植物内生菌与宿主关系研究进展
- 格式:pdf
- 大小:324.14 KB
- 文档页数:5
深色有隔内生真菌提高宿主植物抗逆性的研究进展邓勋;宋小双;尹大川;崔文峰;宋瑞清【摘要】深色有隔内生真菌(DSE)是植物根际重要的益生菌,与宿主植物互作形成共生体,对宿主植物具有促生抗逆作用.深色有隔内生真菌(DSE)提高植物的抗逆性包括提高植物对干旱以及重金属污染等逆境胁迫的抗性、诱导植物产生系统抗性、抵御病原菌生物胁迫等.对这些方面的研究进展进行探讨,以期为益生菌与宿主植物互作机制研究提供理论依据和参考.【期刊名称】《安徽农业科学》【年(卷),期】2015(000)031【总页数】3页(P10-11,17)【关键词】深色有隔内生真菌;抗逆性;抗病性【作者】邓勋;宋小双;尹大川;崔文峰;宋瑞清【作者单位】黑龙江省森林保护研究所,黑龙江哈尔滨150040;黑龙江省森林保护研究所,黑龙江哈尔滨150040;沈阳农业大学林学院,辽宁沈阳110000;黑龙江省林业科学院,黑龙江哈尔滨150040;东北林业大学林学院,黑龙江哈尔滨150040【正文语种】中文【中图分类】S432.4+4深色有隔内生真菌(Dark septate endophytes,DSE)是植物内生真菌的主要类群。
其主要特征是菌丝颜色较深,具有明显隔膜,定殖于健康植物根的表皮、皮层甚至维管束组织的细胞内或细胞间隙,形成共生体,而不引起植物病变[1-2]。
1998年Jumpponen等[3]正式提出DSE的概念,将具有该类特征的根部内生真菌定义为DSE。
DSE分布范围包含不同的生境:从沿海滩涂到内陆高原山地,从热带、温带到冻原地区及南北极地区[4]。
在针叶树中,主要的深色有隔内生真菌种类是子囊菌(Ascomycetes)中的 Phialocephala fortinii s.l.-Acephala applanata species complex (PAC)类群集合[5]。
PAC分布在北半球从极地到热带地区,在针叶树的根系中占据主导地位[6]。
·150·ChineseAgriculturalScienceBulletinV01.21No.22005Februaryhttp://zntb.chinajournal.net.cn植物内生固氮菌的研究进展覃丽萍t,黄思良2,李杨瑞1,2(1广西大学农学院广西南宁530005;:广西农业科学院广西南宁530007)摘要:植物内生固氮茵是指定殖于植物体内与宿主植物进行联合固氮的一类微生物,不但具有固氮作用。
还有生物防治、促进植物生长的作用。
对植物内生固氮茵的研究始于上个世纪80年代,至今已一从甘蔗、水稻等多种作物中分离到多种内生固氮茵。
综述了10多年来内生固氮茵的研究进展,对固氮醋酸杆茵∞cetobaterdiazotrophicus)等几种内生固氮茵的生理、生物学特性及其侵染方式、传播途径和固氮机理进行了较全面的概述。
并对应用内生固氮茵的可能性和意义,以及需要注意的问题作了一些探讨。
关键词:生物固氮;内生固氮茼;固氮酶ResearchProgressinEndophyticdiazotrophQinLipin91,HuangSilian92,LiYangruil’2(1AgriculturalCollegeofGuan萨iUnwe瑙毋,Nanning530005;2Cuan舒iAcademyofAgriculturalSciences,Nanning530007)Abstract:Endophyticdiazotrophsisthemicroorganismscolonizingandfixingnitrogenwithinplants.Thesemicroorganismshavebeenfoundthattheymayfunctionasbio-controlandplantgrowth-promotingagents.r11lestudyonEndophyticdiazotrophsWaSstartedin1980s.Uptotoday.multipleEndophyticdiazotrophshavebeenisolatedfromvariouscropssuchassugarcane.rice.nereviewexpoundstheresearchprogressinEndophyticdiazotrophs.Thephysiologicalandbiologicalcharacters,infectionway,disseminationpath,nitro-gen-fixationmechanismofseveralEndophyticdiazotrophsincludingAcetobaterdiazotrophicusareexplicat-ed.7nlepossibihty.significanceandexistingproblemsinEndophyticdiazotrophapplicationarealsodis-cussed.Keywords:Biologicalnitrogenfixation,Endophyticdiazotrophs,Nitrogenase生物固定的氮量在整个自然界的固氮量中占的份量很高,为非生物固氮的两倍多【l】。
植物内生菌的研究摘要:植物内生菌是植物微生态系统的重要组成部分,在长期的协同进化过程中,与植物形成了互惠互利的关系。
植物内生菌能够产生活性物质,可作为生物防治资源、外源基因的载体和新药的来源,在农业、医药卫生领域有着巨大的应用潜力。
但是虽然经过几十年的研究,目前植物内生菌的研究仍处于起步阶段,对其开发和应用刚刚展开。
关键词:植物内生菌,发展,应用,问题植物体内普遍存在着内生菌,由于其生活在没有外在感染症状的健康植物组织内部,因此植物内生菌的存在和作用长期以来未被发现。
直到20世纪30年代,由于牲畜食了感染内生真菌的牧草,给畜牧业造成重大损失,才开始对植物内生菌有了初步认识。
内生菌一词“endophyte”最早是由德国科学家yDeBerr于1886年提出。
1986年,Carrol将植物内生菌定义为生活在地上部分、活的植物组织内不引起明显症状的微生物。
1991年,Petrini提出植物内生菌是指生活史的一定阶段生活在活体植物组织内不引起植物明显病害的微生物。
1992年,K1eopper等认为植物内生菌是指能够定殖在植物细胞间隙或细胞内,并与寄主植物建立和谐联合关系的一类微生物,并首次提出了“植物理内生细菌”的概念,他认为能在植物体内定殖的致病菌和菌根菌不属于内生菌。
目前,植物内生菌较被公认的定义是指那些在其生活史的一定阶段或者全部阶段生活于健康植物的各种组织和器官内部的真菌或者细菌,被感染的宿主植物(至少是暂时)不表现出外在症状,是一个生态学概念,而非分类学单位。
植物内生菌的研究现状1. 植物内生菌的生物多样性植物内生菌的生物多样性主要包括寄主植物种类多样性、内生菌在寄主植物不同部位分布多样性和内生菌自身种类多样性。
研究发现植物内生菌广泛存在,地球上300000种植物中都有内生菌的存在。
农业上对内生菌研究较多的植物有水稻、小麦、棉花、高粱、牧草、马铃薯、玉米、甘蔗、甜菜、黄瓜、柠檬等。
研究发现植物内生菌几乎存在于植物的所有组织中,不仅存在于植物的根、茎、叶、花、果、胚、种子中,在植物的根瘤中也分离到了内生菌。
植物内生菌的生态学作用与天然产物研究现状及展望植物内生菌是指与植物共生的微生物,它们能够在植物体内或根际生存繁殖,并对植物的健康和生长发育产生影响。
随着近年来对微生物多样性与功能的研究不断深入,越来越多的证据表明,植物内生菌具备着丰富的生态学作用,对生物多样性的维持、植物的抗病性、逆境适应性、生长调控等方面起着重要的作用。
与此同时,随着对植物内生菌多样性的深入理解,越来越多的内生菌代谢产物被发现并应用于医药、农业等领域,成为天然产物研究的热点领域之一。
植物内生菌对生物多样性的维持植物内生菌可通过多种途径影响宿主植物,例如抑制土壤病原菌的生长、协调植物光合作用、提高植物营养吸收能力等,从而增强植物的适应性。
固氮内生菌的活动也极大地影响了土壤中的氮同化过程,从而维持了生态系统的可持续发展。
因此,越来越多的研究开始重视植物内生菌对生态系统稳定性的维持作用,探讨其对生态保护的潜在贡献。
植物内生菌对植物的抗病性和逆境适应性的调节植物内生菌能够与植物的免疫系统产生互惠互利的作用,关键是通过调节植物内源激素的水平和激素信号通路的模式,增强植物对病原微生物和逆境的抵抗力。
因此,越来越多的研究开始关注植物内生菌对植物抗病性和逆境适应性的调节作用,探索植物-微生物互利共生的分子机制。
植物内生菌的活动将对植物生长的各种生理指标产生显著的改变,如根系的形态和生物量、植物生长素和类黄酮的累积和排放等。
研究表明,多种内生菌可通过生物合成植物激素、酶促合成辅酶和合成降解氨基酸代谢途径调节植物生长发育。
因此,对植物内生菌对植物生长发育的调节机制进行深入研究,对于探索植物生长发育的分子生物学机制具有重要的意义。
植物内生菌代谢产物的研究已成为天然产物发现的热点之一,同时也成为了发展微生物代谢工程的重要途径之一。
内生菌代谢产物具有显著的生物活性和适用性,如生物杀虫剂、抗真菌剂、抗肿瘤剂、抗病毒剂等可以应用于医药、农业等领域。
例如,茶树内生菌产生的茶韦酸经过提纯和提纯后可作为重要的化妆品原料和抗氧化剂。
江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2023ꎬ39(3):859 ̄872http://jsnyxb.jaas.ac.cn付思远ꎬ彭玉林ꎬ黄水明ꎬ等.内生菌协助水稻缓解重金属胁迫和积累研究进展[J].江苏农业学报ꎬ2023ꎬ39(3):859 ̄872.doi:10.3969/j.issn.1000 ̄4440.2023.03.028内生菌协助水稻缓解重金属胁迫和积累研究进展付思远ꎬ㊀彭玉林ꎬ㊀黄水明ꎬ㊀郭达伟ꎬ㊀李忠金ꎬ㊀江丽芳ꎬ㊀江㊀巍ꎬ㊀陈萍萍(龙岩市农业科学研究所ꎬ福建龙岩364000)收稿日期:2022 ̄06 ̄15基金项目:福建省科技计划项目(2020N0075㊁2022N0050)作者简介:付思远(1993-)ꎬ男ꎬ吉林榆树人ꎬ硕士ꎬ研究实习员ꎬ主要研究方向为农业微生物资源开发与利用ꎮ(E ̄mail)fusiyuan19940821@163.com通讯作者:陈萍萍ꎬ(E ̄mail)pingpingchen1982@163.comꎻ彭玉林ꎬ(E ̄mail)pyl2010@163.com㊀㊀摘要:㊀稻田土壤重金属污染是引起环境和食品安全问题的主要原因之一ꎮ土壤中重金属的过量积累给水稻的生长发育㊁稻米产量和品质造成负面影响ꎬ并会导致重金属进入食物链ꎮ内生菌与宿主具有稳定的互利共生关系ꎬ一些有益内生菌能够提高水稻产量和重金属抗性ꎮ本文总结了抗重金属内生菌改善水稻重金属胁迫和减少植株重金属积累的机制ꎬ最后针对内生菌在农业中的研究与应用提出了几点展望ꎮ关键词:㊀内生菌ꎻ水稻ꎻ重金属ꎻ缓解胁迫中图分类号:㊀Q945.78㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2023)03 ̄0859 ̄14Researchprogressofendophytesinalleviatingheavymetalstressandac ̄cumulationinriceFUSi ̄yuanꎬ㊀PENGYu ̄linꎬ㊀HUANGShui ̄mingꎬ㊀GUODa ̄weiꎬ㊀LIZhong ̄jinꎬ㊀JIANGLi ̄fangꎬ㊀JIANGWeiꎬ㊀CHENPing ̄ping(LongyanInstituteofAgriculturalSciencesꎬLongyan364000ꎬChina)㊀㊀Abstract:㊀Heavymetalpollutioninpaddysoilsisoneofmainconcernscausingsomeoftheenvironmentalandfoodsafetyproblems.Excessaccumulationofheavymetalsinsoilhasanegativeimpactonthegrowthanddevelopmentꎬyieldandqualityofriceꎬandwillmakeheavymetalsenterthefoodchain.Endophyteshaveastablemutualismrelationshipwiththeirhosts.Itiswellknownthatplantgrowth ̄promotingendophytes(PGPEs)enhancericeproductivityandresistancetoheavymetalstress.Thispapersummarizedthemechanismsofheavymetalresistant ̄PGPEsinimprovingheavymetalstressandreducingtheaccumulationofthesemetalsinrice.Finallyꎬsomeprospectsforresearchandapplicationofendophytesinagriculturewereputforward.Keywords:㊀endophytesꎻriceꎻheavymetalsꎻstressalleviation㊀㊀重金属(或类金属)是具有高相对原子质量㊁高密度特性的天然化学元素ꎬ其含量超过一定阈值时对细胞有毒害作用[1]ꎮ稻田土壤中的砷(As)㊁镉(Cd)㊁铅(Pb)㊁汞(Hg)㊁铜(Cu)等重金属含量高于旱地土壤[2]ꎮ水稻是人类的主要粮食作物之一ꎬ稻田重金属污染不仅会降低稻谷的产量和质量ꎬ还会导致重金属被水稻吸收累积ꎬ威胁人类健康[3]ꎮ传统农业通过加强农业管理(如灌溉㊁施肥和轮作)或使用化学钝化剂进行重金属污染防治[4 ̄7]ꎮ这些方法在一定程度上可以钝化重金属ꎬ但所用材料昂贵且耗时ꎬ可能带来二次污染ꎮ所以ꎬ应寻求更有效的方法缓解水稻重金属胁迫和积累以保障粮食安全ꎮ有益内生菌是指生活在植物组织内部而不会引起疾病的一类原核或真核微生物ꎬ其占据宿主的根㊁茎㊁叶㊁种子等不同生态位[8]ꎮ研究结果[9 ̄10]表明ꎬ某些抗重金属有益内生菌能够改变重金属的生物有效性减轻其对植物的毒害ꎬ重金属的生物有效性与958重金属的存在形态直接相关ꎬ重金属的毒性取决于其在土壤中的生物有效性[11])ꎮ当植物处于生物和非生物胁迫下ꎬ定殖于植物组织中的内生菌不易受环境因子影响ꎬ与寄主植物的互利共生关系更加稳固ꎬ对宿主产生的有利影响通常大于根际微生物[12 ̄14]ꎮ有益内生菌在修复土壤污染和保障农产品安全方面发挥效用ꎬ其通过提高重金属生物有效性㊁增加植物的生物量㊁酸化根际环境㊁增加根系表面积等机制强化植物对土壤重金属的吸收ꎬ辅助植物修复被重金属污染的土壤[15 ̄16]ꎬ但此类内生菌可能会增加作物可食用部位的重金属含量ꎮ最近研究结果表明ꎬ一些内生菌既能缓解水稻重金属胁迫ꎬ又能降低水稻植株地上部和籽粒中的重金属积累ꎬ使稻米生产更加安全[17 ̄18]ꎮ长期以来ꎬ关于内生菌辅助植物修复被重金属污染的土壤的研究进展已有许多全面的综述[19 ̄22]ꎮ然而ꎬ还没有文章回顾内生菌缓解水稻重金属胁迫和积累的机制ꎮ本文对现有国内外文献进行了总结和归纳(表1㊁表2)ꎬ阐述了内生菌协助水稻缓解重金属胁迫和积累的作用机制ꎬ并针对多抗型内生菌菌种资源的发掘及合成菌群的研究应用提出展望ꎬ以期为内生菌进一步的深入研究和实际应用提供理论依据与参考ꎮ表1㊀缓解水稻重金属胁迫和积累的典型内生细菌Table1㊀Typicalendophyticbacteriaforalleviatingheavymetalstressandaccumulationinrice菌种名称宿主来源及分离部位促生特性水稻品种名称重金属元素试验方式调控效果文献来源芽孢杆菌属(Bacillusko ̄reensisstrain181 ̄22)水稻(OryzasativaL.)ꎻ根㊀㊀㊀㊀-中旱35镉土培盆栽增加旱稻鲜质量和干质量ꎻ降低植株和籽粒的镉含量[23]解淀粉芽孢杆菌(BacillusamyloliquefaciensRWL ̄1)水稻(OryzasativaL.)ꎻ种子产生赤霉素和有机酸㊀㊀-铜基质盆栽增加水稻株高㊁鲜质量㊁干质量和根长ꎻ降低根部㊁地上部铜的含量[24]~[26]鞘氨醇单胞菌属(Sphin ̄gomonassp.C40)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体㊁精氨酸脱羧酶C两优513镉水培盆栽增加水稻生物量以及根部㊁地上部㊁籽粒干质量ꎻ降低地上部和籽粒中镉含量[27]成团泛菌(Pantoeaag ̄glomeransTm02)蒲公英(TaraxacummongolicumHand. ̄Mazz.)ꎻ茎产生生长素ꎻ溶磷ꎻ固氮扬稻6号镉水培盆栽增加水稻株高㊁干质量㊁每穗粒数ꎻ降低籽粒㊁地上部的镉含量[28]嗜麦芽寡养单胞菌(Stenotrophomonasmalto ̄philiaR5 ̄5)水稻(OryzasativaL.)ꎻ种子产生铁载体ꎻ溶磷ꎻ固氮黄华占镉水培盆栽促进水稻生长ꎻ降低根和地上部的镉含量[29]㊁[30]台湾贪铜菌(CupriavidustaiwanensisKKU2500 ̄3)含羞草(Mimosapu ̄dicaLinn.)ꎻ根瘤㊀㊀㊀㊀-Phitsanulok2㊁泰国茉莉香米镉水培盆栽增加水稻根长㊁干质量㊁粒质量和产量ꎻ降低籽粒中镉含量[31]㊁[32]根瘤菌属(Rhizobiumlar ̄rymooreiS28)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体㊁精氨酸脱羧酶C两优513镉土培盆栽增加水稻根㊁地上部㊁籽粒生物量ꎻ降低地上部和籽粒中镉含量[33]沙雷氏菌(Serratialique ̄faciensF2)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体隆两优华占砷土培盆栽增加水稻根㊁地上部㊁籽粒干质量ꎻ降低水稻籽粒中砷含量[34]假单胞菌(Pseudomonassp.)㊁苏云金芽孢杆菌(Bacillusthuringiensis)㊁短小芽孢杆菌(Bacilluspumilus)水稻(OryzasativaL.)ꎻ-产生铁载体PathumThani1砷土培盆栽单接种配施风化褐煤促进水稻生长ꎻ降低籽粒中砷含量[35]巨大芽孢杆菌(BacillusmegateriumH3)杂交狼尾草(Pennis ̄etumamericanumˑP.purpureum)ꎻ根产生生长素㊁铁载体武运23镉土培盆栽增加水稻籽粒生物量ꎻ降低根部㊁地上部㊁籽粒中镉含量[36]阿氏芽孢杆菌(BacillusaryabhattaiT61)-ꎻ土壤ꎬ具内生性产生生长素㊁铁载体ꎻ溶磷728B㊁内香1B镉土培盆栽ꎻ大田试验促进水稻根生长ꎻ降低籽粒的镉含量[37]㊁[38]蕈状芽孢杆菌(BacillusparamycoidesHNR ̄4)㊁阿氏芽孢杆菌(Bacillusaryabhattai7NZ ̄3)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体㊁1 ̄氨基环丙烷 ̄1 ̄羧酸脱氨酶ꎻ溶磷C两优188镉基质盆栽共接种增加水稻根长和株高ꎻ降低根部和地上部的镉含量[39]-表示文献中未报道ꎮ068江苏农业学报㊀2023年第39卷第3期表2㊀缓解水稻重金属胁迫和积累的典型内生真菌Table2㊀Typicalendophyticfungiforalleviatingheavymetalstressandaccumulationinrice菌种名称宿主来源及分离部位促生特性水稻品种名称重金属元素试验方法调控效果文献来源稻镰状瓶霉(Falciphoraoryzae)疣粒野生稻(Oryzagranulate)ꎻ根内㊀㊀-甬优1504㊁浙粳88镉培养基共培养ꎻ大田试验增加水稻株高㊁生物量㊁大田产量ꎻ降低籽粒的镉含量[40]㊁[41]印度梨形孢(Piriformosporaindica)牧豆树[Prosopisjuli ̄flora(Swartz)DC.]㊁印度枣(Ziziphusincur ̄vaRoxb.)ꎻ根际土壤ꎬ具内生性㊀㊀-IR64砷㊁镉砷:水培盆栽ꎻ镉:土培盆栽砷胁迫下接种增加水稻株高和干质量ꎻ镉胁迫下接种增加水稻根长㊁株高㊁鲜质量ꎬ增加根部镉含量ꎬ降低地上部镉含量[42]~[44]小丛壳属(Glomerellasp.JP4)盐地碱蓬(Suaedasal ̄sa)ꎻ叶产生生长素㊁赤霉素㊁细胞分裂素辽兴1号镉水培盆栽增加水稻株高㊁根长㊁干质量ꎻ增加根部镉含量ꎬ降低地上部的镉含量[45]㊁[46]根内根孢囊霉(Rhizophagusintraradices)-ꎻ-ꎬ具内生性㊀㊀-旱优3号㊁郑旱9号镉土培盆栽ꎻ水培盆栽增加旱稻生物量㊁株高㊁根长㊁产量ꎻ降低地上部㊁根部㊁籽粒的镉含量[47]~[51]根内根孢囊霉(Rhizophagusintraradices)-ꎻ-ꎬ具内生性㊀㊀-旱稻3号砷土培盆栽降低旱稻籽粒的总砷㊁无机砷含量[52]摩西管柄囊霉(Funneliformismosseae)㊁根内根孢囊霉(Rhizophagusintraradices)-ꎻ-ꎬ具内生性㊀㊀-北稻4号镉土培盆栽单接种皆能增加水稻生物量ꎻ增加根部镉含量ꎬ降低地上部镉含量[53]摩西管柄囊霉(Funneliformismosseae)-ꎻ-ꎬ具内生性㊀㊀-郑旱9号㊁旱优73㊁旱优3号镉土培盆栽ꎻ水培盆栽增加旱稻根㊁地上部干质量ꎻ降低地上部㊁根部㊁籽粒的镉含量[47]㊁[49]㊁[51]㊁[54]变形球囊霉(Glomusversi ̄forme)-ꎻ-ꎬ具内生性㊀㊀-旱优3号镉水培盆栽ꎻ土培盆栽提高旱稻生物量和产量ꎻ降低根部㊁地上部㊁籽粒中镉含量[55]㊁[56]摩西球囊霉(GlomusmosseaeBGCBJ05A)㊁幼套球囊霉(GlomusetunicatumBGCXJ04B)艾蒿(ArtemisiaargyiLévl.etVan.)㊁苦豆子(SophoraalopecuroidesL.)ꎻ根际土壤ꎬ具内生性㊀㊀-镇糯20汞土培盆栽共接种增加水稻生物量㊁株高ꎻ降低根部㊁地上部和籽粒的总汞含量和甲基汞含量[57]~[59]摩西球囊霉(Glomusmosse ̄ae)-ꎻ-ꎬ具内生性㊀㊀-91B3铅土培盆栽增加旱稻生物量ꎻ降低地上部和地下部的铅含量[60]地球囊霉(Glomusgeospo ̄rum)㊁摩西球囊霉(Glomusmosseae)-ꎻ-ꎬ具内生性㊀㊀-中旱221砷土培盆栽混合接种增加旱稻产量ꎻ降低植株的砷含量[61]摩西球囊霉(GlomusmosseaeBGCXJ01)新疆韭(Alliumflavi ̄dumLedeb.)ꎻ根际土壤ꎬ具内生性㊀㊀-嘉花1号铜土培盆栽增加水稻地上部㊁根部生物量ꎻ降低地上部㊁根部的铜含量[59]㊁[62]地球管孢囊霉(Funneliformisgeosporum)-ꎻ-ꎬ具内生性㊀㊀-中旱221砷土培盆栽减少旱稻根系对亚砷酸盐㊁砷酸盐和一甲基胂酸的吸收[63]地球囊霉(GlomusgeosporumBGCHUN02C)㊁变形球囊霉(GlomusversiformeBGCGD01B)㊁摩西球囊霉(Glo ̄musmosseaeBGCGD01A)蜈蚣草(PterisvittataL.)ꎻ根际土壤ꎬ具内生性㊀㊀-中旱221砷土培盆栽单接种增加旱稻产量㊁生物量ꎻ降低籽粒㊁根部砷含量[59]㊁[64]变形球囊霉(Glomusversi ̄forme)㊁摩西球囊霉(Glomusmosseae)㊁透光球囊霉(Glo ̄musdiaphanum)-ꎻ-ꎬ具内生性㊀㊀-91B3㊁277铜㊁锌㊁铅㊁镉土培盆栽混合污染下单接种皆能减少铜㊁锌㊁铅㊁镉从旱稻根部至地上部的转运(除丛枝菌根真菌的定殖加强了品种277的铜转运)[65]根内球囊霉(Glomusintrara ̄dicesBGCAH01)白茅[Imperatacylin ̄drica(L.)Beauv.]㊁狗牙草(Sedumsarmento ̄sumBunge)㊁双穗雀稗[Paspalumpaspaloides(Michx.)Scribn.]ꎻ根际土壤ꎬ具内生性㊀㊀-日本晴砷土培盆栽增加水稻生物量ꎻ降低地上部亚砷酸盐含量[59]㊁[66]-表示文献中未报道ꎮ168付思远等:内生菌协助水稻缓解重金属胁迫和积累研究进展1㊀内生菌缓解水稻重金属胁迫的机制1.1㊀调节水稻激素平衡重金属胁迫会打破植物内源激素平衡[67]ꎮ在重金属胁迫下脱落酸(AbscisicacidꎬABA)和茉莉酸(JasmonicacidꎬJA)的含量增加ꎬ导致气孔导度降低㊁叶片衰老㊁叶绿素合成减缓㊁光合作用减弱ꎬ抑制植物生长[24ꎬ68 ̄69]ꎮ赤霉素(GibberellinsꎬGAs)对种子萌发㊁生长发育具有重要作用ꎬ其通过增强抗氧化系统[70]㊁调节激素平衡[71]等机制缓解重金属胁迫ꎮShahzad等[24]研究发现ꎬ铜胁迫下接种产GA的内生芽孢杆菌(BacillusamyloliquefaciensRWL ̄1)有助于降低水稻内源ABA和JA的含量ꎬ促进水稻生长ꎮ接种产GA内生真菌(Glomerellasp.JP4)明显改善了镉胁迫下水稻的抗氧化系统[45 ̄46]ꎮ内源水杨酸(SalicylicacidꎬSA)对于重金属胁迫的应答机制尚不明确ꎬ但水稻在镉和镍胁迫下ABA含量升高㊁SA含量降低ꎬABA对SA表现出拮抗作用ꎻ接种内生肠杆菌(EnterobacterludwigiiSAK5)和微小杆菌(ExiguobacteriumindicumSA22)后ꎬ水稻内源ABA含量降低㊁SA含量升高ꎬ植株生长状况明显改善[17]ꎮ重金属胁迫诱导乙烯(EthyleneꎬET)过量产生ꎬ导致过氧化氢(H2O2)积累和细胞凋亡ꎬ抑制根的发育[72 ̄73]ꎮ1 ̄氨基环丙烷 ̄1 ̄羧酸(1 ̄aminocyclopropane ̄1 ̄carboxylicacidꎬACC)脱氨酶可以将ET的前体ACC水解为氨和α ̄酮丁酸来促进根系生长ꎬ降低ET含量[74]ꎮ接种产ACC脱氨酶内生假单胞菌(PseudomonasstutzeriA1501)降低了镉㊁铜㊁锌㊁镍等胁迫下水稻内源ET含量ꎬ促进了水稻生长ꎻ进一步进行基因组分析ꎬ结果表明ꎬPseudomonasstutz ̄eriA1501携带1个编码ACC脱氨酶的acdS基因ꎬacdS基因突变后ꎬ突变体丧失了ACC脱氨酶活性ꎬ在重金属胁迫下促进水稻生长的能力丧失ꎬ表明产ACC脱氨酶是内生菌缓解水稻重金属胁迫的一种重要机制[72]ꎮ此外ꎬ产吲哚乙酸(IndoleaceticacidꎬIAA)内生菌通过以下两方面缓解植物重金属胁迫:一是刺激细胞伸长和分裂促进根系生长ꎬ使植物获得更强的养分吸收能力[19ꎬ75]ꎮ如镉胁迫下接种产IAA内生沙雷氏菌(Serratiasp.AI001)和克雷伯氏菌(Klebsiellasp.AI002)ꎬ增加了水稻不定根和侧根的数量[76]ꎮ二是诱导宿主生理变化来增强植物抗性和适应性[77 ̄78]ꎮ如IAA诱导抗氧化酶产生ꎬ从而增强抗氧化系统[73]ꎮ再如ꎬ根系分泌物通过螯合根际或质外体中的金属离子从而阻止金属离子进入细胞ꎬ这是植物应对重金属胁迫的重要策略ꎮIAA能够激活植物的细胞壁ꎬ刺激根系分泌物产生[79 ̄80]ꎮ接种Liu等[81]分离的产IAA和ACC脱氨酶内生肠杆菌(Enterobactersp.SE ̄5)显著提升了镉胁迫下水稻的IAA含量和ACC脱氨酶活性ꎬ提高了水稻种子发芽率㊁幼苗成活率㊁株高㊁根长㊁叶绿素含量和鲜质量ꎮ综上所述ꎬ重金属胁迫下ꎬ内生菌通过分泌外源植物激素(如IAA㊁GA等)和调节水稻内源激素(如IAA㊁ABA㊁JA㊁SA㊁ET等)平衡来降低应激激素对水稻生长发育的不利影响ꎬ增强水稻抗氧化系统的作用ꎬ缓解重金属胁迫ꎬ促进植株生长发育ꎮ一些内生菌还能分泌细胞分裂素(CK)ꎬ但国内外关于CK ̄内生菌 ̄水稻 ̄重金属胁迫之间相互作用的研究仍然较少ꎮ1.2㊀增强水稻光合作用重金属胁迫会严重减弱水稻光合作用ꎬ接种内生菌能够增强水稻光合作用ꎮFv/Fm表示光系统Ⅱ(PhotosystemIIꎬPSII)的光能转化效率ꎬFv/Fo表示光系统Ⅱ的潜在活性[82]ꎮ铅胁迫下水稻幼苗叶绿素a㊁叶绿素b含量降低ꎬ净光合速率(Pn)降低ꎬ蒸腾速率(E)减弱ꎬFv/Fm㊁Fv/Fo值分别低于0 8和4 0ꎬ表明光系统II的功能被抑制ꎮ接种内生真菌Sordariomycetessp.EF0801后ꎬFv/Fm和Fv/Fo分别提高到0.8和4.0以上ꎬ增加了光合色素含量ꎬ提高了Pn和Eꎬ有效维持了PSII的正常生理功能ꎬ光合强度得到提升[83 ̄84]ꎮ汞胁迫下水稻SPAD值(代表叶绿素含量)显著降低ꎬ接种内生真菌CurvulariageniculataP1和Aspergillussp.A31提高了SPAD值㊁Fv/Fm㊁Fv/Foꎬ光合效率增强ꎬ水稻株高和干质量显著增加[85]ꎮ砷胁迫时水稻接种印度梨形孢(Pirifor ̄mosporaindica)使水稻叶绿素含量恢复到正常水平[42]ꎮ研究发现ꎬ在砷酸盐或亚砷酸盐胁迫下ꎬ接种丛枝菌根真菌(ArbuscularmycorrhizalfungiꎬAMF)异形根孢囊霉(RhizophagusirregularisDAOM197198)提高了旱稻叶绿素含量㊁水分利用效率㊁碳同化率㊁气孔导度和蒸腾速率ꎬ提升了PSII的最大量子产率与实际量子产率㊁电子传输速率ꎬ促进了旱稻生长[86]ꎮ此外ꎬ植物体内高含量糖有助于增强光合作用以抵抗铜胁迫ꎬ接种内生菌RWL ̄1显著提高了铜胁迫下水稻碳水化合物(葡萄糖㊁蔗糖㊁果糖和棉子糖)的含量[24]ꎮ综上所述ꎬ内生菌通过增强光268江苏农业学报㊀2023年第39卷第3期合作用促进了水稻在重金属胁迫下的生长发育ꎮ1.3㊀增加水稻氨基酸和蛋白质的含量氨基酸是蛋白质(包括各种酶㊁受体㊁某些激素)生物合成的基本单位ꎬ植物中的氨基酸调控有利于改善防御系统[26ꎬ87]ꎮ接种内生菌BacillusamyloliquefaciensRWL ̄1提高了正常环境和铜胁迫下水稻幼苗中天冬氨酸㊁谷氨酸㊁丙氨酸等13种氨基酸的含量ꎬ其中大多数氨基酸是其他代谢物的前体或中间产物ꎬ有助于增强水稻对重金属的耐受性[24ꎬ87]ꎮZhou等[23]的研究结果表明ꎬ接种内生芽孢杆菌(Bacilluskoreensis181 ̄22)显著提高了镉胁迫下旱稻的总蛋白质含量ꎮ以上研究结果表明ꎬ内生菌通过提升水稻氨基酸和蛋白质的含量协助水稻抵御重金属胁迫ꎬ但重金属胁迫下内生菌提高水稻氨基酸㊁蛋白质含量的机制还有待研究ꎮ1.4㊀增强水稻抗氧化系统重金属诱导脂质过氧化ꎬ破坏细胞内自由基产生和被清除之间的平衡ꎬ从而产生大量活性氧(Re ̄activeoxygenspeciesꎬROS)ꎬROS会迅速与核酸㊁蛋白质㊁脂质和氨基酸等生物分子反应ꎬ导致细胞功能障碍和细胞损伤[88 ̄89]ꎮ内生菌可以提高水稻抗氧化酶和非酶抗氧化剂水平ꎬ降低ROS和丙二醛(MDA)的含量[84ꎬ90 ̄91]ꎮ研究发现ꎬ镉胁迫下旱稻MDA含量升高ꎬ接种内生菌Bacilluskoreensis181 ̄22使MDA含量下降到正常水平[23]ꎮShahzad等[24]的研究结果表明ꎬ铜胁迫会损害水稻抗氧化系统ꎬ接种内生菌BacillusamyloliquefaciensRWL ̄1显著提升了过氧化物酶(POD)㊁多酚氧化酶(PPO)等的活性和还原型谷胱甘肽(GSH)的含量ꎮ铅胁迫下水稻体内POD和过氧化氢酶(CAT)的活性下降ꎬ接种内生真菌Sordariomycetessp.EF0801后超氧化物歧化酶(SOD)㊁POD㊁CAT活性均增强[84]ꎮ砷胁迫下水稻幼苗根部还原型抗坏血酸(AsA)㊁还原型谷胱甘肽含量显著下降ꎬ氧化型谷胱甘肽(GSSG)㊁脱氢抗坏血酸(DHA)含量增加ꎬAsA/DHA和GSH/GSSG降低ꎻ印度梨形孢接种使参与AsA ̄GSH循环的谷胱甘肽还原酶(GR)㊁单脱氢抗坏血酸还原酶(MDAR)㊁脱氢抗坏血酸还原酶(DHAR)的活性升高ꎬ增加了GSH和AsA的含量ꎬAsA/DHA和GSH/GSSG升高ꎬ增强了水稻对氧化应激的耐受性[42]ꎮ镉胁迫下接种碱蓬内生真菌Glomerellasp.JP4也提高了水稻AsA和GSH的含量ꎬ增强了SOD㊁POD㊁GR㊁CAT的活性ꎬ降低了H2O2和MDA的含量[45]ꎮLi等[51]研究发现ꎬ镉胁迫下接种AMF(Rhizophagusintraradi ̄cesꎬRi)降低了旱稻ROS水平ꎬ提升了GSH含量和谷胱甘肽过氧化物酶(GPX)活性ꎬ促进了旱稻生长ꎮ接种AMF(GlomusversiformeꎬGv)还可以上调镉胁迫下旱稻根系过氧化物酶基因的表达ꎬ提高了旱稻的镉胁迫抗性[56]ꎮ接种印度梨形孢显著降低了镉胁迫下水稻根部ROS的积累ꎬ减少了根部细胞死亡[44]ꎮ此外ꎬ重金属胁迫会使细胞产生有毒化合物甲基乙二醛(MethylglyoxalꎬMG)ꎬ其会对脂质㊁蛋白质㊁DNA㊁RNA造成严重损害ꎬ并诱导H2O2积累[92 ̄93]ꎮ乙二醛酶(GLY)是MG的生理解毒酶系统ꎬ能够将细胞内具有糖基化毒性的MG转化为无毒的乳酸盐排到细胞外[94]ꎮ砷胁迫导致水稻MDA㊁MG含量以及GLYI㊁GLYII活性升高ꎬ接种印度梨形孢进一步提高了GLYI和GLYII的活性ꎬ降低了MDA和MG的含量ꎬ减少了MG对细胞的毒害ꎬ增强了水稻对砷的耐受性[42]ꎮ综上所述ꎬ重金属胁迫下内生菌可以提高水稻抗氧化酶活性ꎬ改善AsA ̄GSH循环的氧化还原状态ꎬ增强GLY循环系统ꎬ减轻了水稻氧化应激以促进植株生长ꎮ1.5㊀促进水稻对营养元素的吸收重金属会干扰水稻根系对营养元素的吸收和分配ꎬ造成营养缺乏和养分失衡ꎬ导致水稻生长迟缓[95 ̄96]ꎮ研究发现ꎬ随着铅离子含量的增加ꎬ水稻根中钾(K)㊁钙(Ca)㊁镁(Mg)㊁磷(P)㊁铁(Fe)㊁锌(Zn)和锰(Mn)等营养元素的含量降低ꎬ内生真菌Sordariomycetessp.EF0801的接种促进了根部对营养元素的吸收和向地上部的运输ꎬ使幼苗叶片中上述离子含量显著增加ꎬ有助于维持铅胁迫下水稻的光合作用和酶促反应[97]ꎮ同样ꎬ镉胁迫下接种内生成团泛菌(PantoeaagglomeransTm02)促进了Mn㊁Ca㊁Fe㊁Mg等离子向籽粒的转运ꎬ增加养分的同时减少了镉向籽粒的转运[28]ꎮ产铁载体内生菌促进水稻对铁和其他微量元素的吸收利用[98]ꎮ接种产铁载体内生菌Pseudomonassp.㊁Bacillusthuringien ̄sis㊁B.pumilus使砷胁迫下水稻根部铁含量升高[35]ꎮ砷胁迫下会增加水稻幼苗根中铁含量ꎬ但减少了铁向地上部的转运ꎬ接种印度梨形孢上调了水稻铁转运相关基因(OsIRO2㊁OsFRDL1㊁OsYSL1)的表达ꎬ显著增加了地上部的铁含量ꎬ有利于叶绿素合成和光合作用[42]ꎮ有些内生菌还可以通过生物固氮为重368付思远等:内生菌协助水稻缓解重金属胁迫和积累研究进展金属胁迫下的水稻提供必需的氮素营养[28ꎬ30ꎬ99]ꎮ土壤中的有效磷含量较低ꎬ不能满足植物需求[100]ꎮ具有溶磷功能的内生菌能够将难溶性磷转化为可溶性磷供重金属胁迫下的水稻吸收利用[28ꎬ30ꎬ37 ̄39]ꎮAMF在促进水稻磷吸收方面具有重要作用ꎮ多项研究结果表明ꎬ铜㊁铅㊁镉㊁砷等重金属胁迫下ꎬAMF接种能够增加水稻植株的磷含量ꎬ有利于水稻营养物质合成以抵抗重金属胁迫[55 ̄56ꎬ61ꎬ64ꎬ101]ꎮ综上所述ꎬ内生菌通过溶磷㊁固氮㊁产生铁载体㊁上调营养元素吸收和营养转运相关基因的表达等机制加强水稻对营养元素的吸收和运输ꎬ从而促进水稻在重金属胁迫下生长ꎮ2㊀内生菌降低水稻地上部和籽粒重金属积累的作用机制2.1㊀胞内积累和胞外吸附固定重金属内生细菌通过主动运输和区域化作用将重金属吸收进细胞内ꎬ也可由分泌的胞外聚合物在细胞外富集重金属ꎬ降低其流动性[77]ꎮ氢离子与金属离子存在竞争吸附位点ꎬ碱性环境能够加强土壤和细胞表面对重金属的吸附[102]ꎮ一些兼性内生细菌可以提高环境pH值ꎬ如ꎬ兼性内生沙雷氏菌(Serratialiq ̄uefaciensF2)通过提高发酵液pH值加强自身对砷的胞外富集和胞内积累ꎬ砷胁迫下接种Serratialiq ̄uefaciensF2加强了根表面和土壤对砷的固定ꎬ减少了水稻对砷的吸收和砷向籽粒的转移ꎬ最终籽粒砷含量低于欧洲水稻籽粒中最大允许砷含量(0 2mg/kg)[34]ꎮ内生真菌利用细胞壁㊁中央大液泡㊁菌丝体㊁孢子等特殊结构固定重金属[103]ꎮ镉胁迫下接种印度梨形孢使水稻根部的菌丝体和孢子中积累了大量镉ꎬ阻止镉离子向地上部转运[44]ꎮ深色有隔内生真菌稻镰状瓶霉(FalciphoraoryzaeEU63669)是典型的镉离子生物过滤器ꎬ接种水稻后大量的镉以黑色沉积物和颗粒的形式在其液泡和厚壁孢子中被固定ꎬ阻止镉转移至地上部ꎬ降低了籽粒镉含量[40]ꎮ植物细胞壁主要由多糖和蛋白质组成ꎬ含有羧基㊁羟基㊁氨基和醛基等潜在配体ꎬ这些配体可以参与离子交换㊁吸附㊁络合㊁沉淀和结晶等各项反应ꎬ有效结合重金属阳离子并限制其在细胞膜上的转运[104 ̄106]ꎮ植物在根细胞壁中隔离重金属是缓解原生质体重金属胁迫和抑制重金属转运的机制之一[104ꎬ107]ꎮ多项研究发现AMF可以影响水稻中的重金属亚细胞分布ꎮGao等[48]的研究结果表明ꎬAMF可以改变旱稻根细胞壁的化学性质ꎬ镉胁迫下ꎬ接种Rhizophagusintraradices提高了根部细胞壁中果胶㊁半纤维素1和木质素的含量ꎬ观察到更多羟基和羧基ꎬ根细胞壁的果胶和半纤维素1中镉含量增加ꎬ进而显著降低旱稻地上部的镉含量ꎮZhang等[62]的研究结果表明ꎬ铜胁迫下接种AMF(GlomusmosseaeꎬGm)可使菌根中糖醛酸的含量增加ꎬ有利于增强菌根对铜的吸附ꎬ菌根细胞壁果胶和半纤维素1中的铜含量增加了约5倍ꎬ最终水稻地上部铜含量显著降低ꎮLi等[49]的研究结果表明ꎬ在低镉胁迫(<0 05mmol/L)下接种Rhizophagusintraradices和摩西管柄囊霉(FunneliformismosseaeꎬFm)提高了旱稻根部细胞壁组分中镉含量ꎬ高镉胁迫(ȡ0 05mmol/L)下提高了液泡中镉含量ꎬ而细胞器组分镉含量显著降低ꎬ缓解了旱稻镉胁迫ꎬ减少了地上部镉积累ꎮ上述研究结果皆表明由内生菌介导的胞外吸附和胞内积累可以将重金属固定ꎬ从而减弱重金属向地上部的转运ꎬ但AMF影响水稻根部重金属亚细胞分布的机制还有待研究ꎮ2.2㊀降低重金属的生物有效性碱性环境有利于重金属沉淀的形成和稳定[102]ꎮ镉胁迫下接种兼性内生细菌Pantoeaagglo ̄meransTm02提高了土壤pH值并降低镉的生物有效性ꎬ减少水稻对镉的吸收和转运ꎬ降低水稻籽粒㊁茎秆中的镉含量[28]ꎮ内生巨大芽孢杆菌(BacillusmegateriumH3)和华氏新根瘤菌(Neorhizobiumhua ̄utlenseT1 ̄17)共接种可以提高水稻根系土壤的pH值ꎬ在低镉胁迫下增加铁锰氧化物结合态镉含量ꎬ高镉胁迫下增加有机物结合态镉和硫化镉的含量ꎬ减少水稻对镉的吸收ꎬ所产精米符合大米镉限量国际标准(0.2mg/kg以下)[36]ꎮ多胺是氨基酸脱羧过程中产生的一类碱性化合物ꎬ能够提高周围环境的pH值ꎬ最常见的多胺包括腐胺㊁亚精胺和精胺[108 ̄110]ꎮ研究发现ꎬ使用外源多胺降低了水稻对镉的吸收[111]ꎮ某些细菌可以产生精氨酸脱羧酶(ADC)从而分泌多胺[109ꎬ112]ꎮCheng等[27]分离的产ADC内生鞘氨醇单胞菌(Sphingomonassp.C40)为兼性内生菌ꎬ其发酵液的多胺含量和pH值在镉胁迫下显著提高ꎬ接种后诱导镉胁迫下水稻幼苗多胺合成酶相关基因(OsSPDS㊁OsSPMS1和OsSAMDC1)表达显著上调ꎬ根际土壤和根内的亚精胺㊁精胺含量增加ꎬ468江苏农业学报㊀2023年第39卷第3期土壤中铁锰氧化物结合态镉含量增加ꎬ水稻地上部镉积累量显著降低ꎮ镉胁迫下ꎬ产ADC兼性内生根瘤菌(RhizobiumlarrymooreiS28)发酵液的pH值和腐胺质量浓度升高ꎬ接种后显著提高了水稻分蘖期和成熟期土壤pH值和有机质含量ꎬ降低了根际土壤有效态镉含量和镉转移系数(TFꎬ表示植物对重金属的转运能力)ꎬ增加了成熟期根际土壤中碳酸盐和有机物结合态镉的含量ꎬ使水稻根部㊁地上部㊁籽粒中镉含量皆降低[33]ꎮ但产ADC内生菌的研究目前仅限于水稻镉胁迫ꎬ对其他重金属胁迫的应用研究较少ꎮ内生菌分泌的铁载体也可与Cd2+㊁Cu2+㊁Pb2+㊁As3+㊁As5+等多种重金属离子结合[113]ꎮ研究发现ꎬ与铁载体结合的Fe3+更容易进入细胞ꎬ与铁载体结合的有毒金属离子不能有效地进入细胞ꎬ从而降低重金属的生物有效性[114]ꎮ有机酸通过与重金属形成复合物㊁诱导植物产生根系分泌物㊁溶解磷酸盐释放磷元素并形成不溶性重金属磷酸盐等多种机制降低重金属的生物有效性ꎬ内生细菌Bacillusamyloliq ̄uefaciensRWL ̄1具有分泌柠檬酸㊁琥珀酸㊁丙酸和乙酸等多种有机酸的能力ꎬ接种后显著降低了水稻根部和地上部的铜含量[25]ꎮ铅胁迫下接种内生真菌Sordariomycetessp.EF0801诱导水稻根系产生苹果酸㊁酒石酸㊁乳酸和草酸等有机酸ꎬ缓解了水稻铅胁迫[97]ꎮ金属硫蛋白(MetallothioneinsꎬMTs)是一类低分子量㊁半胱氨酸含量异常丰富的短肽ꎬ其巯基( ̄SH)能够螯合重金属[115]ꎮ镉胁迫下接种变形球囊霉上调了旱稻菌根中MTs合成相关基因的表达ꎬ降低了旱稻地上部镉含量[56]ꎮ无机硫化物也可与重金属反应生成不溶性金属硫化物[32]ꎮ内生台湾贪铜菌(CupriavidustaiwanensisKKU2500 ̄3)能够分泌MTs和无机硫化物ꎬ镉胁迫下其发酵液中硫化镉含量升高ꎬ降低了发酵液中有效镉的含量ꎬ接种后显著降低了水稻籽粒镉含量[32]ꎮAMF通过改变重金属的生物有效性降低镉在菌根中的迁移率和毒性ꎬ如高镉胁迫(ȡ0 05mmol/L)下ꎬ接种AMF的旱稻菌根中有效态镉(无机镉和水溶性镉)的含量显著低于未接种AMF的旱稻ꎬ无效态镉(果胶酸盐结合态镉㊁蛋白质结合态镉㊁不溶性和残留镉)占比高[49]ꎮLuo等[50]研究发现ꎬAMF接种提高了旱稻在开花期㊁成熟期根际土壤中无效态镉的比例ꎬ与籽粒中镉含量呈负相关ꎬ这表明旱稻开花期和成熟期是AMF限制籽粒积累镉的关键时期ꎮ植物在细胞质中将重金属与植物螯合素(PhytochelatinsꎬPCs)螯合以降低其生物有效性ꎬ并将螯合物转运至液泡ꎬ这是缓解重金属胁迫与积累的一种重要机制ꎮOs ̄PCS1和OsPCS2是水稻合成PCs的2个主要基因ꎬ有助于提高水稻对砷和镉的耐受性[116]ꎮ研究发现ꎬ砷胁迫上调了水稻根中OsPCS1和OsPCS2的表达ꎻ接种印度梨形孢进一步显著上调了OsPCS1和OsPCS2的表达ꎬ增加了PCs的合成ꎬ砷被PCs螯合后转移至根部液泡区隔化ꎬ从而减少了砷向地上部的转运[42]ꎮ综上所述ꎬ内生菌通过降低重金属的生物有效性减少水稻对重金属的吸收和转运ꎬ缓解了水稻重金属胁迫ꎬ减少了植株地上部和籽粒重金属积累ꎮ2.3 调控水稻对重金属的吸收和转运基因的表达根是植物吸收土壤重金属的第一个部位ꎬ许多重要的重金属吸收和转运基因在根部表达ꎮ水稻根系可以通过硅酸盐和磷酸盐转运蛋白质吸收和转运As3+㊁As5+[117]ꎮ水稻硅酸盐转运基因OsLsi1参与砷的吸收ꎬOsLsi6在将砷/硅转运出木质部并向地上部再分配过程中起关键作用ꎬOsLsi2参与砷向中柱的运输且将其转运到地上部ꎬ磷酸盐转运基因OsPT4参与砷的吸收[35ꎬ42ꎬ118 ̄119]ꎮ砷胁迫下ꎬ水稻幼苗根部OsLsi1㊁OsLsi2㊁OsLsi6基因表达上调ꎻ接种印度梨形孢后ꎬ显著下调了OsLsi2基因的表达ꎬ减少了砷向地上部的转运ꎬ地上部砷含量显著降低[42]ꎮ砷胁迫下水稻接种AMF(GlomusintraradicesBGCAH01)显著下调了OsLsi1㊁OsLsi2基因的表达ꎬ菌根对砷的吸收效率下降ꎬ大部分亚砷酸盐在根部被固定从而阻止其转移到地上部[66]ꎮRujira等[35]的研究结果表明ꎬ水稻OsLsi1㊁OsLsi2㊁OsPT4基因在砷胁迫下表达上调ꎬ根㊁枝㊁叶㊁穗枝㊁壳和籽粒中的砷积累显著增加ꎻ单接种内生细菌假单胞菌㊁苏云金芽孢杆菌㊁短小芽孢杆菌及配施风化褐煤皆能显著下调OsLsi1㊁OsLsi2㊁OsPT4基因表达ꎬ籽粒砷含量低于大米砷限量国际标准(0.2mg/kg)ꎮ植物重金属三磷酸腺苷酶(HeavymetalATPasesꎬHMAs)家族在金属转运方面发挥重要作用[120]ꎬ其中OsHMA2负责将镉/锌从根部转运到地上部ꎬOsHMA3负责将镉运输到根部大液泡中区隔化[121 ̄122]ꎮOsHMA3基因的过表达可以增加水稻根部镉积累ꎬ减少地上部的镉积累[123]ꎮ镉胁迫下水稻接种内生菌C40显著下调了OsHMA2568付思远等:内生菌协助水稻缓解重金属胁迫和积累研究进展。
植物内生菌的杀菌效果研究植物内生菌指的是一类共生于植物体内的微生物,它们与宿主植物形成互惠共生关系,帮助植物吸收养分、促进生长并增强抗病能力。
近年来,研究人员发现一些植物内生菌还具有杀菌效果,能够抑制植物病原菌的生长和繁殖。
本文将对植物内生菌的杀菌效果进行研究。
植物病原菌是导致植物疾病的主要原因,它们会侵入植物体内并繁殖,最终导致植物死亡或减产。
传统的防治方法主要依赖化学农药,但其存在对环境和人体健康的副作用。
因此,寻找一种安全、有效的杀菌方法显得尤为重要。
植物内生菌的杀菌效果引起了研究人员的兴趣。
一方面,植物内生菌可以产生一系列抗菌物质,如抗生素、植物生长调节物质等,对植物病原菌产生抑制作用。
研究人员通过实验发现,一些植物内生菌能够分泌抗菌物质,如溶菌酶、蛋白酶和生物活性物质等,这些物质能抑制病原菌的生长、限制其繁殖,并最终导致其死亡。
此外,抗菌物质还可以激活植物的防御机制,增强植物的抗菌能力,减轻病害的发生。
另一方面,植物内生菌还能调节植物内部环境,限制病原菌的生长。
研究人员发现,一些植物内生菌能够调节植物的根际环境,产生一股抑菌区域,抑制病原菌的入侵。
这种抑菌机制与植物内生菌的共生生活方式密切相关,植物通过合成一些特定的物质,如抗菌物质和植物生长激素,形成对病原菌的抑制作用,从而保护自己免受病害侵害。
在实践中,研究人员对植物内生菌的杀菌效果进行了一系列研究。
以溶菌酶为例,研究人员通过实验发现,溶菌酶能杀灭多种病原菌,如炭疽菌、普通立枯病菌、松材线虫等。
另外,研究人员还发现,植物内生菌分泌的蛋白酶可以降解病原菌的细胞壁,导致其破裂死亡。
这些研究结果表明,植物内生菌具有潜在的杀菌效果,并有望成为一种新型的绿色杀菌剂。
尽管植物内生菌具有较好的杀菌效果,但目前仍存在一些问题。
首先,植物内生菌的杀菌效果受到多种因素的影响,如菌株的选择、培养条件、环境因素等。
因此,如何提高植物内生菌的杀菌效果仍然是一个挑战。
玉米内生菌研究进展李晔;田红琳;张丕辉【摘要】植物内生菌作为一种新型的微生物资源,受到越来越多研究者的青睐.到目前为止,许多研究者从不同的植物中分离出大量内生菌,在生防、促生长、抗非生物胁迫方面表现出较好的应用潜力.玉米作为中国重要的粮食作物,对其内生菌进行研究具有重要意义.从玉米内生菌的多样性、种群分布特性、生物学特性等方面概述了当前有关玉米内生菌研究的主要成果和最新进展,以期为玉米内生菌相关研究提供借鉴.%As a new type of microbial resource,endophyte is attracted by more and more researchers.So far,a large number of endophytes were isolated from different plants,and showed great potential in biocontrol,growth promoting and abiotic stress resistance.It is significant to study about the endophyte in maize,the largest food crop in China.The main achievements and latest progress in diversity,population distribution,biological characteristics of maize endophytes were summarized in order to provide references for the related researches about maize endophytes.【期刊名称】《作物研究》【年(卷),期】2017(031)006【总页数】4页(P709-712)【关键词】内生菌;玉米;促生;抗病【作者】李晔;田红琳;张丕辉【作者单位】重庆市农业科学院玉米研究所,重庆401329;重庆市农业科学院玉米研究所,重庆401329;重庆市农业科学院玉米研究所,重庆401329【正文语种】中文【中图分类】S432.1植物内生菌是指其生活史中某一阶段或整个阶段生活在生长健康的植物组织或细胞内,并对宿主植物没有引起明显病害症状的一类微生物群[1]。
植物与内生真菌互作的生理与分子机制研究进展第28卷第9期2008年9月生态ACTAEC0L0GICASINICAV o1.28.No.9Sep.,2008植物与内生真菌互作的生理与分子机制研究进展袁志林,章初龙‟,林福呈,(1.浙江大学生物技术研究所,杭州310029;2.中国林业科学研究院亚热带林业研究所,富阳311400)摘要:在自然生态系统中,植物组织可作为许多微生物定居的生态位.内生真菌普遍存在于植物组织内,与宿主建立复杂的相互作用(互惠,拈抗和中性之间的相互转化),并且存在不同的传播方式(垂直和水平传播).内生真菌通过多样化途径来增强植物体的营养生理和抗性机能.但这种生理功能的实现有赖于双方精细的调控机制,表明宿主和真菌双方都进化形成特有的分子调控机制来维持这种互惠共生关系.环境因子(如气候,土壤性质等),宿主种类和生理状态,真菌基因型的变化都将改变互作结果.此外,菌根真菌和真菌病毒等也可能普遍参与植物一内生真菌共生体,形成三重互作体系,最终影响宿主的表型.研究试图从形态,生理和分子水平阐述内生真菌与植物互作的基础.关键词:内生真菌;植物;互作机制文章编号:10000933(2008)09.4430.10中图分类号:Q143,Q948文献标识码:A Recentadvancesonphysiologicalandmolecularbasisoffungaiendophyte- plantinteractionsYUANZhi—Lin‟一.ZHANGChu.Long一,UNFu—Cheng‟1InstituteofBiotechnology,ZhejiangUniversity,Hangzhou,ZhejiangProvi nce,310008,China2Instituteofsubtropicalforesto”,ChineseAcademyofForestry,Fuyang,Zhe jiangProvince310029,ChinaActaEcologicaSinica.2008.28(9):4430~4439.Abstract:Innaturalecosystems,plantsconstitutesuitablehabitatsandniches forthecolonizationofadiversityofmicroorganisms.Endophyticfungi,livingintheinnerofhealthyplanttissues ubiquitously,exhibitcomplexinteractionswiththeirhosts(acontinuumofmutualism,antagonismandneutralism)anddi fferenttransmissionmodes(horizontalorvertica1).Plantnutrientacquisitionandstresstolerancemaybestrengthenedbythefungalsymbiont.However,a successfulplant—fungalendophyteinteractionrequiresthefinetuningofant agonisticinteractions,whichimpliesthe evolutionofuniqueself—regulatingmechanismsonbothsidestomaintaina mutualisticinteraction.Hostspecies,fungal geuotypeandenvironmentalfactorssuchasclimateandsoilpropertiesaswell asthenutritionalstatusoftheplantwill ultimatelydeterminetheoutcomeoftheinteraction.Additionally,ternaryinte ractionswithmycorrhizalfungiand mycovirusesmayalsobeimportantcomponentsparticipatingintheplant?en dophyteassociationand,thus,influencethehostphenotype,Inthisreview,weattempttooutlinetheinteractivemechanismsof plant—fungalendophyteassociationsonamorphological,physiologicalandmolecularleve1.KeyWords:endophyticfungi;hostplant;interactivemechanisms基金项目:国家自然科学基金资助项目(30600002)收稿日期:2008—0227;修订日期:2008—05—23作者简介:袁志林(1979~),男,苏州人,博士生,从事植物?共生真菌基础理论与应用研究.E-mail:zhi—*********************}通讯作者Correspondingauthor.E—mail:******************.cn;***************.e nFoundationitem:TheprojeetwasfinanciallysupportedbytheNationalNatur alScienceFoundationofChina(No.30600002)Receiveddate:2008—02-27;Accepteddate:2008—05—23 Biography:YUANZhi—Lin,Ph.D.cadidate,mainlyengagedinplant—fun galendophytesinteractions.E-mail:zhi一/in—*****************http://www.ecologica.ca9期袁志林等:植物与内生真菌互作的生理与分子机制研究进展植物与周围环境生物的互作是一种普遍现象,其中植物-微生物的相互作用是重要形式之一.在叶围(phyllosphere)和根围(rhizosphere)区域,植物体时刻与众多的有害,有益和中性微生物同生存,并产生直接或间接的接触.在长期的协同进化过程中,植物对微生物的侵染已经形成一种适应性的机制,既能够识别来自微生物的信号分子并作出相应的生理反应,包括亲和性的互作(compatibleinteractions)和非亲和性的互作(incompatibleinteracti0ns).植物为了适应复杂的生态环境,进化成很多形式的植物?微生物共生体系统.C同位素标记技术显示根系组织中存在相当复杂的植物一真菌,植物一细菌共生体,对提高植物抗性和促进养分吸收起重要作用].现有的一些结果表明,植物与真菌的相互关系可能更为古老,化石证据证实了早在4亿多年前就已经存在植物与真菌的共生体,而且这种共生关系在植物由水生演化到陆生过程中扮演了重要角色口].在自然界中植物与真菌的非致病性的共生关系(nonpathogenicsymbiosis)具有普遍性,而致病性的亲和互作只是个例].因此研究植物.共生真菌的相互关系有助于更好阐明真菌在自然界的生态功能.有两类共生真菌能够侵染并定植在植物组织中,其中菌根真菌(mycorrhizalfungi)只与植物根系建立互惠关系,在根部组织中能形成特定的功能性结构,如AM菌根中存在丛枝和泡囊,外生菌根中可形成菌套(mantle)和哈帝氏网(Hartignet)等,涉及土壤一真菌.植物根系3个界面;而内生真菌(endophyticfungi)普遍存在于植物的地上和地下部分,且只存在植物组织一真菌的互作界面,侵染根系的内生真菌也不形成明显的结构特征.从已积累的研究结果看,内生真菌一植物共生体可能远比菌根共生体复杂.植物一内生真菌共生体是继豆科植物.根瘤共生体,菌根共生体后发现的植物与微生物共生关系的又一种表现形式,业已成为国际研究热点.但从研究历史,深度看,与病原真菌,菌根真菌比较,内生真菌的工作才处于基础探索阶段.在近10a中,在植物内生真菌的研究领域已经取得了很大的进步,从传统的分离培养,类群分析和分类鉴定逐渐过渡到从形态,生理和分子水平阐明互作机理.本文针对这几个方面的问题加以详细叙述和评论.1内生真菌定义及不同类型的生物学特性比较有关内生真菌的定义,国际上一直存有争议,现在普遍接受的是Petrini提出的概念J,即生活史的一部分能侵染并定殖在植物组织器官中,宿主无明显感染症状的一类真菌.绝大部分属于子囊菌和半知菌,担子菌和卵菌作为植物的内生菌也有报道..‟.一般将内生真菌分为两个类群,即禾草内生真菌(grassendophytes orbalansiaceousendophytes)和非禾草内生真菌(non—grassendophytes).它们之间的区别见表1ts,38].表1禾草内生真菌和非禾草内生真菌生物学特性比较[8,38]Table1Comparisonofcharacteristicsoftwogroupsofendophyficfungiinpla nk[8,38]禾草内生真菌Endophytesofgrasshosts非禾草内生真菌Endophytesofnongrasshosts种类较少,主要是麦角菌科的子囊真菌Fewfungalspecies,Clavicipitaceae侵染宿主组织面积广,胞问定殖Extensivecolonizationofgrassleavesandsheath,intercellular与宿主是”组成性互惠关系”,对宿主的增益作用明显“Constitutivemutualism”系统性种子垂直传播,但ichlo#也可水平传播V erticallytransmittedviaseeds绝大多数子囊菌,半知菌和和少数的卵菌,担子菌Manyspecies,taxonomicallydiverse主要以局部组织的定殖侵染为主,胞内或胞问生存Restrictedcolonizationofplanttissues,intracellularorintercellular与宿主是”诱导性互惠关系”,多因素影响互作结果“Inducedmutualism‟‟or”conditionalmutualism”.manyfactors determiningtheoutcomeoftheassociation非系统性孢子水平转播,极少数可垂直传播Horizontallytransmittedviasporesfromplantstoplants2内生真菌侵染宿主的形态学,生理学机制及双方各自的生理反应与菌根真菌和病原真菌相似,内生真菌的侵染过程也经历一系列复杂过程,包括孢子与亲和性宿主的识别,活化,黏附表面基质,萌发直到侵染组织内部_9.在侵染早期,双方各自均释放信息素类似物并被彼此识别,由此在代谢水平上做出相应的调整.在丛枝菌根和外生菌根研究中发现,气生菌丝具有对宿主植物根系定位的能力,在真菌和根系非直接物理接触前就开始了信号的交流”].已经证明根系分泌物中的倍半萜类,黄酮类物质充当了信号分子,促进孢子萌发.在内生真菌与宿主互作中也发现有类似现象,通过建立体外共培养技术(invitrodualculturesystem),观察内生真菌与无菌苗(或愈伤组织)共培养时各自的生理反生态28卷应,研究表明内生真菌菌丝对宿主的某些化学物质具有趋化性(chemotaxis),且生长良好;而在非宿主组织中并无此现象,表明如果在内生真菌一宿主互作中存在明显的趋化信号,该内生真菌并非仅仅是随机性侵染体(incidentalopportunists),而是在进化过程中已经形成对宿主的适应机制|I引.另一方面内生真菌的成功侵染也必须穿透宿主的机械屏障并克服其防御反应.现已发现内生真菌产生的胞外酶系统也相当丰富,如纤维素酶(cellulases),漆酶(1accase),木聚糖酶(xylanase),蛋白质酶(protease)等,在侵染初期破坏植物角质层和皮层细胞的细胞壁,利于菌丝进入组织内部.与菌根真菌相似,植物对于这类共生真菌的侵染所引发的防御反应程度较弱_1,推测一方面内生真菌携带的低毒力因子,菌丝分泌某些糖蛋白或细胞壁组成的改变,从而削弱宿主对其强烈的识别能力8j.最近发现在拟南芥根部细胞内质网中存在一种p一葡萄糖苷酶(PYK10),能限制内生真菌印度梨形孢(Piriformosporaindica)的侵入,从而削弱宿主产生的防御反应.植物组成型次生代谢产物如皂角苷(saponin),精油(essentialoils)等是一种进化形成的抵抗外界病原物的机制.某些病原真菌为了成功侵染产生相应的策略,分泌解毒酶(detoxificationenzyme),能分解利用次生代谢产物,克服宿主的防御系统¨博.内生真菌也有类似的机制,而且内生真菌对次生代谢产物的生物转化能力在一定程度也定了决定其宿主的范围.侵染组织后,为了行使特定的生物学功能,互作双方在形态,生理和分子水平均发生着深刻的变化,从而建立稳定有效的共生体.由于绝大多数内生真菌在细胞间隙繁殖生存的,因此质外体空间(apoplasticspace)是两者信号物质,营养交换的主要场所.对P.indica.大麦共生体系的生理与分子机制研究发现:菌株侵染根系后能削弱根部细胞HvBI一1基因的表达,HvB1—1基因的过表达反能限制菌丝的侵染强度.HvBI一1基因在真核生物中很保守,能抑制细胞程序性死亡,这表明菌丝在宿主体内的生长和繁殖需要植物组织细胞一定程度的死亡,最终两者达到平衡状态.但在侵染过程中,真菌在识别新的环境(如在宿主胞外体空间存在的碳水化合物等)中所发生的一系列生物学行为和反应机制,到目前为止涉及很少.有研究者利用激光共聚焦技术观察了GFP标记的哈茨木霉(Trichodermaharzianum)菌株侵染番茄根系时菌丝形态水平的变化,结果发现共培养2d后菌丝顶端呈现酵母状的乳突型细胞,推测这种特异性的形态变化有助于双方营养的交换.在植物.病原真菌互作研究中,已经发现菌丝的程序性死亡(programmedcelldeath)或自噬(autophagy)对于其成功侵染组织是必需的‟引.研究内生真菌不同侵染时期的基因差异表达,有助于了解其互作的关键调控因子以及分析比较不同植物一真菌相互关系的异同.3内生真菌改变植物生理代谢并增强宿主抗逆性的现象和机制分析过去的研究往往只关注菌根真菌对植物个体,种群和群落结构的影响,而忽视了内生真菌的生理生态功能.自发现禾草地上部分内生真菌Epichlo~/Neotyphodium在增强宿主生物量,抗逆方面具有独特作用,科学家普遍认为植物体进化形成不同类型的真菌共生体对其生存起着关键作用.随着研究的深入,对于水平传播内生真菌的生物学特性也逐渐涉及,尤其在探讨根系内生真菌增强宿主生理功能的机制方面尤为活跃.研究内生真菌自身的生物学特性及其对植物初级代谢和次级代谢的调节有助于我们更好地阐明植物受益的机理.内生真菌赋予植物优良生长性状的特点与菌根真菌类似,如促进植物营养生长,光合作用增强,增加生物量(产量)并提高在逆境中的生存能力.担子菌P.indica能分泌生长素如吲哚乙酸促进植物生长…,内生镰刀菌通过抑制植物体内的乙烯信号途径来提高植物生长活力¨.内生真菌还能通过活化硝酸还原酶,分泌铁载体和磷酸酶等形式促进植物养分吸收,从而更利于植物生长(图1)拍.有些真菌还能分泌多糖类黏液物质,并在根表面形成菌膜(biofilm),协同植物抗旱.Carroll 归纳总结了内生真菌互利共生的5种特性:(1)该内生真菌在特定的宿主植物中普遍存在,地理分布较广,植物不表现任何明显的病症;(2)该真菌能垂直传播或水平传播的效率很高;(3)内生真菌在整株植物组织均能生长定殖,如果只在某一器官中生长,则该组织器官感染内生真菌的强度比较高;(4)内生真菌能分泌毒性或抗生物质;(5)该内生真菌在分类单位上与病原物拮抗菌很接近.因此通过常规的菌株分离,鉴定工作,并结合上述原则,可以筛选出具有9期袁志林等:植物与内生真菌互作的生理与分子机制研究进展特定生物学功能的内生真菌.从热带兰科植物根系中分离出内生真菌,其中有两个菌株Trichodermachlorosporum和Clonostachysrosea,在分类单位上均属于生防菌株,接种试验表明这些菌株能显着提高无菌苗移栽成活率和生物量.植物育种专家通过现代分子生物学技术已经初步阐明植物体存在一些抗逆基因来参与逆境调节,但至少有很多的工作表明植物体的某些抗性特征与内生真菌的存在有关.甚至有专家预测这种内生真菌生物技术可能与传统的抗逆育种和转基因培育技术并驾齐驱.无论是垂直传播内生真菌还是水平传播内生真菌都能增强在生物(病原物)和非生物胁迫(热,盐胁迫等)中的生存能力.内生真菌协同植物适应极端环境有3种假说:①适应性生态位共生(habitat—adapted symbiosis),既一种胁迫环境下植物的内生真菌不能使另一种逆境条件下的植物受益,只能增强原胁迫环境下植物的生理功能;如耐盐植物内生真菌对热胁迫植物无生物学效应;农作物抗病内生真菌对植物耐盐无贡献等.这种植物通过共生真菌的功能来实现抗逆是一种基于基因组间的表观遗传学作用机制(intergenomic epigenetics).②共生体调节(symbioticmodulation),植物,内生真菌双方由于受到周围微环境变化的选择压力,具有选择性地改变另一方的能力.这可能是一种跳一分布于叶片组织间隙的内生真菌菌丝————————卜一EndophyticroyceIiumoccur叶围PhyllospheretInIecellul|dr1yinleavestissues①次生代谢产物②诱导子③铁载体④植物激素⑤侵染定殖…一一一………根-R.ph.陀,根系内生真菌Rootfungalendophytes菌根真菌Mycorrhizalfungi图1植物地上和地下部分组织真菌共生体及可能的生理功能【~]Fig.1Fungalsymbiontsoccurringinabovegroundandbelowground planttissuesandpossiblefunctionstheyplayed①Secondarymetabolites;②Elicitors;③Siderophores;④Phytohormones;⑤Infectionandcolonization;⑥Promotinghost growthandyield;⑦Induceddiseaseresistance;⑧ConferringhostI℃sistancet0abi0ticstress【-36]跃式的协同进化方式,使共生体快速适应环境胁迫.③共生体生活方式的转换(symbioticlifestyleswitching),某些所谓的”病原真菌”,如一些炭疽菌属真菌(Colletotrichumspp.),在一种植物中表现致病,而在另一宿主中却表现互惠共生;病原真菌的单基因突变引起其生活方式的转变,由致病性向互利共生性转化引.但这些假说几乎都基于对现象或通过接种实验来证明,深层次的机理挖掘却很少.在非生物逆境中(如盐胁迫),受内生真菌侵染的植物能更快识别周围的逆境,而且可能通过增强植物组织脯氨酸(proline)的生物合成来消除活性氧的积累_3J.最近有研究者发现一种根际真菌Paraphaeosphaeriaquadriseptata能分泌一种能抑制植物热激蛋白HSP90活力的活性物质,从而提高植物的耐热程度,是否在内生真菌一植物互作体系中也存在类似的作用机制值得深入探讨帅J.目前对于内生真菌的抗病机制的认识还处于起步阶段,但不外乎以下几种途径:(1)分泌抗生物质;(2)生态位竞争;(3)重寄生作用;(4)诱导植物抗性47I引.如禾草内生真菌在离体(invitro)或活体(inplanta,invivo)条件下均能产生一系列生物碱类物质,能有效抗虫;非禾草内生真菌增强植物抗虫能力的发现是源于对虫生真菌的(entom叩athogenicfungi)生态功能的重新认识,某些感染病原虫体的真菌在植物组织中具有内生性特点,对虫体具有很强的抗性.研究最透彻的虫生真菌是Beauveriabassiana,能够与玉米,棕榈,咖啡树和罂粟等共生.B.bassiana能分泌多种代谢产物如bassianin,beauvericin,bassianolide,beauveriolide等,对病原虫体均产生毒害作用.植物体对病原物的抗性有两种不同的机制,即系统获得抗性(systemicacquiredresistance,SAR)和诱导型系统抗病性(inducedsystemicresistance,ISR).SAR反应主要受到病原菌,生防真菌或一些化合物诱导产生,显着特征是水杨酸,茉莉酸和乙烯等物质参与,并伴有病程相关蛋白(pathogenesis—relatedproteins,PR)如几生态28卷丁质酶,葡聚糖酶和多酚氧化酶等的积累,而ISR反应并没有PR蛋白的积累.早前人们对于植物根圈促生细菌(plantgrowthpromotingrhizobacteria,PGPR)引起植物诱导型系统抗病性有深入的认识.近期的研究也表明内生真菌也能诱导植物体产生相似的抗性反应_5卜j,如菌丝分泌的某些小分子蛋白或代谢产物能够作为诱导子引发植物抗性;植物组织内的谷胱甘肽?抗坏血酸代谢途径(glutathione—ascorbatepathway)被激活,从而增强了细胞抗氧化能力引.但内生真菌诱导植物抗性可能有其独特性和复杂性的一面,P.indica和Sebacinavermifel‟a接种烟草的试验表明,这两种内生真菌均能有效促进植物生长,但同时伴随着对烟草天蛾(Manducasexta)抗性能力的下降,结果证明了内生真菌的侵染导致植物体内一种防御蛋白活力的降低一胰蛋白酶抑制剂(trypsinproteinaseinhibitors,TPI)[57j.在镰刀属内生真菌(Fusariumsolani)也发现类似的现象,F.solani接种番茄对病原尖孢镰刀菌(F.oxysporum)的抗性是依赖乙烯合成途径的,但S.vermifera促进烟草生长却是通过抑制乙烯信号转导来实现的.有趣的是,将P.indica 接种大麦后却显现出多重有益效应,能同时抗病,耐盐和提高产量,这项研究结果对传统的观点:”植物抗病,增产不可兼得”提出了挑战.这些有趣的现象提示:在不同基因型的植物一内生真菌互作中所产生的表型可能会发生变化,而且不同的功能性内生真菌进化程度可能存在差别,有些是潜在的病原菌,而有些则是”真正内生菌”(trueendophytes)Lsj.很多报道表明PGPR微生物如假单孢菌属(Pseudomonasspp.)细菌和菌根真菌对根部土传病害的病原菌都具有良好的防治效果,但对植物地上部分病原物的防治能力有一定的局限性引,除非这些微生物能诱导植物系统获得抗性;而内生真菌能稳定存在于植物的整个组织器官中,受到植物体本身机械组织的保护,因此对士传,气传病原物的抗性持久有效.虽然大多数内生真菌增强植物抗病性的报道还多局限于室内盆栽试验,是否在田问试验中也有类似的功效是值得关心的问题.鉴于木本植物内生真菌种群多样性,植物体的抗性反应可能得益于诸多内生真菌发挥生理功能的总和,因此考虑优势内生真菌之问的协同作用可能使植物受益更明显].从大量的研究结果看,植物不同组织器官富含的内生真菌对植物的贡献能力也有差异,这对筛选功能性菌株具有一定的指导意义.根系和叶片组织是植物体受外界生物和非生物因子胁迫最大的部位,因此根系和叶片内生真菌对于保护植物组织免受伤害起着尤为重要的作用.归纳目前的研究结果并加以分析可以看出,内生真菌对植物各组织器官生理效应的影响能力有以下趋势:根系>叶片>茎.植物体根围区域是一个能量和物质交换异常活跃的区域,植物和土壤微生物相互影响,而且根系被认为是一个动态的”碳库(carbonsink)”,营养物质充足,是众多微生物相互竞争的部位j.因此在这种复杂的环境中植物的生存策略之一就是容纳了与之互惠共生的内生真菌;而且根系内生真菌的侵染程度较地上部分要强(extensiveorsystemiccolonization),而叶片内生真菌多以局部侵染为主(1ocallylimitedcolonization).红色不育真菌(SRF,sterileredfungus)和暗色有隔内生菌(DSEs,darkseptateendophytes)是根系非菌根共生真菌的典型代表鲫‟.,某些DSEs甚至能形成类似菌根的侵染结构,国外已经有很多综述文章对这两类真菌的生理生态功能加以评论,虽然存在相矛盾的观点,但不容置疑的是这种在植物根系普遍存在的真菌群体必然扮演着特殊的角色,如Phialocephalasp.能降解根部老化和木栓化的细胞,从而有利于减少植物体能量的耗损.需要指出的是,某些土壤习居菌如一些木霉属(Trichodermaspp.)真菌,镰刀属真菌(Fusariumspp.),也能侵染根系皮层细胞成为无毒”机会性”内生真菌,发挥着与其作为生防菌株类似的功能.可见要严格区分内生真菌和土壤真菌是有一定难度的,长期的选择进化改变了真菌的生活方式.4内生真菌-植物互作体系中的重要分子元件及调控机制当前关于豆科植物菌根共生体和根瘤共生体建立过程中的信号转导研究比较透彻,揭示出植物与微生物形成共生关系具有很大的保守性.研究证实至少有3个植物信号元件参与其中,分别是受体样激酶(DMI2),离子通道(DMI1),依赖钙调蛋白的激酶(DMI3).此外还发现其他重要功能蛋白,如植物质体蛋白和某些核孔蛋白对于真菌和细菌进人根系形成共生关系也至关重要.研究发现日本百脉根(Lotusjaponicus)中存在两种同源的质体蛋白基因(CASTOR和POLLUX)和编码一种核孑L 蛋白的基因NUP85,主要调节质体与胞液9期袁志林等:植物与内生真菌互作的生理与分子机制研究进展之间的离子流量并激活ca信号,被认为是植物与微生物形成内共生体所必需的保守元件..但至今还很少报道有关内生真菌共生体中信号分子的化学本质和维持这种互惠关系的必备元件.在拟南芥突变体Pii.2根部细胞质膜中分离到两个富含亮氨酸重复体(LRR)的蛋白质:At1g13230和A~g16590.其中Atlg13230含有一个内质网滞留信号,A~g16590是一种非依赖磷酸化的信号转导中的受体蛋白,参与识别P.indica的侵染.这两种蛋白对于P.indica发挥生理功能至关重要;但拟南芥的DMI-1突变体却未影响与P.indica的互惠关系,这可能说明植物体已经进化形成多种重要蛋白分子以此来响应不同的微生物类群.与此对应的是,在内生真菌中也存在一些关键的酶基因来执行特定的功能,这是共生体双方相互适应的结果.BarryScott研究小组长期致力于禾草内生菌与宿主的相互关系,阐述了维持这种动态平衡的分子机制,内生真菌Nox基因可以通过调控胞间合成ROS(活性氧)来控制菌丝在宿主中的生物量,从而建立互惠共生关系;Nox的突变体菌株侵染牧草能导致植物严重感病坏死,而且菌丝在组织中生长杂乱无序J.进一步的深入研究发现在E.festucae中的SakA基因编码一种MAP激酶,能调控Nox复合体的活性,一突变体导致ROS增加加;此外在禾草内生真菌中还克隆到一个编码非核糖体多肽合成酶(nonribosomalpeptidesymthetase,NPS)的基因,该基因参与合成铁载体(siderophores),同样NPS基因的突变体导致不能正常合成铁载体,也导致植物的病变坏死,表明内生真菌分泌铁载体能力的缺失改变了共生体铁离子的动态平衡(ironhomeostasis),引起转录水平的重调,最终导致其互惠性向拮抗性转化”J.5内生真菌对宿主表型的可塑性绝大多数内生真菌发挥有益生理功能是在一定条件下实现的,与宿主是诱导型互惠关系.根据内生真菌起源于病原真菌这一观点,Schulz和Boyle等提出了维持植物一内生真菌和谐共生的动态拮抗平衡假说(balanceofantagonisms),既只有内生真菌携带的毒性因子和植物的防御反应处于相平衡状态,才能建立稳定有效的共生体,任何一方的失调就能打破这种平衡关系,导致内生真菌不能成功侵染宿主或使植物感病.诸多因素能够影响内生真菌一植物互作结果,其中宿主基因型和生理状态,真菌基因型,环境因子和土壤的营养水平是最主要的因素.如上所述,Freeman等在1993就发现致病刺盘孢菌(Collectotrichumspp.)的一个单基因突变就能使其生活方式由致病性向互惠内共生性转变.后来证明这个单基因位点编码一种胞外丝氨酸蛋白酶.后来他们又发现,同一种病原菌,接种在不同植物产生的表型却不一样,有的致病,有的却表现互惠共生.特别是在水平传播内生真菌中,表现出了灵活的生活方式,在植物正常生理状态下呈现互惠共生(mutualism),而在宿主遭受逆境胁迫下有表现寄生性(parasitism);在当植物组织衰老死亡时,腐生(saprophytism)生活成为其主要方式.也许正是内生真菌所显现的表型可塑性(phenotypicplasticity)给研究带来了一定难度.6菌根真菌,内生真菌和植物三者之间的关联以上讲述的均是单一的植物一内生真菌互作,但在自然界中,植物体却能够容纳丰富的微生物类群,因此在植物个体组织中也必然存在复杂的植物一微生物,微生物一微生物之间的相互作用.利用免培(cultureindependent)环境PCR方法,提取植株健康根系总基因组DNA,通过真菌特异性引物扩增发现,根系中存在丰。
植物内生菌研究进展及应用展望徐玲玲;单庆红;郭斌【摘要】Endophyte is a kind of microbes,which exists in plants and is closely related to plant growth.Researches have been carried out and a lot of new progresses have been made,and some results have been apphed in agricultural production.The research progress of active substances of endophyte and the relationship between endophytes and their host plants in recent years were summarized.Moreover,the application prospect of the endophytes in the future was forecasted.%植物内生菌是存在于植物内部与植物密不可分的一类微生物.随着研究的不断深入,人们在内生菌活性物质的研究、内生菌与宿主的关系等方面取得了新的进展,并已实现了内生菌在农业生产等领域的应用.该研究综述了近年来植物内生菌活性成分以及内生菌与宿主植物之间相互关系的研究进展,并对内生菌应用的前景进行了展望.【期刊名称】《安徽农业科学》【年(卷),期】2013(041)013【总页数】4页(P5641-5643,5709)【关键词】内生菌;活性物质;宿主植物;进展【作者】徐玲玲;单庆红;郭斌【作者单位】西安文理学院生物技术学院,陕西西安710065;西北大学生命科学学院,陕西省生物技术重点实验室,西部资源生物与现代生物技术省部共建教育部重点实验室,陕西西安710069;西北大学生命科学学院,陕西省生物技术重点实验室,西部资源生物与现代生物技术省部共建教育部重点实验室,陕西西安710069【正文语种】中文【中图分类】S182植物内生菌泛指那些在其生活史中的某一阶段生活在植物组织内,对植物组织不引起明显病害症状的微生物,包括那些对宿主暂时没有伤害的潜伏性病原微生物和菌根菌[1]。
生物技术进展2022年第12卷第1期17~26Current BiotechnologyISSN 2095‑2341进展评述Reviews植物内生固氮菌及其固氮机理研究进展王玉虎,赵明敏,郑红丽*内蒙古农业大学园艺与植物保护学院,呼和浩特010019摘要:氮素是植物生长必不可少的元素,植物内生固氮菌不仅能够在植物体内产生氮素以供植物利用,而且在自然界氮素循环过程中发挥积极作用,对农业可持续发展具有重要意义。
近年来,植物内生固氮菌逐渐成为研究热点。
由植物内生固氮菌的发现、作物共生、侵入途径、固氮机理、促生作用机制等方面系统地综述了植物内生固氮菌的研究进展,探讨了植物内生固氮菌新的研究思路以及一些尚未解决的问题,以期为植物内生固氮菌及生物固氮研究提供参考。
关键词:内生固氮菌;固氮酶;固氮机理;生物固氮DOI :10.19586/j.2095‑2341.2021.0126中图分类号:Q939.11+3文献标志码:AResearch Progress on Plant Endophytic Nitrogen‑fixing Bacteria and Their Nitrogen Fixation MechanismWANG Yuhu ,ZHAO Mingmin ,ZHENG Hongli *College of Horticulture and Plant Protection ,Inner Mongolia Agricultural University ,Hohhot 010019,ChinaAbstract :Nitrogen is an essential element for plant growth.Plant endophytic nitrogen -fixing bacteria can not only produce nitrogen in the plant body for plant utilization ,but also play an active role in the natural nitrogen cycle ,which has important significance for the sustainable development of agriculture.The research on endogenous nitrogen -fixing bacteria has gradually become research hotspot in recent years.This article systematically reviewed the research progress of plant endophytic nitrogen -fixing bacteria from many aspects ,such as the discovery of plant endophytic nitrogen -fixing bacteria ,crop symbiosis ,invasion pathways ,nitrogen -fixing mechanism ,and growth -promoting mechanism.In addition ,new research ideas of plant endophytic nitrogen -fixing bacteria and some unresolved problems were discussed.This paper was expected to provide reference for research on plant endophytic nitrogen -fixing bacteria and biological nitrogen fixation.Key words :endophytic nitrogen -fixing bacteria ;nitrogenase ;nitrogen fixation mechanism ;biological nitrogen fixation植物内生固氮菌(endophytic diazotroph )是指与宿主植物进行联合固氮并且定殖于植物体内的一类微生物[1]。
药用植物内生菌在天然药物开发中的研究进展我国药用植物资源十分丰富,仅目前已知的药用植物种类约有12000 种[1],同时,具有地域特征明显、入药部位及形式多样、药用成分变化大等特点。
因药用植物存在活性成分含量低、生长周期长等特点,依靠传统栽培再开发生产天然活性药已不能满足人们的健康需求。
而与健康植物相伴生的植物内生菌,已被证明能影响宿主植物中天然活性物质的产生。
因此,在促进利用药用植物开发天然药物生产中更具有独特优势。
1 药用植物内生菌药用植物内生菌作为植物的共生体,伴随宿主植物生活史中的一定阶段或全部阶段而生存,是存在于健康植物的各种组织内部且不引发宿主植物感染的微生物[2],其包含内生细菌、内生真菌、内生放线菌。
多项研究已证实,药用植物内生菌对宿主植物生长具有促进作用[3],可增强抗逆性[4]及影响药效活性物质合成[5]的功效,并在此基础上开发出用于生物防治、天然药物生产等相关微生物制剂[6]。
2 内生菌影响药用植物产生药效活性化合物的机制2.1 内生菌产生药用活性成分近年来,科研人员不断从多种药用植物中分离出内生菌,并在培养物中发现含有与宿主植物相同或相似的活性成分。
其中,最著名的是Stierle[7]从短叶红豆杉中分离得出内生真菌(Taxomyces andreanae),并通过体外培养试验证实,和宿主植物相同其发酵液中,可产生抗肿瘤活性成分物质——紫杉醇。
同时,黄酮、生物碱、苯丙素类等抗肿瘤活性成分也相继被研究者们从其他内生菌发酵产物中提取得到。
另有一些内生菌合成药用活性物质能力,则需依靠宿主植物的内环境得以实现[8]。
喜树碱(Camptothecin,CPT)为抗癌物质,体外条件下发现喜树树皮内生的腐皮镰刀菌(F.solani)几乎无喜树碱合成能力,原因是该菌虽然能产生喜树碱的前体物质,但由于体外缺少来自宿主植物提供的异胡豆苷合成酶,因而不能有效合成喜树碱,这也是体外培养条件下,较多内生菌活力不稳定,甚至逐步消失,始终无法实现产生大量活性物质进而应用于工业化生产的原因之一[9-10]。
植物内生菌活性代谢产物研究进展一、本文概述植物内生菌是一类在植物组织内部定殖,但不引起明显病害症状的微生物。
近年来,随着生物技术的发展和对植物微生物互作研究的深入,植物内生菌及其活性代谢产物的研究已成为生物科学和农业科学领域的热点之一。
这些活性代谢产物在植物抗病、抗逆、生长调节等方面具有广阔的应用前景,对于促进植物健康生长、提高农作物产量和品质,以及保护生态环境等方面具有重要意义。
本文旨在综述近年来植物内生菌活性代谢产物的研究进展,包括内生菌的分离鉴定、活性代谢产物的种类与功能、作用机制以及应用前景等方面。
通过对相关文献的梳理和评价,本文旨在为深入研究和利用植物内生菌活性代谢产物提供理论依据和技术支持,促进植物内生菌资源的开发和利用,推动农业可持续发展。
二、植物内生菌活性代谢产物的种类与特性植物内生菌作为一种独特的微生物资源,其活性代谢产物种类丰富,特性各异,具有极高的研究价值和应用潜力。
这些代谢产物包括酶、抗生素、生物碱、黄酮类、多酚类、萜类化合物等。
这些化合物不仅具有抗菌、抗病毒、抗真菌等生物活性,而且在植物生长调节、抗逆胁迫、生态防御等方面发挥着重要作用。
酶类代谢产物:植物内生菌能合成多种水解酶、氧化还原酶、裂解酶等,这些酶在植物体内参与了多种生理生化过程,如分解有机物、促进养分吸收、提高植物抗逆性等。
抗生素类代谢产物:这类代谢产物具有抗菌、抗病毒、抗真菌等生物活性,是植物内生菌保护植物免受病原菌侵害的重要手段。
一些抗生素类代谢产物还具有抑制肿瘤细胞生长、诱导细胞凋亡等生物活性,为新药研发提供了丰富的候选物质。
生物碱类代谢产物:生物碱是一类具有复杂结构的含氮有机化合物,具有多种生物活性,如抗菌、抗病毒、抗寄生虫、抗肿瘤等。
一些生物碱还具有显著的生理活性,如提高植物抗逆性、促进植物生长等。
黄酮类和多酚类代谢产物:黄酮类和多酚类化合物是植物内生菌中常见的代谢产物,具有抗氧化、抗炎、抗肿瘤等多种生物活性。
生态环境学报 2010, 19(7): 1750-1754 http://www.jeesci.com Ecology and Environmental Sciences E-mail: editor@jeesci.com
基金项目:国家“十一五”科技支撑计划项目(2006BAI06A16);上海市科委中药现代化专项(07DZ19723);国家自然科学基金项目(30873386) 作者简介:姚领爱(1978年生),男,博士研究生,主要从事中药资源方向的研究。E-mail: yaolingai@sohu.com *通讯作者:黎万奎,副研究员。E-mail: bio5210@126.com 收稿日期:2010-06-11
植物内生菌与宿主关系研究进展 姚领爱,胡之璧,王莉莉,周吉燕,黎万奎* 上海中医药大学中药研究所,上海 201203 摘要:植物内生菌(endophyte)是指存活于健康植物组织内部,而又不引发宿主植物表现出明显感染症状的微生物类群,主要包括真菌、细菌和放线菌。其在植物体中的分布具有普遍性、多样性的特点。在目前研究过的所有植物中均发现有内生菌,它们可存在于植物的根、茎、叶、花、果实等各个部位。研究发现内生菌除了随植物遗传进行传播外,还可通过多种途径对宿主植物进行侵染,比如可以以内生菌体或孢子形式通过变形、吸器、或渗透等途径侵染植物,也可以通过分解植物表皮细胞壁或通过各种自然开口(包括侧根发生处,气孔,水孔等)或伤口(包括土壤对根的磨损,病虫对植物的损害及收割多年生植物造成的伤口等)等传播途经进入植物。内生菌由于与宿主植物长期共处,进而形成了一种复杂、特殊的关系。它们有的是互利共生关系,而有的是无害或微害寄生关系。两种关系可随多种因素变化而相互转化。本文主要从内生菌在宿主植物中的分布特点、侵染特性及与宿主植物共处方式等方面,对近十年来植物内生菌与宿主关系的研究进展进行综述和展望,以期为植物内生菌资源开发研究提供参考。 关键词:植物内生菌;宿主;分布;侵染;共生;寄生 中图分类号:Q948 文献标识码:A 文章编号:1674-5906(2010)07-1750-05
植物内生菌(endophyte)是指存活于健康植物组织内部,而又不引发宿主植物表现出明显感染症状的微生物类群,主要包括真菌、细菌和放线菌[1-3]。国内外有关内生菌的研究已有一百多年的历史,但直到二十世纪九十年代,尤其在有学者发现与植物(宿主)长期共存的部分内生真菌能够产生与宿主相同或相似的活性化学成分后,才得到重视,并进而成为研究热点。大家纷纷转而进行菌株筛选,试图筛出一些能产生重要活性物质或新化合物的菌株,进而对其开发利用。然而由于对内生菌的特性及其与宿主植物的关系缺乏足够的认识,目前上述研究多少有些盲目性。本文主要就近年来国内外对内生菌与宿主植物关系的研究进行归纳总结并进行展望,为植物内生菌资源开发研究提供参考。 1 内生菌在宿主植物中的分布特点 内生菌在植物体中的分布具有普遍性、多样性的特点。在目前研究过的所有植物中均发现有内生菌[4,5],可存在于植物的根、茎、叶、花、果实等各个部位[6,7]。各植物体中存在的内生菌的数量、种类与植物的种类、生存环境、生长阶段、营养供给及两者的基因型有密切关系。不同地区、不同环境下生长的同一种植物组织中存在的内生菌种类和数目均有较大的差异,即使同一地区的同一植物不同组织部位中内生菌的数量和种类也不相同[8,9]。一般来说,生长在热带、亚热带地区的植物与生长在较干燥、寒冷环境下的植物相比,前者中内生菌的数量和种类多;生长速度快的植物比生长速度慢的植物中内生菌数量多;生长时间长的植株比生长时间短的植株中内生菌数量多[7]。孙剑秋等[8]针对从北
京植物园4科6种药用植物的1144个组织块中分离到的973株内生真菌进行分析,发现每种植物中含内生真菌5~8种不等,其中烟草赤星病菌(Alternaria alternata)为6种药用植物共有菌株,而
Microsphaeropsis conielloides菌株仅在杜仲中发现;内生真菌在6种植物均有较高的定殖率(47.9%~63.1%)和分离率(0.70~0.93),随着枝条年龄的增长,枝条中的内生真菌定殖率和分离率呈明显递增趋势,且明显高于叶片。 2 内生菌对植物的侵染特性
内生菌可通过多种途径对宿主植物进行侵染。可以以内生菌体或孢子形式通过变形、吸器、或渗透等途径侵染植物[1,10]。如Hashiba等[11]通过将从白
菜根部分离的根际真菌与白菜共培养,发现真菌可从植物叶片的外表皮渗入,进入内皮,并在内皮细胞中生长。内生菌也可以通过分解植物表皮细胞壁或通过各种自然开口(包括侧根发生处,气孔,水孔等)或伤口(包括土壤对根的磨损,病虫对植物的损害及收割多年生植物造成的伤口等)等传播途经进入植物[7,10]。
有关内生菌对植物侵染特性的观点,已得到许姚领爱等:植物内生菌与宿主关系研究进展 1751 多实验论证。马同锁等[6]在研究蔬菜内生菌时发现,将蔬菜种子分别播种于无菌基质、花盆、大田等不同环境下,在其生长的不同阶段,体内所含的内生菌差异很大,其中无菌基质中生长的蔬菜内生菌只有数量的增加并无种类的增多,而在花盆和大田中的蔬菜中内生菌的种类和数量均有增加。本实验室在进行内生真菌侵染实验时也发现,无菌苗与特定内生菌共培养一段时间后,从培养苗中能分离出所研究的内生真菌。 不过,内生菌对植物侵染(或随种子进行垂直传播)、在植物体细胞内或细胞间定殖以及内生菌孢子萌发、菌体生长繁殖和代谢等过程均受宿主植物的表型和基因型影响。且需要合适的温度、湿度、光照、地理位置、植被等[12-15]环境条件及合适碳、氮等营养条件。Hashiba[11]发现用市场上购买的园艺营养土栽培卷心菜,其内生菌Heteroconium chae-tospira生长受到抑制,而用含0.1%葡萄糖的泥炭土栽培时其内生菌定殖率可高达75%。 3 内生菌与宿主的共处方式 内生菌与宿主在长期共处中形成了一种复杂、特殊的关系。它们有的是互利共生关系,而有的是无害或微害寄生关系。两种关系可随多种因素变化而相互转化。在共生时,不同内生菌对其宿主专一性差别较大,有的内生菌只与某种植物共生,而有的则可同时与多种植物共生。 3.1 内生菌与宿主的互利共生关系 研究表明许多内生菌由于与宿主的长期共处,与后者形成互利的共生关系[16]。一方面,宿主为内生菌提供充足的营养和适合的生长环境促进其生长。如Rudrappa等[17]发现,植物组织内充足的水分及特定的分泌物产生,有利于微生物黏附在一起形成微生物在宿主内赖于生存的特殊结构—生物薄膜(biofilm),进而促进内生菌的生长;易婷等[16]报道,如宿主长时间处于各种逆境中,反过来也能大大提高biofilm中细菌的各种抗性及生存能力。另一方面,内生菌在宿主应对外界环境的应激耐受性[5,18,19](包括抗旱、抗病虫害及对病原体拮抗等)、宿主植物的生长、宿主植物中的有效活性成分的产生等方面也产生重要影响。 3.1.1 增加宿主应激耐受性 宿主应激耐受性主要包括抗旱、耐热、抗病虫害及对病原体拮抗等。研究发现,即使不是所有,也应是大部分的内生真菌增加了其宿主的应激耐受性。至少有部分植物在没有内生真菌存在的情况下,因不能耐受居住地的各种生物或非生物的应激而无法生存[5]。相反有大量证据证明内生菌与植物的共生协助了早期植物在一些环境恶劣、贫瘠的土地上的生存[20]。当植物感染内生菌后,其针对某种应激的耐受性将大大加强,并能明显增加自身存活率。例如,Rodriguez [5,19]报道一种非沿海地生长的
植物在感染黄色镰刀菌(Fusarium culmorum)后,具有了很强的耐盐性,并能在沿海地存活。感染炭疽菌属内生真菌Colletotrichum protuberata后宿主植物具有了很强的耐热性[5,19]。
内生菌增加宿主应激耐受性的例子有很多,例如杜永吉[21]等将来自于高羊茅的内生真菌
Neotyphodium typhinum通过注射菌液法和菌丝塞入法回接至2种高羊茅宿主中,移栽后发现,含菌植株水分利用效率远高于不含菌植株,同时前者叶片相对含水量高于后者,具有更强保水、抗旱能力。Herre[1] 报道叶内生真菌(foliar endophytic fungi)和
枝菌根菌(arbuscular mycorrhizal fungi)普遍具有减少病原菌棕榈疫霉(Phytophthora palmivora)对叶
子损伤的作用。Hashiba [11]发现,真菌Heteroconium chaetospira可使卷心菜苗根棒状硬化和黄萎病黄叶的发生概率减少52%~97%。 虽然众多研究表明,内生真菌能增加宿主对某种应激的耐受性。然而宿主这种耐受性增强的机制目前还不甚明了.一些学者从不同角度进行了研究和报道,他们认为:(1)内生真菌可通过增加宿主生物氧化及减少对水的消耗[4]来增强宿主的抗旱
能力;(2)可通过产生抗生素或其它次生代谢物,增加自身的竞争优势作用[22-23],及诱导或增加宿主
内的防御机制来杀死或抑制病原菌[1];(3)通过增加宿主对矿物质、重金属以及有机质的吸收来提高宿主对恶劣环境的适应性[24];(4)通过产生生物
碱等对昆虫具毒性的次生代谢物来抑制昆虫生长发育甚至促其死亡,进而控制昆虫的蚕食[7]。
3.1.2 促进宿主的生长 内生菌与植物互利共生关系的一个重要体现就是能促进宿主的生长。Hashiba等[11]和Narisawa
等[25]发现,感染内生菌Heteroconium chaetospira的白菜苗干重可增加3倍左右。内生菌促生作用的方式有多种,它们有的通过联合固氮来发挥促生作用;而有的则通过产生生长素、赤霉素以及细胞激动素等促植物生长物质来发挥其促生作用;有的甚至还可通过改变根部周围的环境来缓解植物根部的非生物压力,比如在对从向日葵根部分离出的一株根瘤菌研究时发现,其可以通过分泌胞外多糖来改变土壤结构,从而增加植物根部对环境的适应性,促进植物的生长[16]。
3.1.3 促进宿主次生代谢物的产生 目前许多报道称,内生菌可增加宿主次生代谢物的生成量。Mucciarelli等[26]对薄荷无菌苗和感染