天然气水合物是怎样形成的
- 格式:pdf
- 大小:226.86 KB
- 文档页数:3
天然气水合物的发现史天然气使用安全常识天然气水合物(Natural Gas Hydrates,NGHs)是一种由天然气分子和水分子形成的晶体化合物。
它们在高压和低温的条件下形成,并存在于陆地和海洋沉积物中。
天然气水合物被认为是一种巨大的能源资源,可能比煤炭、石油和天然气等传统化石燃料资源更为丰富。
以下是天然气水合物的发现史以及天然气的使用安全常识:一、天然气水合物的发现史:1.初次发现:最早对天然气水合物的描述发生在18世纪末和19世纪初,当时,北美被描述为“冷气固化物”,但直到20世纪60年代,人们才首次证实了其存在。
2.挖掘天然气水合物:人们于1969年在墨西哥湾发现了深水天然气水合物,但直到2002年,日本才首次成功挖掘和提取天然气水合物。
3.进一步证实:从1990年代开始,国际上的科学家们陆续在世界各地的海洋沉积物和深地层沉积物中发现了更多的天然气水合物。
二、天然气的使用安全常识:1.天然气泄漏的风险:天然气的主要成分是甲烷(CH4),它具有易燃性和无色、无味的特点。
天然气泄漏可能导致爆炸和火灾的风险,因此天然气使用过程中需要注意安全。
2.检查和维护:定期检查和维护燃气设备和管道,确保其安全运行。
如果发现泄漏,应立即通知相关部门进行修复。
3.安全燃烧:使用天然气的燃气炉、燃气灶等燃气设备时,应确保良好的通风环境,避免一氧化碳中毒等危险情况发生。
4.防止火灾:禁止在天然气灶或炉子附近使用易燃物品,如喷雾瓶等。
并确保使用天然气设备时无明火,并随时保持家庭灭火器的可用性。
5.预防意外:在使用天然气时,应注意避免刺激性和腐蚀性物质的接触,以免损坏管道或设备。
6.紧急情况应对:如发生天然气泄漏或其他紧急情况,应迅速采取以下措施:不使用明火,关闭天然气阀门,立即离开并通知有关部门。
综上所述,天然气水合物作为一种巨大的能源资源,在不断的发现和研究中逐渐为能源开发者所关注。
然而,天然气的使用也需要严格遵守安全常识,以确保使用过程的安全性和可靠性。
1第一章 天然气水合物第一节 水合物的形成及防止一、天然气的水汽含量天然气在地层温度和压力条件下含有饱和水汽。
天然气的水汽含量取决于天然气的温度、压力和气体的组成等条件。
天然气含水汽量,通常用绝对湿度、相对湿度、水露点三种方法表示。
1.天然气绝对湿度每立方米天然气中所含水汽的克数,称为天然气的绝对湿度,用e 表示。
2.天然气的相对湿度在一定条件下,天然气中可能含有的最大水汽量,即天然气与液态平衡时的含水汽量,称为天然气的饱和含水汽量,用e s 表示。
相对湿度,即在一定温度和压力条件下,天然气水汽含量e 与其在该条件下的饱和水汽含量e s 的比值,用φ表示。
即:se e =φ (1-1)3.天然气的水露点天然气在一定压力条件下与e s 相对应的温度值称为天然气的水露点,简称露点。
可通过天然气的露点曲线图查得,如图1-1所示。
图中,气体水合物生成线(虚线)以下是水合物形成区,表示气体与水合物的相平衡关系。
该图是在天然气相对密度为0.6,与纯水接触条件下绘制的。
若天然气的相对密度不等于0.6和(或)接触水为盐水时,应乘以图中修正系数。
非酸性天然气饱和水含量按下式计算:W =0.983WoC RD Cs (1-2)式中 W ——非酸性天然气饱和水含量,mg/m 3; W 0——由图1-1查得的含水量,mg/m 3; C RD ——相对密度校正系数,由图1-1查得;Cs ——含盐量校正系数,由图1-1查得。
对于酸性天然气,当系统压力低于2100kPa (绝)时,可不对H 2S 和(或)CO 2含量进行修正。
当系统压力高于2100kPa (绝)时,则应进行修正。
酸性天然气饱和水含量按下式计算:2 图1-1 天然气的露点3)W y W y W 0.983(yW S H S H CO CO HC HC2222++= (1-3)式中 W —酸性天然气饱和水含量,mg/m 3;2CO y ,S H 2y ——气体中CO 2,H 2S 的摩尔含量;HC y ——气体中除CO 2,H 2S 以外的其它组分的摩尔含量;W HC ——由图1-1查得的含水量,mg/m 3;2CO W ——CO 2气体含水量,由图1-2查得; S H 2W ——H 2S 气体含水量,由图1-3查得。
天然气水合物的形成机理及防治措施X刘 佳,苏花卫(中原油田分公司,河南濮阳 457061) 摘 要:天然气水合物是在天然气开采加工和运输过程中,在一定温度和压力下,天然气与液态水形成的冰雪状结晶体。
在天然气开采加工和运输过程中,会堵塞井筒管线阀门和设备,从而影响天然气的开采、集输和设备的正常运转。
本文通过分析天然气水合物的形成条件,得出了几条具有实际意义的水合物防治措施,对天然气的安全生产具有一定的现实意义。
关键词:天然气水合物;形成条件;防治措施 中图分类号:T E868 文献标识码:A 文章编号:1006—7981(2012)13—0049—02 天然气水合物是在天然气开采加工和运输过程中,在一定温度和压力下,天然气与液态水形成的结晶体,外观形似松散的冰或致密的雪,它的相对密度为(0.8~0.9)[1];天然气水合物是一种笼形晶状包络物,即水分子借氢键结合成晶格,而气体分子则在分子力作用下被包围在晶格笼形孔室中;天然气水合物极不稳定,一旦条件破坏,即迅速分解为气和水。
在天然气开采加工和运输过程中,在管道中形成的水合物能堵塞井筒管线阀门和设备,从而影响天然气的开采、集输和设备的正常运转。
只要条件满足,天然气水合物可以在管道井筒以及地层多孔介质孔隙中形成,这对油气生产和输送危害很大。
1 天然气水合物形成的条件1.1 水分生成水合物的首要条件是具有充足的水分[2],即管道内气体的水蒸气分压要大于气体-水合物中的水蒸气分压。
若气体中的水蒸气分压低于水合物中的水蒸气分压,则不能形成水合物,即使已经形成也会融化消失。
1.2 烃类及杂物研究表明,烃类物质并不是全部都可以形成水合物,直链烷烃中只有CH 4、C 2H 6、C 3H 8能形成水合物[3],支链烷烃中只有异丁烷能形成水合物。
此外,天然气中的杂质组分H 2S 、CO 2、N 2和O 2等也可促使水合物的生成。
通常,天然气组分中C 2以上烃类含量不高,它们主要形成I 形水合物。
天然气水合物结构类型天然气水合物(Gas Hydrate)是一种特殊的结晶化合物,由水分子和气体分子形成的固态晶体结构。
其中,水分子以六边形的结构排列,气体分子则嵌入在水分子的六边形晶格当中。
天然气水合物的稳定性取决于温度和压力,一般需要在高压低温的条件下形成。
天然气水合物广泛存在于海洋和陆地的冷寒地区,是重要的能源资源和环境地质问题。
根据水合物结构中气体分子的类型和排列方式,天然气水合物可分为多种结构类型。
下面将介绍几种常见的天然气水合物结构类型。
1. I型水合物(Structure I)I型水合物是最常见的天然气水合物结构类型,其中气体分子以单个分子的形式嵌入在水分子的六边形晶格当中。
这种结构类型适用于大部分低碳烷烃类气体,如甲烷、乙烷等。
I型水合物在低温高压条件下稳定,常存在于海洋沉积物中。
2. II型水合物(Structure II)II型水合物是由二氧化碳分子和水分子形成的结构类型。
在这种结构中,CO2分子以线性链的形式嵌入在水分子的六边形晶格当中。
II型水合物的稳定性较低,需要较高的压力和低温才能形成。
这种结构类型常见于深海寒冷地区。
3. H型水合物(Structure H)H型水合物是由大型气体分子(如烷烃类)形成的结构类型。
在这种结构中,气体分子以大团簇的形式嵌入在水分子的六边形晶格当中。
H型水合物的稳定性较低,需要更高的压力和较低的温度才能形成。
这种结构类型常见于陆地冷寒地区。
4. S型水合物(Structure S)S型水合物是由硫化氢分子和水分子形成的结构类型。
在这种结构中,H2S分子以线性链的形式嵌入在水分子的六边形晶格当中。
S 型水合物的稳定性较低,需要更高的压力和较低的温度才能形成。
这种结构类型常见于海洋沉积物中。
5. Clathrate水合物Clathrate水合物是由较大的气体分子形成的结构类型,气体分子以笼状结构嵌入在水分子的六边形晶格当中。
Clathrate水合物可以包括多种气体分子,如甲烷、乙烷、氮气等。
天然气水合物开采原理天然气水合物是一种白色固体物质,有极强的燃烧力。
它是怎么形成的呢?其实就是在特定的低温高压环境下,天然气分子被锁在水分子形成的笼子里啦。
就好比是天然气分子在水分子搭成的小房子里安了家,乖乖地待着呢。
那要开采它呀,可是个技术活。
有一种开采方法叫热激发开采法。
想象一下,可燃冰就像一个怕冷的小团子,咱们给它加热,就像给它盖上温暖的小被子。
通过向地层注入热水或者热蒸汽,温度升高了,这个稳定的小环境就被打破啦。
那些天然气分子就像睡醒了的小精灵,开始活跃起来,从水分子的笼子里跑出来。
这时候呢,天然气就可以被收集起来啦。
不过这个方法也有点小麻烦呢,就像你在热牛奶的时候,要是火候掌握不好,可能就会溢出来。
加热的温度、注入的量等等都得精确控制,不然可能会引发一些地层的不稳定之类的问题。
还有一种是降压开采法。
这就像是给天然气分子的小房子撤掉了一部分围墙。
咱们降低地层的压力,原本在高压下老老实实待在水合物里的天然气分子,突然觉得压力变小了,就像被松绑了一样,开始往外跑。
这种方法相对来说比较环保呢,就像轻轻地推开一扇门,让天然气自然地流出来。
但是呢,降压的速度和幅度也得拿捏得准准的,要是降得太快太猛,就像突然把气球里的气放得太快,气球可能就爆了,地层也可能会出现一些裂缝之类的不好的情况。
化学试剂注入开采法也很有趣哦。
这就好比是给天然气分子送了一把小钥匙。
咱们把一些化学试剂注入到地层里,这些试剂就像聪明的小助手,能够和天然气水合物发生反应,把那些水分子搭成的笼子给破坏掉。
这样一来,天然气分子又可以自由活动啦。
不过呢,这些化学试剂可不能随便乱用,就像你不能随便给小动物乱喂东西一样。
得选择合适的试剂,而且还要考虑试剂对地层和环境有没有不好的影响。
要是试剂选得不好,就像给地层吃了坏东西,可能会让地层生病呢。
宝子们,天然气水合物的开采可不容易呀。
这每一种方法都像是在小心翼翼地解开一个神秘的魔法盒子,要充满耐心和智慧。
天然气水合物的研究和开发天然气水合物是一种新型能源。
它是一种天然气的固态形式,是一种包含氧化亚氮和甲烷等化合物而形成的天然矿物质。
在自然形成过程中,天然气水合物被压缩,变成一种特殊的固体形态,可以在非常低的温度和高压下稳定存在。
由于它是一种新型能源,因此对于其研究和开发是非常重要的。
天然气水合物是世界上最大的未被开发的自然资源之一。
它的储量可能达到全球化石燃料的总和,远高于传统的天然气、石油矿藏。
因此,研究和开发天然气水合物可以为世界提供巨大的能源供应。
目前,世界各国已经开始开展天然气水合物的研究和开发工作,包括美国、日本、韩国、印度、中国等国家。
天然气水合物在深海和北极等极端环境中存在,这使得研究和开发天然气水合物极具挑战性。
因此,天然气水合物的研究和开发需要仔细考虑使用什么技术和设备。
一些先进的技术和设备,例如带有SAS模块和DP模块的动力定位输送船、深海海底钻探设备、冷却技术等,可以被利用来实现天然气水合物的研究和开发。
天然气水合物的开发需要了解它在自然环境中的分布规律。
目前,在世界范围内,天然气水合物的分布区域是比较广泛的,其中最大的储藏区主要位于北极及其周边海区,以及东海、南海等地区。
天然气水合物的开发不仅需要寻找储藏区,还要确定储层性质、开采条件和采矿工艺等相关因素。
天然气水合物不仅是一种新型的能源,还是一种重要的储层。
近年来,天然气水合物的开发和利用已经引起了全世界的注意。
在开发和利用天然气水合物的过程中需要注意其环保问题。
天然气水合物的开采与传统石油、天然气的开采不同,可能会对环境造成一定的影响,因此需要采取一系列的环保措施。
总之,天然气水合物的开发可以为全球能源安全做出重要的贡献。
目前,各国都在积极的开展相关工作,以期实现天然气水合物的开发和利用,将其转化为一种新的清洁能源,为人类的发展带来更为广阔的前景。
天然气水合物的制备及其利用研究天然气水合物(natural gas hydrates,简称NGHs)是一种自然界常见的天然储气层,属于一种冷却情况下,天然气与水分子产生结合所形成的天然化合物,在深海底部和极寒地区普遍存在。
天然气水合物的资源量极为丰富,被认为是未来能源的重要来源。
因此,天然气水合物制备及其利用的研究一直是研究人员的热门领域。
一、天然气水合物的制备天然气水合物的制备方法目前主要有三种:实验室制备、自然生成和现场模拟。
实验室制备方法是通过模拟自然界寒冷条件下天然气与水分子产生结合的情况,制备出天然气水合物。
实验室制备的天然气水合物大多应用于基础研究和工业应用的实验示范。
这种方法的主要问题在于产量偏低,难以实现大规模生产。
自然生成方法是指天然气水合物在天然条件下形成并被发现,这种方法是实现大规模生产的前提条件。
自然生成的天然气水合物是基于地下沉积物、地下通道、临近海底的沉积物等自然环境条件而形成的,例如,北极圈附近的气水合物、深海水下的气水合物等。
现场模拟方法是指通过在实验条件下模拟自然界天然气水合物形成过程,实现天然气水合物的制备。
这种方法能够模拟天然环境的局部情况,实现样本研究和气水合物制备等研究。
二、天然气水合物的利用天然气水合物的利用应用值得重视。
目前已经有一些成功的应用范围,例如天然气水合物可以用于生产液化天然气,也可以应用于海底气田开发、致冷剂、能源助燃等领域。
其中,天然气水合物可以用于生产液化天然气的方法,便是通过将天然气水合物加压加温,让其生成气态天然气,气态天然气则经过进一步的压缩和冷却而进入液态状态,最终得到液化天然气。
液化天然气相比于常规的天然气储存和运输方式,具有更高的储存密度和更方便的运输方式,也具有更低的环境影响和更高的能源综合利用效率。
除此之外,天然气水合物还可以应用于海底气田的开发。
海底气田的采取受到水压和海底温度等因素的制约,而将天然气水合物作为储气层,可以在大幅减小地球环境的影响下,实现海底气田的开采并提高采收率。
天然气水合物的开采与应用天然气水合物,简称天然气冰,是固态的天然气和水混合体,主要由甲烷组成。
在高压低温的环境下形成,通常存在于海底深处。
天然气水合物是一种崭新的能源来源,被誉为能源领域的“黑马”。
不仅具有较高的能量密度和广泛应用前景,而且储量巨大。
据国际能源署预计,全球天然气水合物储量为气体当量2.5万亿至3万亿立方米,约为全球天然气储量的2000倍。
因此,开采与应用天然气水合物具有重要的战略意义和深远的经济意义。
一、天然气水合物的开采目前,天然气水合物的开采技术还处于起步阶段。
其开采方式主要分为两种:海洋开采和陆地开采。
海洋开采是目前天然气水合物开采的主要方式。
目前被认为最有潜力的区域是东海、南海和北极地区。
这些地区都是高压低温的海底环境,适合天然气水合物的形成和储存。
目前,日本、韩国、美国等国家已进行了国内水合物沉积规模和分布的调研和评估。
陆地开采主要是指天然气水合物的煤层气开采。
这种开采方式目前在中国较为流行,主要选择煤层气富集区域。
在我国,这种方式的开发具有较高的经济、环保和社会效益。
二、天然气水合物的应用天然气水合物具有很高的能量含量和广泛的应用前景,可以替代传统燃料,实现能源结构的转型。
其应用领域主要包括燃料、化工、热电联产等。
1.燃料领域天然气水合物可以清洁高效地燃烧,是替代煤炭和油类燃料的一种重要选择。
它的主要优点是燃烧后不会产生大气污染物和温室气体,且能够降低车载和船舶的运输成本。
目前,日本和韩国等国家已将天然气水合物列为稳定的燃料资源,是实现低碳经济、环保经济的一个良好选择。
2.化工领域天然气水合物可以通过裂解甲烷等方式,生产出丰富的化学原料,如丙烯、丁烯等。
这些物质广泛应用于塑料、橡胶、合成纤维、服装、医疗等行业,对提高我国化学工业的核心竞争力和推动经济发展具有重要意义。
3.热电联产利用天然气水合物进行热电联产,可以有效解决城市和工业部门的供热和供电需求。
特别是在冷地区,天然气水合物具有广阔的应用前景。
天然气水合物结构天然气水合物,说白了就是一种天然气和水结合形成的固体物质。
嗯,听起来有点复杂对吧?不过其实它就像冰块里藏着天然气一样。
你能想象冰箱里放一个超级厉害的冰块,不仅能凉快,还能帮你解决能源问题吗?这就是天然气水合物的魅力!它是一种存在于寒冷地方的天然资源,像极了我们生活中的“冰山一角”,但却比冰山更加“有料”。
你看,天然气水合物是怎么形成的呢?它需要低温、高压的环境,像是海底或者极地地区。
在这些地方,天然气会和水结合在一起,形成类似冰的晶体。
而这个过程可不是随便能发生的,要有特定的条件。
要是你从海底捞上一块天然气水合物的“冰块”,它可能在地面上就融化了,结果就只剩下天然气气体飘到天上去了。
所以它的存在本身就是一个谜,既神秘又充满潜力。
那它有什么用呢?这个问题可有意思了!你想,天然气水合物含有的天然气量可是非常巨大的。
有些专家估计,海底的天然气水合物储量,简直可以媲美全球所有已知的天然气储量。
嗯,没错!你可以把它想象成一个巨大的“能源宝库”,只不过它藏在海底或者寒冷的地带,不是随随便便就能挖出来的。
而一旦我们能掌握开采技术,这个“宝库”就能变成我们日常生活中的大能量来源了。
不过,嘿,说到天然气水合物的开采,难度可不小。
开采它需要的技术非常复杂。
你要知道,这可不是在地面上挖个坑就能搞定的事。
海底的压力那么大,一不小心就可能发生危险。
天然气水合物一旦暴露在常温下,它的结构就会崩溃,天然气会瞬间释放出来。
这个过程可能会带来环境风险,甚至导致一些意想不到的麻烦。
所以,说起来开采天然气水合物,看似一块“大蛋糕”,但吃下去也得小心咯。
天然气水合物的环境影响也不可忽视。
咱们都知道,天然气是化石能源的一种,燃烧它会产生温室气体。
如果开采不当,释放出来的天然气就会加剧全球变暖。
海底一旦发生“天然气水合物的大爆炸”,后果可不堪设想。
所以,在开发这个“宝藏”之前,我们得仔细考虑清楚,怎么保证它的开采不会破坏环境,或者给地球带来新的麻烦。
天然气水合物的研究现状与开发前景天然气水合物是一种重要的天然气资源,具有高能量密度和环保特性,是未来能源发展的重要方向之一。
目前,全世界普遍关注天然气水合物的研究与开发,离开了天然气水合物的开发,未来的能源供给将面临巨大的风险。
天然气水合物是一种化学物质,在超低温和高压的环境下,天然气分子与水分子形成了稳定的结晶体,形成了天然气水合物。
天然气水合物是一种混合物,含有约90%的甲烷和其他的烷烃和少量的氮气和二氧化碳等气体。
目前,全球的天然气水合物资源储量估计为1.3×10¹⁶ m³,相当于常规天然气资源储量的数倍,其中海洋天然气水合物资源占主要部分,可能存在于全球各大洋的海洋沉积物中。
而除了海洋天然气水合物外,陆地上也存在天然气水合物,如中国黑龙江省松花江地区的恒山东、华阳等,逾350个天然气水合物钻井点。
天然气水合物的开采利用并不容易,需要克服很多技术难题。
但近年来,全球的天然气水合物研究成果大幅增加,相关技术也得到了极大的发展。
目前,国内外都对天然气水合物的研究开展了大量的工作,积累了大量的经验和数据。
以下是天然气水合物的研究现状与开发前景分析:一、天然气水合物的研究现状1.开采技术的研究目前,开采利用天然气水合物的主要技术包括采出法、渗滤法、溶解提取法、熔化提取法、热水蒸汽驱替法、水力喷射法、微生物转化法等,同时,水平井、多相流、气水分离等技术也是研究重点。
2.天然气水合物的开发实验国内外的研究机构通过实验室和大规模开发试验对天然气水合物开发和操作进行了验证。
目前,日本在深海天然气水合物的研究和开发技术方面处于世界领先,但由于技术难度和安全性等问题,目前全球尚无商业化建设。
国内目前正在进行陆地天然气水合物勘探,储量巨大,但开发技术尚不成熟。
3.天然气水合物的数值模拟通过数值模拟,可以更好地了解天然气水合物的特性、分布规律和开采模式等。
目前,国内外已经开展了许多天然气水合物数值模拟研究,但模拟结果存在不确定性,需要结合实验和现场数据进行校准。
天然气水合物结构类型介绍天然气水合物是一种存在于海洋和极地沉积物中的天然气富集物质。
它的结构类型对其性质和开发利用具有重要影响。
本文将详细探讨天然气水合物的结构类型及其特点。
克拉通水合物克拉通水合物是最常见的一种天然气水合物结构。
它由水分子框架和天然气分子组成。
水分子框架由水分子通过氢键排列而成,形成多面体的结构。
天然气分子嵌入在水分子框架的空隙中。
克拉通水合物稳定性较强,结构相对简单。
克拉通水合物的特点•结构稳定性强,能够在相对低温和高压环境下形成。
•密度较高,对应的气体在常温常压下不可燃。
•随温度和压力的变化,克拉通水合物可以转变为水和天然气,释放出大量的能量。
管状水合物管状水合物是天然气水合物的另一种常见结构。
它的结构类似于纳米管,形成了一个笼状结构。
管状水合物中的水分子框架与克拉通水合物类似,但在笼状结构中,天然气分子嵌入在管道中。
管状水合物的稳定性较弱,容易转变为天然气和水。
管状水合物的特点•稳定性相对较弱,对温度和压力的变化非常敏感。
•可以在较低的温度下形成,但在较高的温度下会分解为水和天然气。
•应用于天然气储存和运输中,可以提高天然气的密度,降低体积。
螺旋水合物螺旋水合物是天然气水合物中较为特殊的一种结构。
它的结构类似于螺旋形状,具有密集的堆积结构。
螺旋水合物的稳定性较强,其水分子框架形态复杂,对容纳天然气具有很好的适应性。
螺旋水合物的特点•结构稳定性较高,能够在相对低温和高压环境下存在。
•密度适中,可在常温常压下形成燃烧的天然气。
•螺旋水合物由于其适应性较强,有望成为一种重要的甲烷储存材料。
节理水合物节理水合物是水合物中的一种特殊结构,它形成于具有独特构造的节理面上,节理面是由于地质构造活动而产生的断裂面。
节理水合物的结构常常呈现出规则的层状排列,具有特殊的渗透性和稳定性。
节理水合物的特点•结构呈现出层状的排列,容易产生渗透性。
•根据节理面构造的不同,节理水合物的结构可以具有多种变化。
天然气水合物的利用随着能源需求的不断增长,国际上对于天然气水合物的探索和利用也日益增多。
天然气水合物是一种新兴的能源资源,由于其能量密度大、储存量大、环保等优势,备受关注。
一、天然气水合物的形成和储存天然气水合物是由天然气和水分子组成的固体,通常形成于600米以下的寒冷、高压环境中。
在该温度下,天然气可以在水中溶解,形成水合物结构。
一般来说,天然气水合物主要形成于大陆架和边缘海域,例如东海和南海。
天然气水合物是一种巨大的储备量资源。
据估计,全球天然气水合物储量约为数十万亿立方米,这个数字比全球常规石油储量还要多得多。
因此,天然气水合物已经成为了目前世界能源开发中的一个重要选项。
二、天然气水合物是一种重要的清洁能源,有着广泛的应用。
以下是一些常用的利用方式:1.专门的天然气水合物开采设备针对天然气水合物的开采需要专门的设备。
目前,有一些开采设备已经研发成功并投入使用,它们大幅降低了开采成本。
2.天然气水合物与液化天然气相结合供应将天然气水合物采集出来后,可以通过与液化天然气相结合的方式完成供应。
这不仅保证了供应的可靠性,也为液化天然气的生产提供了原料。
3.电力供应天然气水合物中的甲烷可以作为燃料,供应给火力发电厂等电力设施。
这种方式不仅能够提供可靠的电力供应,而且环保。
4.替代石油天然气水合物还可以作为替代石油的重要资源。
例如,在交通领域,天然气水合物还可以用来供应运输,以代替石油。
5.制氢天然气水合物中的氢可以被提取出来,用于制造氢燃料电池。
这意味着,天然气水合物未来可以成为一个非常重要的替代能源。
6.地质储气库利用地下储气库存储天然气是一个受欢迎的选择。
天然气水合物也可以被用作地质储气库的一种形式。
由于天然气水合物在储气时体积较小,可以以更高效的方式进行储存。
三、天然气水合物市场前景在目前的市场形势下,天然气水合物具有广泛的市场前景。
未来,天然气水合物有可能成为非常重要的清洁能源之一,替代传统的能源资源,如煤炭和石油。
天然⽓⽔合物防治天然⽓⽔合物形成条件及抑⽌⼀、天然⽓⽔合物在⽔的冰点以上和⼀定压⼒下,天然⽓中某些⽓体组分能和液态⽔形成⽔合物。
天然⽓⽔合物是⽩⾊结晶固体,外观类似松散的冰或致密的雪,相对密度为0 .96 -0. 9 8 ,因⽽可浮在⽔⾯上和沉在液烃中。
⽔合物是由90 % ( ω) ⽔和10 %( ω) 的某些⽓体组分( ⼀种或⼏种) 组成。
天然⽓中的这些组分是甲烷、⼄烷、丙烷、丁烷、⼆氧化碳、氮⽓及硫化氢等。
其中丁烷本⾝并不形成⽔合物,但却可促使⽔合物的形成。
天然⽓⽔合物是⼀种⾮化学记量型笼形品体化合物,即⽔分⼦( 主体分⼦) 借氢键形成具有笼形空腔( 孔⽳) 的品格,⽽尺⼨较⼩且⼏何形状合适的⽓体分⼦(客体分⼦) 则在范德华⼒作⽤下被包围在品格的笼形空腔内,⼏个笼形品格连成⼀体成为品胞或晶格单元。
以往研究结果表明,天然⽓⽔合物的结构主要有两种。
相对分⼦质量较⼩的⽓体( 如CH4、C2H6、H2 S、CO2 ) ⽔合物是稳定性较好的体⼼⽴⽅晶体结构( 结构D ,相对分⼦质量较⼤的⽓体( 如C3H8、iC4H10) ⽔合物是稳定性较差的⾦刚⽯型结构( 结构II ) .见图1 所⽰。
图1 天然⽓⽔合物晶体结构单元(a)笼形空腔(b)晶胞结构I 和I II 都包含有⼤⼩不同⽽数⽬⼀定的空腔即多⽽体。
图1表⽰了由12⾯体、14 ⾯体和16⾯体构成的三种笼形空腔。
较⼩的12 ⾯体分别和另外两种较⼤的多⾯体搭配⽽形成I、II两种⽔合物晶体结构。
结构I 的晶胞内有46个⽔分⼦,6 个平均直径为0.8 60 nm ⼤空腔和2 个平均直径为0 . 795nm⼩空腔来容纳⽓体分⼦。
结构II晶胞内有136个⽔分⼦,8 个平均直径为0.940nm ⼤空腔和16 个平均直径为0 .782nm ⼩空腔来容纳⽓体分⼦。
⽓体分⼦填满空腔的程度主要取决外部压⼒和温度,只有⽔合物品胞中⼤部分空腔被⽓体分⼦占据时,才能形成稳定的⽔合物。
天然气水合物是怎样形成的?
How natural gas hydrates form?
天然气水合物,又称“可燃冰”,是一种水合数不固定的笼形化合物,其中气体分子被束缚在由水分子通过氢键连接而构成的多面体笼子里,主要呈现三种结构,即结构I,结构II和结构H(图1),在低温(<10 ℃)高压(>100 bar)条件下稳定存在。
一般来说,由于天然气的主要成分是甲烷,所以天然气水合物主要是指甲烷水合物, 化学式为8CH4·46H2O。
[1]
图1 自然界三种常见的天然气水合物晶体结构(据Sloan,2003改编)天然气水合物对自然界和人类社会的影响主要有以下几个方面:i) 全球自然产出的天然气水合物广泛分布于大陆边缘的海底和永久冻土地带,其中的甲烷碳含量估计约为所有化石燃料总碳量的两倍,很有可能成为21世纪人类的新能源。
ii) 天然气水合物在失稳分解时释放的甲烷气体会加强温室效应。
如果大规模分解发生在海底,则有可能引发海底滑坡等地质灾害。
反之也可以设法把工业生产释放的CO2排入深海形成CO2水合物封存起来,从而减轻温室效应。
更为
理想的方案是通过注入CO2来开采天然气水合物藏,在获取甲烷的同时封存了CO2,一举两得。
iii) 在化工生产中,要想方设法避免天然气水合物形成以至于堵塞天然气运输管道从而造成重大经济损失,反之也可以利用气体水合物的合成来开发储存气体、运输气体、提纯气体、及海水淡化等方面的新技术。
总之,研究天然气水合物在能源、环境、化工等领域都有重要的科学意义和经济意义。
天然气水合物研究领域的科学问题和技术问题有很多,包括结构、物性、相平衡、勘察、开采、应用等各个方面,其中一个基本的科学问题是“水合物怎样形成?”这个问题非常有趣而且令人困惑不解。
试想,天然气的主要成分甲烷分子难溶于水(溶解度通常约为10 3摩尔分数),并且甲烷分子与水分子之间也不形成任何化学键(仅存在微弱的范德华力),可是在适当的温度条件下把甲烷气体加压于液态水,结果得到了固态的甲烷水合物,其中甲烷的摩尔分数和溶液中的溶解度相比竟然增大了两个数量级以上。
更有意思的是,这个化学反应有明显的记忆效应(memory effect)。
也就是说,含甲烷和水的体系在第一次合成水合物时,尽管温度和压力都已经调整到了水合物的相区间,但是水合物并不是马上形成,而是要等待一段不确定的时间(几~几十小时)才形成——这个时间被称为诱导时间(induction time)。
然而,把这个体系形成的水合物通过降压或加温分解之后,再次重复合成实验,结果发现诱导时间变短了,似乎这个体系记忆了初次合成水合物时的某些历史。
为了解释上述实验现象,必须要在分子水平上了解天然气水合物的成核结晶过程。
然而到目前为止,国际上对这个问题仍然没有不是很清楚。
原因在于水合物的成核结晶是一个无中生有的过程,研究起来比较困难:其空间尺度在纳米级,对于实验来说太小了;其时间尺度在微米级,对于计算模拟来说又太长了;另外,影响成核的因素极其复杂,增加了研究难度。
2008年之前,国际上主要存在两个有争议的水合物成核假说。
最著名的是Sloan等(Sloan and Fleyfel,1991;Christiansen and Sloan,1994)提出的团簇成核假说(labile cluster hypothesis),强调水合物成核源于笼形水簇的聚集。
Radhakrishnan and Trout(2002)批评了团簇成核假说,他们证明多个笼形水簇在热力学上有利于相互分开而不是聚集在一起,并且新提出了局部结构假说(local structuring hypothesis),强调水合物成核是由水分子围绕局部有序排列的
气体分子发生方位调整所致。
已有的实验技术,如中子散射、X射线散射、喇曼光谱、核磁共振光谱等虽然能够实时原位地观测水合物的形成过程,但尚不足以区分和验证上述的两个水合物成核假说。
2008年之后,受益于计算机技术的飞速发展,计算瓶颈得以突破,水合物自发成核的过程已经可以通过计算模拟实现(Walsh et al, 2009),成核轨迹中的笼子识别技术也有了质的提高(Guo, et al, 2011),人们逐渐形成了一个共识,即水分子笼子对气体分子的吸附作用相当关键,非晶相是水合物成核结晶的必经途径,然后再经过结构转变形成水合物结晶相(Guo et al,2009;Jacobson et al, 2010;Vatamanu and Kusalik,2010)。
这些进展表明,分子动力学计算机模拟技术对于水合物形成动力学研究来说,是一个非常有希望的方法和手段。
当然,水合物怎样形成的问题仍有许多细节没有查明,如水合物临界成核的特点、非晶相结构转变的途径、其他固相介质对水合物成核结晶的影响等。
一个全面成熟的,有定量预测能力的水合物形成新理论倍受期待。
参考文献
Christiansen, R.L. and Sloan, E.D., 1994, Mechanisms and kinetics of hydrate formation, Anna.
N.Y. Acad. Sci., 715: 283-305.
Guo, G.J., Li, M., Zhang, Y.G., and Wu, C.H., 2009, Why can water cages adsorb aqueous methane?
A potential of mean force calculation on hydrate nucleation mechanisms,Phys. Chem. Chem.
Phys., 11: 10427-10437
Guo, G.J., Zhang, Y.G., Liu, C.J., and Li, K.H., 2011, Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates,Phys. Chem. Chem. Phys., 13: 12048-12057.
Jacobson, L.C., Hujo, W., and Molinero, V., 2010, Amorphous precursors in the nucleation of clathrate hydrates, J. Am. Chem. Soc., 132: 11806-11811.
Radhakrishnan, R. and Trout, B.L., 2002, A new approach for studying nucleation phenomena using molecular simulations: Application to CO2hydrate clathrates, J. Chem. Phys., 117: 1786-1796.
Sloan, E.D., 2003, Fundamental principles and applications of natural gas hydrates, Nature, 426: 353-359.
Sloan, E.D. and Fleyfel, F., 1991, A molecular mechanism for gas hydrate nucleation from ice, AIChE J., 37: 1281-1292.
Vatamanu, J. and Kusalik, P.G., 2010, Observation of two-step nucleation in methane hydrates, Phys. Chem. Chem. Phys., 12: 15065-15072.
Walsh, M.R., Koh, C.A., Sloan, E.D., Sum, A.K., and Wu, D.T., 2009, Microsecond simulations of spontaneous methane hydrate nucleation and growth, Science, 326: 1095-1098.
(供稿人郭光军)。