高压输电线路故障测距的算法研究_陈丹霏
- 格式:pdf
- 大小:219.65 KB
- 文档页数:3
- 73 -工 业 技 术高压直流输电具有输电能量大、传输距离远的优点,在电能的长距离传输方面具有明显优势。
然而,由于我国能源分布和负荷分布不匹配,高压直流输电在解决能源和负荷间的供需矛盾方面发挥了重要作用。
因此,高压直流输电在我国国情下具有较高的应用价值。
直流输电线路长度长,沿途地域环境复杂多样,以常规的巡检方式进行故障定位十分不便,因此对高压直流输电线路的故障位置诊断技术进行研究十分必要且意义重大。
目前,直流输电线路的故障定位方法主要基于故障行波技术,分为单端行波法和双向行波法[1-2]。
单端行波法对辨识第二个反射行波具有较高要求,但是发生高阻接地故障时,精确辨识第二个反射行波不易实现[3]。
双向行波法对辨识首个行波具有较高要求,但是直流输电系统中的平波电抗器、直流滤波器等会对行波的特性产生较大影响,较难有效辨识首个行波。
1 基于高频衰减特性的直流输电测距目前,直流输电线路普遍采用双极运行方式,两极之间存在电气耦合关系,因此必须要对线路上的信号进行解耦处理,才能够进行衰减特性分析[4],其解耦公式如公式(1)所示。
u u s u u s 1011111§©¨·¹¸ §©¨¨·¹¸¸ ©·¹¸ , (1)式中:u 1、u 0分别代表整流器侧和逆变器侧瞬态电压的线模分量和零模分量,u +、u -分别代表对应侧的正极线瞬态电压和负极线瞬态电压[5]。
高频分量的衰减效应在直流输电线路上表现较明显。
高频分量的衰减程度与其通过直流输电线路的长度紧密相关[6-7],基于高频衰减特性的直流输电线路测距原理如图1所示。
故障发生位置距整流器侧的测距设备的距离x 与到达整流器侧和逆变器侧测距设备处某个频率下的故障电压幅值具有一定的关系[8],如公式(2)所示。
电力线路故障测距方法综述1.直流法:直流法是最早被使用的一种故障测距方法。
该方法利用电流和电压信号的比例关系来测量故障距离。
在故障发生时,通过增大直流电源的电流,可以使故障出口处的电压降低,从而可以准确计算故障点的位置。
然而,直流法需要大量的计算和测量,并且对于多故障的线路无法定位。
2.阻抗法:阻抗法是一种常见且精确的故障测距方法。
该方法利用故障点附近的线路阻抗来测量故障点的位置。
在故障发生时,通过测量电压和电流,可以计算出故障点处的阻抗值,从而确定故障点的位置。
阻抗法在电力系统中被广泛使用,但是对于多段故障的线路也存在一定的局限性。
3.反射法:反射法是一种利用电力信号的反射原理来测量故障距离的方法。
在故障发生时,电力信号会在故障点产生反射,通过捕捉反射信号的时间和幅值,可以计算出故障点的距离。
反射法具有较高的定位精度,并且对于多段故障有较好的适应性。
4.波形比较法:波形比较法是一种新型的故障测距方法。
该方法通过比较正常工作线路和故障点线路的电压和电流波形差异,来测量故障距离。
波形比较法具有较高的测距精度,并且可以根据线路工况自动调整故障测距参数,适应不同条件的故障。
综上所述,电力线路故障测距是电力系统运行中的一项重要工作,对于确保电力线路的稳定运行具有重要意义。
目前主要的故障测距方法包括直流法、阻抗法、反射法和波形比较法。
这些方法各有优劣,适用于不同的故障情况。
随着技术的不断进步,电力线路故障测距方法也会不断发展和改进,以提高测距精度和快速定位故障点。
线路保护常见的故障测距方法摘要:输电线路发生故障时,通过故障测距装置的自动测量,可以为人工查找故障点提供有效参考,但需要注意测距设备的准确性、可靠性、实用性问题。
介绍了基于故障分析的单端测距、双端测距方法,并特别强调在实际中采用的方法,以及这些方法的特点和不足,并对这些方法给与了评价。
关键词:输电线路故障测距单端测距双端测距高压输电线路是电网中传输电能的主要通道,其可靠运行直接关系到电能能否有效传输。
随着电网规模的不断扩大,电能的输送距离越来越远,输电线路的电压等级也越来越高。
远距离的输电以及大量输电线路的建设使用带来的问题之一就是输电线路发生故障的次数也越来越多。
由于输电线路的运行环境多种多样,越是复杂的地形和恶劣天气,发生故障的可能性越大,这就给发生故障时的故障定位带来了困难。
为了尽快的修复和恢复供电,又迫切要求迅速的查找到故障点,为了解决这一问题,除了需要相关人员,特别是巡线人员的辛勤工作外,更需要一种有效的进行故障定位的方法,这便是输电线路的故障测距技术,为此工程技术人员和研究人员进行了大量的研究和实践工作[1-2]。
1 输电线路的故障测距本质上说,故障测距并不能准确获知故障点的实际位置,因为故障测距得到的只能是电气距离,如故障点到测距设备安装点(一般是变电站内)的输电线路长度,但这已经可以大幅缩小人员现场查找故障点的范围。
故障测距设备又被称为故障定位装置,能够根据故障发生时的电气特征迅速测定安装处到故障点的距离,从而减轻人工巡线的劳动,还可以查找出人工难以发现的故障,因此给电网运行部门带来了很高的社会效益和经济效益。
为了达到预期的目标,需要故障测距装置在准确性、可靠性以及实用性方面达到一定的目标。
1.1 准确性准确性是故障测距装置的最重要性能指标,失去准确性,就是去了故障测距的意义,反而会对人员的巡线带来误导,影响人员的正确判断,延长发现故障点的时间。
实际的故障测距必然存在误差,但误差只要在可以接受的范围内,就可以受到良好的效果。
500kV输电线路行波故障测距算法的探讨朱皆悦;黄玮峰【摘要】近年来,我国电力事业飞速发展,其中高压线路的增多以及输电距离的扩大而且输电线路所处的地理环境复杂多变已经成为了一种不可避免的现象.尤其是在高压输电线路过程中线路的安全性是必须得到严格控制,如何在线路故障后迅速的测距、及时对故障进行修复以保证整个供电系统的安全稳定具有十分重要的意义.目前,经过实践证明,行波测距技术已经得到了很大的发展,可以提高故障测距的准确度,并且测距的可靠性以及准确性能不会以为其他外界环境的影响而发生偏差,对外界干扰有着很强的抵御能力.【期刊名称】《低碳世界》【年(卷),期】2015(000)031【总页数】2页(P44-45)【关键词】输电线路;故障测距;行波法【作者】朱皆悦;黄玮峰【作者单位】国网上海市电力公司检修公司特高压交直流运检中心,上海200062;国网上海市电力公司检修公司特高压交直流运检中心,上海200062【正文语种】中文【中图分类】TM7621 引言电力行业是一个国家发展的先头行业,经济发展的主要动力就是电力行业的高速发展。
电力行业的迅速发展也可以弥补我国能源分布不均匀的缺陷,大力开发电力行业的发展才能够实现全国范围内的能源合理分配和资源的优化配置,水利、电力以及核能等新型能源的开发利用已经成为我国基本的建设战略。
虽然我国在直流输电工程的发展上位于世界行列的前头,但是在保护输电线路以及故障测距的核心技术仍有很大的不足之处,没有一套系统的理论来进行支撑。
所以为了保障电力行业的稳定发展,希望可以找到一套可行的方式方法来实现测距精度高、耐受过渡电阻能力强的测距新算法。
2 行波法的概述行波法兴起于21世纪,广泛传播于60年代,现在已经在电力行业中成为了研究热点,行波法主要是通过测定电压以及电流在线路上的时间来进行故障距离的测定。
因为在电力系统的暂态分析时,电网规模并不能被忽略,就需要使用一些特定的参数来对系统进行分析研究。
目录摘要 (I)Abstracts (II)1 绪论 (1)1.1 输电线路故障测距的背景和意义 (1)1.2 输电线路故障测距的发展和研究现状 (2)1.3 本文的主要内容 (3)2 输电线路故障测距方法 (3)2.1 阻抗法 (4)2.2 行波法 (4)2.3 故障分析法 (5)2.4 各种故障测距方法的比较 (6)2.5 本章小结 (6)3 线路信号提取及模型建立技术 (6)3.1 基于实际情况的输电线数学模型 (7)3.2 数字滤波算法 (10)3.3 本章小结 (14)4 单回线双端电气量故障测距算法 (14)4.1 双端电气量故障测距算法 (15)4.2 相模变换 (16)4.3 正序故障分量的提取 (16)4.4 本章小结 (16)5 基于MATLAB的双端电气量故障测距数字仿真 (16)5.1 线路模型 (16)5.2 仿真算法流程 (17)5.3 MATLAB模型及参数 (18)5.4 故障下的仿真计算和故障分析 (18)5.5 本章小结 (21)参考文献 (22)致谢 (23)ContentsAbstract ........................................................................................................................... I I 1 Introduction . (1)1.1 Background and significance of fault location for transmission line (1)1.2 Development and research status of transmission line fault location (2)1.3 The main content of this paper (3)2 Transmission line fault location method (3)2.1 Impedance method (4)2.2 Traveling wave method (4)2.3 Fault analysis (5)2.4 Comparison of various fault location methods (6)2.5 Summary of this chapter (6)3 Line signal extraction and its model establishment technology (6)3.1 Mathematical model of transmission line based on actual conditions (7)3.2 Digital filtering algorithm (10)3.3 Summary of this chapter (14)4 Single circuit double terminal electrical fault location algorithm (14)4.1 Double terminal electrical fault location algorithm (15)4.2 Phase mode transformation (16)4.3 Extraction of the positive sequence fault components (16)4.4 Summary of this chapter (16)5 Digital simulation on the dual terminal electrical quantity of MATLAB (16)5.1 Line model (16)5.2 Simulation algorithm flow (17)5.3 MATLAB model and parameters (18)5.4 Simulation and fault analysis of fault (18)5.5 Summary of this chapter (21)Reference (22)Acknowledgement (23)输电线路故障测距研究及仿真摘要:能够在高压和超高压的输电线路中,及时、准确的找出故障的位置,既能最快的修复输电线路,找出输电隐患和确定输电的可靠性,还能对确定整个电力系统稳定的运行和经济运行都至关重要。
高压输电线路故障诊断与在线监测技术研究随着电力系统的不断发展和电力需求的增加,高压输电线路的安全运行成为电力行业亟待解决的问题。
由于高压输电线路的特殊工况和复杂环境,线路故障诊断与在线监测技术的研究和应用变得尤为重要。
本文将对高压输电线路故障诊断与在线监测技术的研究现状进行分析,并探讨其应用前景和发展方向。
一、高压输电线路故障诊断技术的现状高压输电线路故障诊断技术是指通过对线路工作状态、参数及故障特征进行监测和分析,来判断线路是否存在故障,并对故障进行准确定位和诊断的技术方法。
目前,高压输电线路故障诊断技术主要包括红外热像技术、故障信号处理技术、人工智能技术等。
(一)红外热像技术红外热像技术是一种通过测量物体辐射的红外辐射能量,并将其转化为热像图像的技术方法。
在高压输电线路故障诊断中,红外热像技术可以快速检测线路存在的异常温度现象,如热点、松动、接触电阻等故障,从而准确判断线路是否存在故障,并辅助进行故障的定位和诊断。
(二)故障信号处理技术故障信号处理技术是一种通过采集、分析和处理线路故障产生的电信号实现故障诊断的技术方法。
通过对故障信号的振动、电流、电压、电磁等特征参数进行监测和分析,可以准确判断线路是否存在故障,并实现故障的定位和诊断。
(三)人工智能技术人工智能技术是一种通过计算机仿真和模拟人类智能行为和思维过程的技术方法。
在高压输电线路故障诊断中,人工智能技术可以通过建立合理的数学模型和算法,实现对线路故障的智能识别和判断。
例如,利用人工神经网络和遗传算法等方法,可以对线路的异常电流和电压进行预测和分析,从而实现对线路故障的准确诊断和定位。
二、高压输电线路在线监测技术的现状高压输电线路在线监测技术是指通过对线路运行状态和参数的实时监测,来判断线路运行是否正常,并预测线路可能出现的故障的技术方法。
目前,高压输电线路在线监测技术主要包括光纤测温技术、振动监测技术、电流监测技术等。
(一)光纤测温技术光纤测温技术是一种利用光纤传感器对线路温度进行实时监测的技术方法。
配电线路短路故障测距优化算法研究摘要:配电线路故障测距技术依据线路故障时的故障特征自动判明故障位置,有利于及时修复线路,保障供电可靠性。
配电线路多为辐射状结构,具有供电距离短、分支多、存在架空-电缆混合输电模式、不换位等特点,使得配电线路故障测距问题远较输电线路复杂、困难;另外,由于配电线路短,如果测距误差大,就失去了测距的意义,因此要求配电线路故障测距具有高精度,遗憾的是,现有的测距方法精度不高,不能满足该要求。
针对短路故障测距,以适用于配电线路特点、提高测距精度为研究目标,本文提出了改进的阻抗测距法,该方法采用分布式参数模型,有效提高了测距精度,能更真实地反映线路信息。
关键词:配电线路;改进阻抗测距1引言配电线路在短路故障时,电气量变化明显,和中性点接地系统相似,因此输电线路的故障测距方法对于配电线路短路故障测距有很大的借鉴价值。
配电网多为单电源辐射状结构,遍布范围广,常带有多个终端,终端一般无测量装置,不能获得故障信息。
因此故障测距只有依靠单端电气量的测距方法。
这里着重介绍基于单端电气量的输电线路故障测距方法。
2短路故障测距法的研究现状和在实际应用中存在的问题2.1短路故障测距法的研究现状1979年M.T.Sant 和Y.G.Paithankar最早提出基于工频电气量的单端故障测距思想,它主要针对单侧电源线路[1];1982年Takagi[2]和1983年A.Wiszniewski[3]先后提出了使用故障分量网络来考虑负荷电流的影响,并引入故障分量电流分布系数来消除系统阻抗的影响;同时,Schweitzer[4]等人还提出了用迭代法减小过渡电阻对故障测距的影响;1985年L.Eriksson[5]在考虑系统运行方式的前提下,通过解二次方程计算故障距离。
80年代后国内的故障测距技术随微机技术发展而不断深入。
1982年蔡德礼、叶一麟[6]提出了通过有限次迭代计算修正故障电流相位进行测距的方法;1985年杨奇逊[7]利用R-L模型方程的阻抗算法实现距离保护装置。
毕 业 设 计(论文)`院系 电力工程系 专业班级 农业电气化与自动化0901班 学生姓名 王雯婷 指导教师 王 宁 二○一三年六月 题 目 输电线路单相接地故障测距算法研究输电线路单相接地故障测距算法研究摘要输电线路是电力系统的重要组成部分,是电力系统的命脉,精确的输电线路故障测距对保证电力系统的安全稳定和经济运行有着十分重要的作用。
然而,电力系统本身是一个复杂的动态系统,基于经济因素考虑,长距离、重负荷的输电系统常常运行在临界稳定的状态下,当系统发生扰动、故障等情况时会不可避免地存在各种复杂多样的动态过程。
文章首先介绍了各种测距方法的基本原理,并将现有的各种测距方法分为行波测距、单端测距和双端测距三类,然后逐类对各种算法的理论基础和应用条件进行了分析、对比和讨论。
然后主要针对一种单回线双端电气量测距算法进行研究,相比于传统的算法该算法提出了实部相等的解决办法,再利用故障分量进行测距计算,这样一来可以消除负荷电流的影响,并且测距精度也几乎不受过渡电阻、故障类型等因素的影响。
最后通过MTLAB仿真,对全波傅氏算法和全波差分傅氏算法进行了比较,最后得出全波差分傅氏算法滤波效果更好,测距结果更精确。
而对应于不同的过渡电阻,实际测量到的故障距离相差不大,说明过渡电阻对于测距影响不大。
关键词:输电线路;故障测距方法;双端测距算法;MATLAB/simulink仿真TRANSMISSION LINE OF SINGLE-PHASE GROUNDING FAULT LOCATIONALGORITHMSAbstractAs an important elements of power system, transmission line is the lifeblood of the power system. So, precise fault location method for transmission line plays a very important role in ensuring security, stability and economic operation of power system. Yet, it is a complex and dynamic system for power system itself, and long and heavy transmission line systems are often running in the critical stable state based on some economic benefits. When some disturbances or faults occured, a variety of complex and dynamic process will inevitably exist in transmission line system.The article first introduces the basic principles of a variety of methods ranging and ranging method is divided into various existing traveling wave, single-ended and double-ended ranging ranging three categories, then the various algorithms by category theory and application conditions were analyzed, compared and discussed. Then focused on a single-loop algorithm for two-terminal electrical quantities ranging study, compared to the conventional algorithm the algorithm proposed real part equal solutions for fault component reuse distance calculations, so that the load can be eliminated currents, and the ranging precision is almost free from transition resistance, fault type and other factors.Finally, the simulation of the full-wave and full-wave Fourier algorithm differential Fourier algorithm are compared, and finally come to a full-wave Fourier algorithm differential filtering effect is better, ranging results more precise. And correspond to different transition resistance, the actual measured fault distance less, indicating that the transition resistance ranging little impact.Keywords: Transmission line; fault location method; double ended ranging algorithm; MATLAB / simulink simulation目录摘要 (I)Abstract (II)1绪论 (1)1.1故障测距定位的意义和作用 (1)1.2输电线路故障 (1)1.2.1输电线路故障类型 (1)1.2.2输电线路故障对测距装置的基本要求 (2)1.3输电线路故障测距技术的发展 (3)1.4本文主要研究内容 (4)2输电线路故障测距方法 (6)2.1阻抗法 (6)2.2行波法 (6)2.3故障分析法 (7)2.3.1利用单端电气量法测距 (8)2.3.2利用双端电气量法测距 (10)2.4智能化测距方法 (12)2.5各类测距方法的比较 (12)2.6本章小结 (13)3线路模型的建立与信号提取 (14)3.1输电线路常见数学模型 (14)3.1.1 R-L模型 (14)3.1.2 π型或T型模型 (15)3.1.3分布参数模型 (16)3.2 数字滤波算法 (17)3.2.1 全波傅氏算法 (18)3.2.2 全波差分傅氏算法 (18)3.2.3 带通滤波 (19)3.2.4 最小二乘滤波算法 (20)3.3 本章小结 (20)4单回线双端电气量故障测距算法 (22)4.1 算法原理 (22)4.2 相模变换 (24)4.3正序故障分量的提取 (25)4.4算例仿真与对比分析 (26)4.4.1 算法仿真流程 (26)4.4.2 线路模型及参数设置 (27)4.4.3 MATLAB仿真模型及参数设置 (28)4.4.4 单相接地故障情况下的仿真计算和结果分析 (28)4.5本章小结 (31)结论 (32)参考文献 (33)致谢..................................................... 错误!未定义书签。