:电力通信;SDH;线载波技术;光载无线技术引言随着科技的不断发展,通信技术也在不断的发展。
目前主要的电力通信方式有SDH技术,线载波技术以及光纤技术。
在这三种通信方式的发展中,将光纤通信与无线通信相互融合的通信方式也应用的越来越广泛,即为光载无线通信技术,以下对三种通信方式进行分析。
一、SDH传输概述(一)、概述伴随着城市化建设进程的发展与完善,城市供电区域内的供电所数量也有所提升,由此带动着SDH网络下的节点数目逐渐增多,但是除了中心节点外,其他各节点上下的业务基本上是一样的,包括自动化的运行通道、调度电话、生产管理、以及电能计量等。
此种体系不单单能够与点对点的传输需求相契合,同时也能够满足在多点环境下的网络业务传输需求。
在当前的技术条件支持下,整个SDH传输体系的主要组成设备包括终端复用器装置、分插复用器装置、以及数字交叉连接设备这几个方面。
以上设备建立在光纤线路的基础之上实现连接,构成一个完成的SDH传输通道(如图1所示)。
图1SDH传输通道结构示意图(二)、SDH对电力通信传输网的要求分析(1)从性能的角度上来说,为确保接入状态下SDH设备运行稳定与可靠,需要做好平台性能的保障工作。
一般来说,要求面向所接入SDH设备配置一套基于STM-1SDH的传输设备,在多台设备共同接入的状态下,联立形成SDH网络,构成相对于STM-8或-16的子网网络。
(2)从接口的角度上来说,除需要满足一台设备对应多个可扩展用户接口的这一基本原则以外。
在SDH接入电力通信网络的过程当中,对于用户侧的接口还有一定的特殊要求:即用户侧接口需要配备功能完善的二线用户电路接口,当中需要支持包括电话分机调度、以及行政电话分机调度的功能。
1. 窄带电力线通信技术: 1) 中压窄带载波一般采用10-500KHz频段 2) 速率150-2400bps,采用OFDM调制可达100kbps以上 3) 传输距离较长,架空线路距离大于10km 4) 调制技术FSK、PSK,新型技术采用OFDM
近年来,随着低压电力线载波通信技术逐步完善,国内有十余家企业专注于技术开发和应用,采用的技术主要有扩频加窄带频移键控(FSK)、扩频加窄带相移键控(PSK)、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)等,在用电信息采集、智能家居能源管理、楼宇监视和路灯控制等领域均有大规模的应用。 国内比较主流的低压电力线窄带载波通信技术方案及应用如错误!未找到引用源。所示: 表 1国内比较主流的低压电力线窄带载波应用现状
中心频率 调制方式 频带宽度 (kHz) 波特率 (bps) 典型厂商 数量 (万只) 市场占有率 270kHz BFSK +扩频 30 100-800 青岛东软 2,431.24 34.86% 421kHz BFSK +扩频 40 50-1.2k 青岛鼎信 1,828.82 26.22% 120kHz BPSK +扩频 15 250/500 北京福星晓程 1,601.61 22.96% 76.8kHz QPSK +扩频 32 200-1.6k 上海弥亚 微电子 211.98 3.04%
除了以上低压电力线载波通信方案,近两年在国家电网集中招标中也出现过100kHz、175kHz、300kHz等多种频率方案,由于大部分通信厂家采用各自的企业标准,频率选择、调制方式、传输技术及组网技术各有特点,难以实现互操作问题。
国内窄带电力载波通信技术发展现状 一、国内现有载波通信技术特点 现有的低压载波通信芯片的技术特点可以从调制方式、传输速率、通信频率、通信功率、EMI标准、芯片技术等方面来分析。 1.调制方式与传输速率 目前电力线载波通信常用的扩频技术主要有:直接序列扩频、线性调频Chirp和正交频分复用OFDM等。此外,跳频FH、跳时TH以及上述各种方式的组合扩频技术也较为常用。 国内载波通信产品主要采用直接序列扩频技术。其中 东软为FSK,15 位直序列扩频通信; 福星晓程DPSK 63 位直序扩频; 弥亚微为QPSK扩频调相、过零同步、分时传输; 鼎信为二进制连续相位移频FSK,过零同步、分时传输。 上述各家的扩频技术各有不同特点。对载波通信芯片性能最直接影响在于可靠性和传输速率。 目前这四家中,传输速率分别为: 弥亚微,同时提供200、400、800、1600bps四种可变速率; 东软:330bps; 福星晓程:250/500bps; 鼎信:100bps。 按照现阶段现场实际应用状况来看100至500bps速水平仅能用于普通抄表功能,如果涉及到远程控制(断送电)和管理功能则需要提供更高速率保证。
2.通信频率 关于通信频率,在美国由联邦通信委员会FCC规定了电力线频带宽度为100~450kHZ;在欧洲由欧洲电气标准委员会的EN50065-1规定电力载波频带为3~148.5kHZ。这些标准的建立为电力载波技术的发展做出了显著的贡献,目前全球AMR系统均采用该频段标准。 国内载波通信芯片中符合欧洲标准的为2家,分别是福星晓程120KHz和弥亚微57.6KHz/76.8KHz/115.2KHz三种可选。
3.通信功率及EMI指标 国内东软、福星晓程、鼎信等多数载波通信方案为了针对国内电力信道环境中的衰减,均采取加大通信传输功率等做法。在实际产品化的过程中,基本上做到3W至5W,有的电表厂甚至做到了8W,这种做法是绝对不可取的。 首先,这种做法导致电表产生的功耗损失无疑增加的线损,造成大量的能源浪费,这也有悖于国网公司上集抄系统的初衷; 其次,如此大的功率传输将会严重污染电力线信道环境,我们原来是恶劣的电力线信道环境的受害者,现在却也能成为最大的制造者。 就目前研究了解的情况,国内只有弥亚微的载波芯片Mi200E采取低功耗设计。其发送信号时的功率仅为0.4W,在保证可靠的通信性能的同时该芯片EMI等相关指标满足欧洲标准。
4.芯片技术 严格意义上讲,国内载波通信方案供应商并不完全都是芯片设计研发企业,像东软和鼎信均是采用MOTROLA的MC3361+单片机通过软件完成物理层、MAC层、网络层的模式。其优点是降低了研发难度,但该模式会导致其核心技术(相关软件)容易泄密或被解密,安全性值得探讨。福星晓程和弥亚微均是完全自主开发的载波通信芯片产品。
二、国内载波芯片产品分析 青岛东软 该公司是国内较早对低压载波进行投入的厂家,目前市场分额较大。 主要产品主要特点是:采用FSK调制方式,信号频率为270K;软件相关器和匹配滤波器,63位码序列,码速率20.8k波特;自适应数字信号处理和模糊处理技术,具备前向纠错功能;帧中继转发机制,支持3级中继深度。 但东软的载波方案不满足相关国际标准,通信模块的EMI特性难以满足,会对电网带来比较大的谐波干扰。同时,由于使用MC3361+单片机的模式,载波方案的集成度不高。同时由于外置功放的使用,外部分立元器件一致性问题的影响,带来调试,安装,现场施工的一系列问题,从而会对集抄系统的稳定性,可靠性带来影响。
福星福星晓程 福星晓程于2000年前后推出载波ASIC芯片,其集成度比东软的要高,在国内的份额同东软差不多。 其产品PL3105 采用的是PSK调制直序扩频方式,载波频率为120K,码元速率500bps,伪码为15的M序列。它内部集成了2 路16 位的A/D,LED/LCD 显示控制模块,3 个定时器,2 个多功能串口。 由于PL3105采用数字解调、解扩,抗干扰性能好于东软,在实际使用中物理层的通信距离较好。但其载波芯片实质是一个带载波MODEM的单片机,只有物理层,链路层、应用层需要各厂家自己开发,加大了开发难度和开发周期;同时由于各厂家的链路层协议不尽相同,出现了同是采用福星晓程芯片也未必能互联互通的尴尬局面。另外其推出的中继算法不太实用也限制了其的发展。
弥亚微电子 弥亚微电子的Mi200E是国内目前唯一一款既满足国内市场需求,又符合国际标准的高性能载波通信芯片。 Mi200E采用了直接序列扩频、数字信号处理、数字功率放大等新技术,该电路应用在电力线通信方面具有较强的抗干扰及抗衰减性能。MI200E是内部集成了扩频解扩、调制解调、输入信号整形放大、数字功率放大器、市电检测、高性能带通滤波器、数模转换接口以及与单片机(MCU)串口通信等功能。同时为上层网络协议提供载波侦听和有效帧指示信号。 Mi200E具备可变扩频增益,提供 200、400、800和1600bps四种不同的通信速率,满足现场的各种需求;三种可选的载波频率;低功耗设计,最大发射功耗仅为0.4W;Mi200E符合 EN50065-1以及IEC61000-3-8 标准所规定的低压电力线载波通信信号频段以及EMI的要求。 过零同步传输技术是弥亚微高性能载波通信芯片Mi200E的核心技术。Mi200E以电力线的过零时间为时间基准进行信号同步,使通信信号工作在以零点为中心的6.6ms时间内。该区域电网噪声最弱,网上干扰最小,负载阻抗较轻,在这段时间里进行通信避开了电力线上负载较重的时间段,同时解调算法采用时间分集的方式,大大提高了通信的稳定性和可靠性;同时也能保证各相之间不能相互通信,使主站能够正确区分每一个电表的相别;不同相别的准确区分为中继的实现提供了可靠的保证,且由于跨相抄收而引起的中继不稳定现象得到了根除。 Mi200E应用电路简单,内置数字功放大大减少了载波电表的外围电路器件要求,在大批量生产时保证产品一致性好,调试容易,可靠性高;同时有效降低BOM成本,后期维护成本大大降低。 不仅如此,弥亚微还为电表厂提供具备“自动路由、自动中继、自我学习”机制的高效载波通信网络协议配合Mi200E的应用。
青岛鼎信 这是一家新成立的公司,其核心技术人员均来自于青岛东软,目前的技术方案实际是以吉林省公司为主导提出、由鼎信来具体实现和加以完善。 鼎信产品主要特点:软件相关器和匹配滤波器,80 位正交码序列;扩频通信技术;高效率前向纠错;BFSK 调制、半双工通信;码速率每相50bps、100bps;帧中继转发机制,数据链路层支持中继深度可达32 级;接收信号强度权重参数指示,为中继搜索算法提供支持,提高通信系统稳定性;四层网络结构:物理层、数据链路层、网络层、应用层,其中应用层通信协议针对DL/T645-1997 通信规约进行了专门优化; 鼎信是继弥亚微之后,第二家采用过零同步传输技术的载波通信方案提供商。其以电力线的过零时间为时间基准进行信号同步,使各相工作在以本相零点为中心的3.3ms时间内。 鼎信的不足在于: 第一,其传输速率仅为50,100bps,该速率仅能做为抄表应用,如果想实现远程控制和智能电网管理功能则会力不从心,这是一个潜在的隐患。 其二,中心频点过高。传输频率:421.1KHz ,超过欧洲标准,随着国内标准化进程的逐步加强是潜在的风险。 其三,通信模块的发射功率大,从而载波电表的功耗较大,难以满足国网规约对表计的整体功耗要求;EMI特性难以满足,会对电网带来比较大的谐波干扰。 其四,与东软的载波方案类似,由于使用MC3361+单片机的模式,载波方案的集成度不高。同时由于外置功放的使用,外部分立元器件一致性问题的影响,带来调试,安装,现场施工的一系列问题,从而会对集抄系统的稳定性,可靠性带来影响。
三、结论 综上所述,目前国内主要的载波通信芯片产品仍然处于快速成长阶段,各种技术方案均有很大的发展空间。作为后来居上的新技术方案代表的弥亚微,其可靠性与满足国际标准是其他方案所不具备的优势,应该予以大力推广。其我们必须坚持实事求是,以科学的发展观,客观评价每一项技术方案,每一款载波通信芯片和每一个成长中的载波通信技术创新企业,为国内集抄市场的发展和智能电网的建设奠定良好的基础。
四、国内载波通信芯片参数简表
品牌 青岛东软 福星晓程 弥亚微 青岛鼎信 成立时间 1993年 2000年 2004 2008年 规模 约占市场60% 约占市场30% 约占市场5% 无规模应用