基于LCL滤波器的并网逆变器PI与重复控制
- 格式:pdf
- 大小:922.95 KB
- 文档页数:5
并网逆变器系统中的重复控制技术及其应用研究一、概述随着可再生能源的快速发展,特别是太阳能和风能的大规模应用,并网逆变器在电力系统中的作用日益凸显。
并网逆变器不仅需要将分布式电源产生的电能转化为与电网同频同相的交流电,还需保证电能的质量和稳定性。
由于分布式电源通常接入电网的末端,电网中的谐波、电压波动和不平衡等问题会对并网逆变器的运行产生影响。
研究并网逆变器系统中的控制技术,特别是针对电网扰动和电能质量问题的控制技术,具有重要的现实意义和应用价值。
重复控制技术作为一种有效的电力电子控制方法,在并网逆变器系统中得到了广泛的应用。
该技术基于内模原理,通过构建一个与扰动信号频谱相同的内部模型,实现对特定频率谐波的精确跟踪和抑制。
本文将对并网逆变器系统中的重复控制技术进行深入研究,分析其基本原理、实现方法以及在实际应用中的挑战和解决方案。
本文首先介绍并网逆变器系统的基本结构和功能,然后重点阐述重复控制技术在并网逆变器中的应用原理和实现方法。
在此基础上,分析重复控制技术在提高并网逆变器电能质量和稳定性方面的优势,并探讨其在面对电网扰动和复杂运行环境时的挑战和应对策略。
通过实际案例和仿真实验验证重复控制技术在并网逆变器系统中的有效性,为相关领域的研究和实践提供参考和借鉴。
1. 并网逆变器系统的概述并网逆变器系统是电力系统中关键的一环,特别是在分布式发电领域,其扮演着将可再生能源(如太阳能、风能等)转化为电能并注入公共电网的重要角色。
并网逆变器系统的核心功能是将直流电能转换为与电网同步的交流电能,从而实现对电网的高效、安全供电。
并网逆变器系统的工作原理主要包括直流交流(DCAC)转换、电压和频率控制以及并网控制等步骤。
通过电力电子器件(如绝缘栅双极晶体管IGBT)对输入的直流电进行开关控制,实现DCAC转换。
接着,通过先进的控制算法对输出电压的频率、幅度和相位进行调整,以确保与电网电压同频同相。
通过专门的并网控制策略,确保输出的交流电顺利并入电网,同时保持系统稳定运行。
弱电网环境下基于LCL滤波器的光伏并网逆变器鲁棒电流控制研究弱电网环境下基于LCL滤波器的光伏并网逆变器鲁棒电流控制研究随着全球对可再生能源的需求越来越高,光伏电站已成为一种常见的发电方式。
然而,光伏电站的并网逆变器在面对弱电网环境时有许多挑战。
为了解决这些挑战,研究人员们开始关注使用LCL滤波器的光伏并网逆变器鲁棒电流控制技术。
弱电网环境下的光伏并网逆变器面临着频繁的电网扰动,例如电压闪变、电压谐波和电压暂降等。
这些扰动对逆变器的运行稳定性和电网质量造成了很大的影响。
而传统的PI控制方法难以应对这些挑战,因此,研究人员们引入了鲁棒控制技术来提高逆变器的鲁棒性。
LCL滤波器是一种常见的用于光伏并网逆变器的滤波器,它可以有效地抑制谐波,并提供更好的滤波特性。
然而,在弱电网环境下,由于频繁的电压扰动,LCL滤波器的谐波抑制效果可能会降低。
因此,研究人员需要采取一种鲁棒的电流控制策略来保证逆变器的正常运行。
鲁棒控制技术是一种可以提高系统鲁棒性的控制方法。
在弱电网环境下,研究人员通过引入LMI(线性矩阵不等式)方法来设计滑模控制器,以改善逆变器的鲁棒性能。
LMI方法可以应用于滑模控制器的设计,使得系统可以抵御外界扰动并保持稳定。
在实际应用中,研究人员还提出了一种自适应控制策略来应对电网质量变化。
该方法可以实时调整逆变器控制参数,以适应不同的电网环境。
通过与传统控制方法进行比较,结果表明自适应控制方法能够更好地提高逆变器的性能。
总的来说,弱电网环境下基于LCL滤波器的光伏并网逆变器鲁棒电流控制研究是一个重要的课题。
通过引入鲁棒控制技术和自适应控制策略,可以提高逆变器的鲁棒性能,保证其在弱电网环境下的稳定运行。
对于促进可再生能源的发展以及提高电网质量具有重要的意义。
进一步的研究还需对LCL滤波器及其控制方法进行深入研究,以进一步提升光伏并网逆变器的性能和可靠性综上所述,研究人员在弱电网环境下对基于LCL滤波器的光伏并网逆变器的鲁棒电流控制进行了深入研究。
LCL滤波三电平并网逆变器有源阻尼控制关键字:LCL滤波三电平逆变器1 引言随着能源枯竭和环境污染问题的曰益严峻,各国对绿色能源的渴求越来越紧迫,使得光伏并网系统得到了空前发展。
并网逆变器作为连接电池板与电网的核心设备,不仅要完成直流到交流的电能转换,而且要满足各电网公司对并网电能质量提出的要求,其中对电流谐波分量及总谐波畸变率的规定相对严苛。
然而,并网逆变器通常采用高频PWM的电流源控制,会导致并网电流中含有高次谐波。
由于LCL滤波器较L滤波器对高频谐波有更好的衰减特性,因此在光伏并网系统中得到广泛应用。
2 原理与设计2.1 LCL滤波三电平并网逆变器图1为基于LCL滤波的二极管箝位型三电平并网逆变器拓扑结构。
由于在桥臂相电压中含有3个电平,故可输出比传统两电平拓扑更平滑的线电压波形,从而在相同滤波电感量下可得到谐波含量更小的并网电流。
在三电平并网逆变器拓扑中,逆变桥通过LCL滤波器连接到电网,使高频谐波分量衰减更快,进一步改善并网电流质量。
2.2 LCL滤波器有源阻尼控制根据理论分析,可得网侧电流与逆变器桥臂电压函数关系的波特图见图2。
LCL滤波器参数:Ls=1.5 mH,Lt=2 mH,C=25μF;L滤波器参数:L=3.5 mH。
可见,LCL滤波器较L滤波器有更好的高频衰减特性,但却存在谐振问题,会使谐振点附近谐波含量增加,严重时将造成系统不稳定。
为了抑制LCL滤波器的谐振,在工程中通常给电容支路上串联或并联一定值的电阻,利用电阻的阻尼作用来稳定系统。
这种方法简单可靠,不用改变算法,但由于阻尼电阻损耗的存在,会使系统效率有所下降。
另一种方法是通过算法来抑制谐振的有源阻尼控制,如在控制闭环中采用虚拟电阻、超前滞后环节、双带通滤波器、电容支路电压高频分量、遗传算法、虚拟阻尼功率等方法亦可达到抑制效果,并且不会引起系统额外的损耗。
由于虚拟电阻有源阻尼控制法物理意义明确,易于实现,因此得到了一些应用。
基于LCL滤波的单相并网逆变器的设计张朝霞;文传博【摘要】并网逆变器作为发电系统和电网连接的核心装置,直接影响整个并网发电系统的性能,已成为国内外研究的热点.以单相全桥逆变器为研究对象,为更好地减小入网电流的总谐波失真,采用LCL型滤波器,具有更好的高频谐波抑制能力.控制策略使用双电流闭环控制,推导了控制方程,内环控制LCL滤波器中的电容电流,外环控制滤波后的电网侧电流,此控制方法使系统的稳定性和动态性能都得到了很好改善.设计了各元件的取值规则,建立了系统仿真模型,通过Matlab/Simulink仿真,证明了建立的单相并网逆变器可成功实现并网运行.【期刊名称】《上海电机学院学报》【年(卷),期】2019(022)002【总页数】6页(P83-88)【关键词】并网逆变器;滤波器;谐波抑制;双电流环控制【作者】张朝霞;文传博【作者单位】上海电机学院电气学院,上海 201306;上海电机学院电气学院,上海201306【正文语种】中文【中图分类】TM464光伏发电和风力发电等新能源并网是能源可持续发展战略的重要问题。
许多国家都积极研发光伏发电、风力发电等新能源并网发电系统[1-4]。
目前,常用的新能源回馈电网的方案为:先把新能源转化成电能;再把电能调节成满足全桥逆变器所需的直流电压;最后由全桥逆变器将新能源回馈到交流电网。
在整个并网系统中,最核心的环节是逆变器,使用正弦脉宽调制逆变技术(Sinusoidal Pulse Width Modulation, SPWM)。
这种方案采用了较多模拟环节,且其控制方法也比较落后,就使得并网逆变装置的并网效果不那么理想,使其应用受到限制。
针对并网逆变器技术的探索越来越多,面对以往控制技术的不足,人们提出了很多研究方向。
文献[5]将高速的数字信号处理(Digital Signal Processing, DSP)应用到并网逆变器的控制之中,使用数字控制与模拟控制结合实现理想的控制效果;文献[6]根据各系统情况的不同,采用不同的逆变器拓扑结构,如单相、三相、隔离等,且各结构之间可以进行组合,形成各种不同的形式,来满足更多的需求。
LCL型单相光伏并网逆变器控制策略的研究一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的利用和开发受到了越来越多的关注。
其中,太阳能光伏发电作为一种清洁、可再生的能源形式,具有广阔的应用前景。
单相光伏并网逆变器作为太阳能光伏发电系统的核心设备之一,其控制策略的研究对于提高光伏发电系统的效率和稳定性具有重要意义。
本文旨在研究LCL型单相光伏并网逆变器的控制策略,以期在提升逆变器性能、优化系统运行方面取得突破。
本文将介绍LCL型单相光伏并网逆变器的基本结构和工作原理,为后续控制策略的研究奠定基础。
本文将重点分析LCL型逆变器的控制策略,包括最大功率点跟踪(MPPT)控制、并网电流控制、无功功率控制等。
在此基础上,本文将探讨如何通过优化控制策略,提高逆变器的效率和稳定性,实现光伏发电系统的优化运行。
本文还将对LCL型单相光伏并网逆变器的并网电流质量、电网适应性等关键问题进行深入研究。
通过理论分析和实验验证,本文将提出一种有效的控制策略,以提高逆变器的并网电流质量,增强其对电网的适应性。
本文将总结研究成果,并对未来的研究方向进行展望。
通过本文的研究,期望能为LCL型单相光伏并网逆变器的控制策略优化提供理论支持和实践指导,推动光伏发电技术的持续发展。
二、LCL型单相光伏并网逆变器的基本原理LCL型单相光伏并网逆变器是一种高效、可靠的电力转换设备,其核心功能是将光伏电池板产生的直流电能转换为交流电能,并使其与电网的电压和频率同步,从而实现对电网的并网供电。
这种逆变器的主要组成部分包括光伏电池板、直流侧电容、LCL滤波器、功率变换器以及控制系统。
在LCL型单相光伏并网逆变器中,LCL滤波器发挥着至关重要的作用。
它由两个电感(L)和一个电容(C)组成,能够有效地滤除功率变换器产生的谐波,提高并网电流的质量。
LCL滤波器的设计需要综合考虑滤波效果、系统成本以及动态响应能力等因素。
功率变换器是逆变器的核心部件,负责将直流电能转换为交流电能。
基于LCL滤波器的逆变器并网有源阻尼控制策略
焦岳超;刘幸丹;巫付专;焦健航;江腾龙
【期刊名称】《信息技术与信息化》
【年(卷),期】2024()3
【摘要】目前LCL滤波器的逆变器广泛应用于并网过程中,由于本身是三阶欠阻尼系统,常常出现谐振尖峰,进而导致系统不稳定。
对此,提出一种基于带通滤波器单反馈有源阻尼策略。
首先,选取合适的LCL滤波器参数实现并网条件。
其次,从幅值特性和相位裕度的角度出发,采用极点配置法对带通滤波器进行参数设计并设置反馈并网高频电流。
最后,通过MATLAB/Simlink仿真验证带通滤波器有源阻尼方法的可行性和有效性。
【总页数】5页(P148-152)
【作者】焦岳超;刘幸丹;巫付专;焦健航;江腾龙
【作者单位】中原工学院电子信息学院
【正文语种】中文
【中图分类】TN7
【相关文献】
1.三相并网逆变器LCL滤波器的研究及新型有源阻尼控制
2.三相并网逆变器的LCL滤波器设计及其有源阻尼策略研究
3.LCL滤波器无源阻尼和有源阻尼对多逆变器并网谐振影响对比分析
4.基于滤波器的有源阻尼控制的LCL型光伏并网逆变器
5.采用LCL滤波器并网逆变器状态反馈有源阻尼控制研究
因版权原因,仅展示原文概要,查看原文内容请购买。