工程结构脆性断裂事故分析
- 格式:docx
- 大小:20.35 KB
- 文档页数:8
近年来国内桥梁坍塌事故总结 (2)一、宜宾小南门桥 (2)二、辽宁盘锦田庄台大桥垮塌 (8)三、贵州贵阳小尖山大桥垮塌 (11)四、贵州遵义珍珠大桥垮塌 (14)五、京深高速公路桥坍塌事故 (15)六、岷县洮河大桥坍塌事故 (16)七、辽宁202国道熊岳大桥 (18)八、杭州运河艮山桥 (19)九、北京顺义桥梁测重时突然坍塌 (20)十、江苏常州公路大桥突然倒塌................................................... 错误!未定义书签。
十一、山西运煤超载,60米桥梁坍塌.......................................... 错误!未定义书签。
十二、山西临汾80吨超载货车压断桥......................................... 错误!未定义书签。
十三、湖南省湘西凤凰县堤溪沱江大桥....................................... 错误!未定义书签。
十四、208国道太原市小店区段东柳林桥.................................... 错误!未定义书签。
十五、丹拉高速包头入口引桥倾覆............................................... 错误!未定义书签。
十六、九江大桥垮塌事件............................................................... 错误!未定义书签。
十七、黑龙江省铁力市西大桥....................................................... 错误!未定义书签。
十八、津晋高速公路坍塌事件....................................................... 错误!未定义书签。
塑料管道工程事故案例分析中山环宇实业有限公司广东工业大学二〇一〇年十二月1.2002年5月14日,东莞某公司反映其客户安装锚牌日标给水管件 25mm ×16mm异径三叉时破裂。
事故原因:由于运输装卸不规范,导致管件受到外力的损伤,产生个别细微裂痕线。
在施工前,操作人员没有认真检查管件是否完好而继续使用。
进行粘接过程中,操作人员施加了较大的外力进行套接,原已有裂痕的管件受到因此突然增加的外力而迅速破裂。
2.2002年4月13日,东莞某公司使用英标80mm圆底存水弯(A650B)开箱时爆裂,英标80mm直角三通(A715)和80mm90°弯头(A705)涂好胶水连接时爆裂。
事故原因:由于运输或装卸不规范,较大的外力施加在A650B、A715、A705产品上,致使A650B承口部位缺裂,A715、A705表面有明显的击打痕迹,且承口出现断裂现象。
3.某花园住宅小区供水压力泵出口处,安装的2条Ф200mm的PVC-U管道,其中1支管道安装了两个弯头,在系统开泵试压时两个弯头同时出现破裂。
(照片37)事故原因:涂溶接剂时,由于没有正确选择合适毛刷,致使管件的承口与管连接处接触面无溶化的现象,使连接效果不佳。
同时,管道没有安装支承固定,而且管道接近水泵压力出水口,受到振动和水锤冲击等作用导致弯头破裂。
4.2002年3月12日,三角镇某电镀厂在电镀车间使用YS50-10 PVC-U给水管材以接自来水供水,使用1~3个月后管材外壁逐渐出现爆裂漏水。
2001年12月25日曾出现一次,至2002年3月止已有三、四次同类情况发生。
(照片31)事故原因:电镀厂的电镀液有较高浓度的三氯化铁及其它化学物质,事故管段全部发生于电镀池旁边的管道渠内,沟内有一定量的电镀污水,管材长期浸泡在含有腐蚀性液体的环境中,造成管材逐步被氧化腐蚀,在管道运行压力的作用下而发生爆裂漏水现象。
5.2002年3月25日,茂名某公司在加压泵旁的连接管上安装给水配件110mm90°三通和110mm90°弯头,在使用2~4个月后有多处弯头和三通转弯位置出现爆裂或断裂现象。
建筑工程事故分析教案第1 次课教案第2 次课教案第3 次课教案第4 次课教案第5 次课教案第6 次课教案第7 次课教案第8 次课教案第9 次课教案第10 次课教案第11 次课教案第12 次课教案第13 次课教案第14 次课教案第15 次课教案第16 次课教案第17 次课教案第18 次课教案第19 次课教案第20 次课教案第 1 次课教案 2 月 14 日第 1周星期2章节绪论及工程一中课型讲授教时2引例分析讨论教学目的教学重点教学难点更新补充删减内容教具及准备工作备课参考资料课外作业内容及提示通过质量事故视频和相关图片了解建筑工程质量事故造成的危害PPT、相关案例互联网相关资料无授课主要内容及板书设计§绪论一、剧场工程质量事故二、百货大楼质量事故教学札记教学过程与内容Ⅰ、导入通过视频内容引发学生讨论思考工程质量问题的严重性。
启发学生思考,联系生活实践,总结你所认为的工程质量问题并进行讨论。
工程质量问题不仅影响建筑工程的正常使用,严重的还将导致工程报废,给国家财产造成巨大损失甚至危及人民的生命平安。
因此,对工程质量存在的问题,采取有效的措施加以预防和处理,是一个不可无视的问题。
Ⅱ、新课讲述:绪论建筑工程质量事故案例鉴析1、某剧场挑台平面和柱截面配筋如图〔a〕、〔b〕所示。
在 14教师学生行教行学为法为法视频播观看思考放,启发、讨论发言引导,教师总结引导学生认真听讲关心自己关注自身所学专业情况根钢筋混凝土柱子中有13 根有严重的蜂窝现象。
具体情况是:柱全事故介绍了解部侧面面积142m2,蜂窝面积有7.41 m2,占 5.2%;其中最严重的是K4,仅蜂窝中露筋面积就有0.56 m2。
露筋位置在地面以上1m 处,正是钢筋的搭接部位〔图〕.混凝土灌注高度太高。
7m 多高的柱子在模板上未留灌注混凝土的洞口,倾倒混凝土时未用串筒、留管等设施,违反施工验收标准中关于“混凝土自由倾落高度不宜超过2m〞及“柱子分段原因分析理解灌注高度不应大于〞的规定,使混凝土在灌注过程中已有离析现象。
储运与建筑工程学院《桥梁工程》案例分析简谈桥梁事故发生的原因与教训学生姓名:伍玮学号:12061210专业班级:土木13-2班分数:2016年5月2日简谈桥梁事故发生的原因与教训摘要:回顾近年来我国桥梁事故发生的典型案例,从设计、施工、营运管理、水文地质和自然灾害等方面分析事故发生的原因;归纳和总结了事故带来的教训:认识的错位是引发桥梁事故的思想根源,法制的缺陷是造成桥梁事故的重要因素,科学规范的违背是酿成桥梁事故的主要根源、历史的欠账是发生桥梁事故的先天隐患、腐败的黑洞是导致桥梁事故的罪魁祸首。
从培训教育、严格科技规范、健全法规制度、保障资金投入、加强维护等方面提出预防桥梁事故发生的对策,得出一切桥梁事故都是可以预防的结论。
关键词:桥梁事故;典型案例;原因分析;教训;对策0 引言桥梁安全,关系到人民生命财产安全和社会稳定。
近年来,我国桥梁建设飞速发展,据统计,至2006年末,我国现有各类现代桥梁53.36万座,其中公路桥34万多座,铁路桥18万座。
随着桥梁建设的增多和众多桥梁的超期超载服役,不断发生跨桥、损桥事故,造成许多人员伤亡和巨大财产损失,给人们敲响了警钟。
认真反思桥梁事故的发生,可以把一次次灾难变成一本本教科书,变成源源不断的精神财富,有助于避免类似灾难重复发生。
回顾我国近几年桥梁坍塌事故的发生概况,总结其发生的原因和教训,提出了预防桥梁事故发生的对策,无疑对今后的桥梁建设管理是有好处的。
1 近年来我国桥梁事故概览1998年9月24日,招宝山大桥主梁断裂;1999年1月4日,綦江彩虹桥垮塌,死亡40人,轻重伤14人;2000年5月27 H,海宁在建新虹桥突然倒塌;2000年11月27日,深圳盐坝高架桥施工近完工时坍塌;2001年9月25日,京福高速公路三明连接线梅列桥(以下简称梅列桥)模板支架在加载预压时垮塌,造成6人死亡、20人受伤;2001年11月7日,宜宾南门大桥吊杆与桥梁联结部位突然断裂,导致两端桥面塌落,一辆公交大客车和一辆出租车掉入长江,2人死亡2人受伤;2001年11月24日下午,汕梅高速公路清潭至畲江段兵营子大桥在架设过程中桥梁突然失去平衡,长30 m重达65 t 混凝土主桥梁随即砸向安全架而一起倒塌,6人当场死亡,1人重伤;2001年11月29日长沙市捞刀河镇发生一起拆除铁路桥梁倒塌事故,1人死亡,3人受伤;2001年12月21 El,隆叙铁路泸州大桥,工人在位于长江中心的2号桥墩捆钢筋外膜时,江面上突然吹起了大风,致使桥墩上的钢筋受力发生倾斜坍塌,2人死亡12人受伤;2004年6月10日,辽宁盘锦田庄台大桥垮塌,一货车、一轿车和一辆4轮农用车一同落入河中;2004年9月7日三渡水大桥垮塌,大桥的新桥和旧桥的第三、四、五跨桥面均已垮塌,掉进金马河;2004年12月13日,广东增槎路施工的高架桥支架坍塌,造成2人死亡,7人受伤;2005年2月20日三峡移民复建工程焦家湾大桥施工的石拱桥整体坍塌,20多人倒在血泊中,造成11人死亡;2005年4月7日,江苏省吴江市梅堰镇一座桥梁突然坍塌,桥面上的行人和农用拖拉机均掉入河中;2005年8月13 H,强降雨导致抚顺大桥坍塌,一台经行此桥的货车因此落入水中;2005年12月14日,正在施工的贵州省贵阳市至开阳县高等级公路小尖山大桥发生垮塌事故,5人死亡,15人受伤;2005年元月15日,广西北海市银滩中路人口段桥梁发生了10多根梁侧翻的事故;2006年13日,内蒙古伊金霍洛旗乌兰木伦镇境内发生一起桥梁施工塌方事故,造成3人死亡;2006年4月28日,湖南省涟源市白马镇泉塘村溢洪大桥坍塌,1人死亡,2人重伤;2006年5月16日上午10时,甘肃省道306线岷县县城以北500 In处的北门洮河大桥突然垮塌。
原创小刘-LZP08-07原文一、“彗星号”大型客机失事惨剧促发金属断裂行为研究史的开端1954年1月10日,一架英国海外航空公司(BOAC)的一架“彗星”1型客机(航班编号781号)从意大利罗马起飞,飞往目的地是英国伦敦。
飞机起飞后26分钟,机身在空中解体,坠入地中海,机上所有乘客和机组人员全部遇难。
这次事故震惊了全世界,英国成立了专门的调查组调查事故。
该型客机停飞两个月。
就在英国海外航空公司总裁保证该机型不会再出事并复飞后不久,另一架“彗星”型客机也发生了同样的空中解体事故,坠毁在意大利那不勒斯附近海中。
在此一年的时间里,共有3架“彗星”型客机在空中先后解体坠毁。
此惨剧令当时英国为之骄傲的“彗星号”大型客机寿终正寝,也促发了科学家研究低应力断裂的“裂纹力学”,此即断裂力学诞生的由来。
“彗星号”大型民航客机对事故的调查发现,“彗星”客机采用的是方形舷窗。
经多次起降后,在方形舷窗拐角(直角)处会出现金属疲劳导致的裂纹(裂隙)。
正是这个小小的裂纹引起了灾难事故。
后来,所有客机舷窗均采用圆形或设计有很大的圆角,以减小应力集中,提高金属疲劳强度;延缓疲劳裂纹的发生,此系后话。
进一步研究证明,裂纹的存在,引起飞机结构发生低应力破坏,通行的设计准则遇到极大挑战。
这个研究孕育了断裂力学的诞生,并促进了其快速发展。
到1957年,美国科学家欧文(G.R.Irwin)提出应力强度因子的概念,从此线弹性断裂力学基本建立起来。
断裂力学诞生并用于结构设计后,源于裂纹引发的灾难事故大大减少,可见断裂力学是破解结构低应力破坏的金钥匙。
再看一组图片所有的工程结构都是由工程材料制造而成;所有的断裂事故,均源于材料的微、细、宏观的损伤和断裂。
材料与结构的损伤断裂引发的事故实在太多。
二、材料的力学性能参数:强度、塑性、韧性、脆性、弹性从应力应变曲线上也可看出脆性或韧性材料材料的力学性能指的是材料在给定的外界条件下所表现的行为,完全由材料的微观组织结构决定。
广东九江大桥坍塌事故引发的争论1.主题词水平冲击,脆性破坏,设计,质询,安全隐患2.事件背景2007年6月15日,清晨5时多,广州九江大桥现场。
在漫天迷雾中一艘运沙船偏离了航道,驶向非通航的引桥。
瞬间,运沙船剧烈地撞向九江大桥桥墩,随着一声巨响,桥上的灯全灭了,紧接着又一声巨响,靠南海九江这边的桥面首先断了下去,直接砸向了运沙船。
10余秒种后,随着一声巨响,另一侧的桥面也断裂倾斜到江中。
在撞桥前,运沙船上的高音喇叭还在喊,“危险,紧急逃生……”然而,就在撞上的一瞬间,尽管运沙船做了紧急避让,向旁偏了一下,却仍然在水流的作用下将桥墩铲断……事故直接导致200米桥面坍塌,桥面上有4辆汽车坠入江中,7名司乘人员和2名巡桥工人失踪。
运沙船上的10多人落水后逃生,其中2人受伤。
专家对事故进行的技术评估尚未完成,但广东省交通主管部门一位负责人对媒体表示说,可以肯定这是一次意外事故,肇事船只未遵守航行标准,驶入非主航道造成事故发生。
九江大桥是一座斜拉桥结构的桥梁,主桥由两孔高160米的独塔混凝土斜拉桥组成,按照设计标准通航能力为3000吨。
该运沙船载重为2800多吨,船体自重1000多吨,但是水流湍急,船顺流速度超过每秒3米,其撞击力超过1000吨,而桥墩的水平防撞能力只有300吨,因此造成了事故。
图1 九江大桥事故现场3.媒体报道中提出的疑问和质询事故发生后,媒体在报道事件的同时,也纷纷刊登出评论,并针对事故原因和背后的问题提出一些疑问和质询。
大连晚报6月18日刊登了一篇新闻品评,题为“九江大桥为何如此不堪一击”。
针对广东省高速公路有限公司一位负责人关于“考虑到非通航孔被撞的可能性不大,其防撞力相对较低”的说法,评论指出,可能性不大并非没有可能,俗话还说“不怕一万,就怕万一”,按照常识,引桥的绝大部分应该是在地面上的,引桥一旦入水其桥墩和主桥墩的防撞力就没有什么区别,因为水面不同于路面,可以设置护栏和障碍。
部分桥梁垮塌事故分析文本摘要:本文细数了国内外多座桥梁严重垮塌事故,其事故成因有认知不足、设计施工缺陷、自然灾害、管理养护不周等。
前事不忘,后事之师,这些事故提醒着我们桥梁工程师要以高度的责任感来完成桥梁的建设,确保桥梁质量安全。
关键词:魁北克大桥塔科马大桥九江大桥1、Quebec Bridge事故原因:设计考虑不足,构件失稳位于加拿大的圣劳伦斯河之上的Quebec Bridge本该是著名设计师Theodore Cooper的一个真正有价值的不朽杰作。
作为当时世界上最长跨度的钢悬臂桥,库帕忘乎所以地把大桥的主跨由490米延伸至550米,以此节省建造桥墩基础的成本。
然而就在这座桥即将竣工之际,悲剧发生了。
1907年8月29日,大桥杆件发生失稳,突然倒塌,19000吨钢材和86名建桥工人落入水中,只有11人生还。
由于库帕的过分自信而忽略了对桥梁重量的精确计算,导致了一场事故。
1913年,这座大桥的建设重新开始,然而不幸的是悲剧再次发生。
1916年9月,中间跨度最长的一段桥身在被举起过程中突然掉落塌陷。
结果13名工人被夺去了生命。
事故的原因是举起过程中一个支撑点的材料指标不到位造成的。
1917年,在经历了两次惨痛的悲剧后,魁北克大桥终于竣工通车,这座桥至今仍然是世界上最长的悬臂跨度大桥。
2、Tacoma Narrows Bridge事故原因:理论认知有限,风毁塔科马海峡大桥位于美国华盛顿州的塔科马海峡。
第一座塔科马海峡大桥于建于1938年11月到1940年7月,中跨853m。
在建造最后阶段,人们就发现大桥在微风的吹拂下会出现晃动甚至扭曲变形的情况,司机在桥上驾车时可以见到另一端的汽车随着桥面的扭动一会儿消失一会儿又出现的奇观。
1940年11月7日,大桥在远低于设计风速的19m/s(相当于八级大风)风速下发生强烈的风致振动,桥面经历了70min振幅不断增大的反对称扭转振动,最终导致桥面折断坠落到峡谷中。
钢结构事故分析钢结构的事故及分析摘要:钢结构虽然有很多优点,但是其自身不可回避的缺点也给工程实际带来了许多事故,为此文章对钢结构的事故种类进行了总结分析,将钢结构事故分为了材料事故、变形事故、失稳事故、疲劳破坏事故、腐蚀事故、火灾事故等。
并且对事故原因防治措施提出了合理建议。
关键词:钢结构、事故、作为一种新型的结构体系,钢结构以其强度高、自重轻、塑性和韧性好、抗震性能优越、工厂化生产程度高、装配方便、造型美观、综合经济效益显著等一系列优点,受到国内外建筑师和结构工程师的青睐,在高层、大跨建筑领域显示出其无与伦比的优势。
我国国内建筑领域的钢结构也同其它发达国家一样,呈现出蓬勃发展的势头,取得了很大成就。
但任何事物都有着它的两面性,钢结构也有其自身的缺陷和不足: 稳定性差、脆性断裂、耐火性能不理想、不具耐腐蚀性。
由此引发的工程事故也是屡见不鲜。
钢结构事故造成了巨大的经济损失和人员伤亡,其中较为严重的有:1907年,加拿大魁北克桥(Quebec)在架设过程中由于悬臂端的杆件失稳,导致桥上75人遇难;1960年,罗马尼亚布加勒斯特的一座直径为90m的圆球面单层网壳因失稳发生倒塌事故;1978年,美国哈特福特城的体育场网架因为压杆弯曲而坠落到地面;2021年,上海环球金融中心在施工中发生火灾事故,使整个钢结构性能被破坏。
而2021年,美国纽约世贸中心大楼在9.11事件中的轰然倒塌,这场恶梦更使工程界人士认识到开展钢结构工程事故分析的重要性。
经过多年研究观察,钢结构事故可以分为以下几种:1. 钢结构的材料事故钢结构材料事故是指由于材料本身的原因引起的事故。
钢结构所用材料包括钢材(Q235、16Mn、15MnV等)和连接材料(螺栓、焊材等)两大类。
影响钢材性能的主要因素有有害化学成分超标、冶金轧制缺陷、硬化使钢材的塑性和韧性降低、应力集中以及温度过高或过低等。
引发钢结构材料事故的常见因素有钢材质量不合格、螺栓质量不合格、焊接材料质量不合格、设计选材不当、制作安装工艺不合理、母材与焊接材料不匹配、随意混用或替代材料等。
工程结构脆性断裂事故分析工程结构脆性断裂事故分析钢脆性和工程结构脆性断裂,周顺深编,上海科学技术出版社,1983自本世纪初以来,桥梁、船舶、压力窗口、管道、球罐、热电站发电设备的汽轮机和发电机转子以及其他设备曾发生脆性断裂事故。
近20年来,随着焊接结构的大型化、钢结构截面增厚以及高强度钢的采用,容易引起焊接结构的脆断。
例如由于压力窗口的大型化、厚截面或超厚截面压力窗口增多以及化工、石油工业中低温压力容器的使用,使脆断事故迭有发生。
这些事故引起世界各国的关注,推动了对脆性断裂问题的研究,英、日本等国家成立专门机构对脆断事故进行分析和研究,并提出了工程结构脆断防止措施。
(一)压力容器脆性断裂压力容器断裂可能有塑性断裂、低应力脆性断裂和疲劳损坏等几种形式,特别是脆性断裂更引人注意。
压力容器一旦发生脆性断裂,则将整个结构毁坏,其后果甚为严重。
早基曾对压力容器的破坏作了调查,在调查报告中收入压力容器脆性断裂事故18例,其中最典型的例子为:1919年美国马萨诸塞州糖浆贮罐脆性断裂事故。
事故原因是由于整个贮罐强度不够,特别是对局部应力集中缺乏考虑,以致在糖浆的内压作用下产生脆性断裂。
本世纪40年代球形贮罐的破坏事故更为突出,1943年美国纽约州有一个直径12米的大型贮气罐,当温度降到-12℃时发生脆断。
1944年10月美国俄亥俄州煤气公司一台球形液态天然气贮罐(直径21.3米、高12.8米、工作压力5磅/平方英寸、工作温度-162℃)发生了一次严重的脆性断裂事故。
1945年美国一台工作温度为-110℃的甲烷塔发生脆断。
1947年冬苏联几个石油贮罐在气温-43℃时脆断。
1965-1971年期间压力容器脆性断裂事故达10余次之多。
下面介绍几个较典型的压力容器脆性断裂事故。
(1)化工氨合成容器脆断1965年英国合成氨厂使用的大型厚壁压力容器,在水压试验时发生脆性断裂。
该容器全长18.3米、外径2米、壁厚150毫米。
容器壳体材料是钢。
破坏是从锻造法兰和筒身的环向自动埋弧焊缝处开始的。
锻件上有偏析区,在偏析区与熔合线交点附近产生边长约10毫米的三角形裂纹,此处是破裂的起始点。
断裂原因是由于在法兰一侧的环向焊缝熔合线上碳和合金元素偏析,以致使该区具有高的强度和硬度,测定结果表明:偏析区的硬度为420-460,而热影响区的硬度为310-360;另外,再加上焊接后热处理不完善,其消除应力退火比原定温度偏低130℃左右,从而使焊缝金属脆化,20℃时该焊缝金属的却贝冲击能只有1.5公斤·米/平方厘米,而正常热处理后的却贝冲击能值为6公斤·米/平方厘米。
由此可知,低合金钢焊缝金属对焊接后消除应力处理的温度是很敏感的,因之,我们必须重视焊后热处理。
(2)锅炉汽包脆断1966年英国电厂锅炉汽包在水压试验时发生脆性断裂。
汽包是用钢板制造的,筒体全长23米、内径1.7米、壁厚140毫米。
该容器采用了以新的贯通形管接头代替旧的管接头。
在沿该管接头的汽包筒身内侧靠近省煤器管接头处潜伏着一个长度为330毫米、深为90毫米的大裂纹,并且裂纹表面已发黑。
破坏就是从这里开始的。
裂纹呈人字形方向扩展。
经检查表明:在原始钢板中没有发现任何缺陷,而且在裂纹起始处材料的金相组织未发现异常的特征;汽包的设计、所用材料、制造方法、热处理以及检验均符合于英国标准1113-1958要求。
而且焊接完毕后,在消除应力退火前用磁粉探伤并未发现任何裂纹。
经研究确定:这条裂纹是在消除应力退火处理的初期阶段就已形成,但尚未扩展成脆性临界裂纹。
而且认为这种裂纹产生原因是由于在较低温度时急剧加热所产生的热应力和焊接残余应力相迭加,以及氢的延迟破坏等因素综合作用的结果。
这个事故清楚地告诉我们,大型厚壁压力窗口刚性大的焊接部位氢的延迟破坏是危险的,在消除应力退火处理的过程中要注意加热速度,以免产生裂纹,并且在退火后应进行探伤检查,以防漏检。
1969年西德一台由(38)低合金钢制造的锅炉汽包,在水压试验时也发生脆性断裂。
该汽包外径为1600毫米、筒体壁厚为75毫米、总长度为11.6米。
这种钢的成分规定为:0.16C、1.33、1.14、0.22、0.14V、P和;0.015。
水压试验时注入热水温度为65℃,在试验过程中没有测定汽包实际温度,当水压应力达到工作应力1.3倍时汽包突然发生破坏。
刚爆破时汽包壁温度为35℃,这说明该汽包脆性断裂温度约为35℃。
对断裂后钢板进行化学成分的分析表明:钢中含量为1.72%、含量为0.06%。
其中,由于含量值比标准规定的高,以致使钢板具有高强度和低冲击韧性,由此所得的屈服强度值比标准规定的下限值高20公斤/平方毫米,而在0℃时却贝冲击韧性值约为2.3-4.3公斤·米,比原来规定的指标低。
对该汽包破裂处断口观察表明:在第一个下降管管接头附近有一条长度为240毫米、深度为15毫米的裂纹。
断口已经发黑,而裂纹边缘有氧化皮,这一事实证明:裂纹是在消除应力退火过程中产生的。
脆性断裂是从第一个下降管缺陷位置处开始,向封头延伸的裂纹有三条。
由上述分析可知,西德的这个汽包脆性断裂事故主要原因是,由于下降管管接头处产生消除应力退火裂纹,同时在水压试验时水的温度偏低以及钢中含量偏高使钢的强度增高而韧性降低等因素所造成的。
通过上面两个例子,说明锅炉汽包用的低合金钢对消除应力退火处理的再热裂纹形成是敏感的。
因之,对这类钢消除应力退火处理过程应严加控制,并且在处理后还要细致检查有无裂纹存在。
(3)多层圆筒容器脆裂1970年日本一台多层压力窗口发生脆性断裂。
该容器全长为6.02米、内径1.56米、壁厚144毫米,是用60钢制造的。
容器焊完后未作消除应力退火处理就进行水压试验,当试验压力达到1.5倍设计压力时突然破裂。
断裂发生在筒体与锻造封头的环焊缝靠近锻件一侧的熔全线上。
造成脆性断裂的原因:在焊接到30毫米深度部位时,由于焊缝中氢的影响引起断续裂纹及焊接残余应力的作用,在水压试验中裂纹继续扩展达到临界裂纹尺寸后才发生脆性断裂。
这个压力容器的断裂是由于焊接后未作消除应力处理所造成的。
(4)球形容器脆断60年代球罐容器破坏事故率有所降低。
近年来,在制造大型球罐中由于采用了高强度钢,又发生了球罐的破坏事故。
日本高压气体安全协会对球罐破坏事故作了调查。
日本用60和80钢制造的大型球罐,在45只球罐中就发现近2000条裂纹,其中长度超过10毫米的有600多条左右,1968年两只直径为10米以上球罐在水压试验时发生破裂。
1968年日本德山厂一台大型球罐在水压试验时发生脆性断裂。
当时容器内水温为8.5℃。
该球罐是用强度为80公斤级高强度钢制造的。
裂纹发生在球罐下底部的焊缝处,造成这次事故原因:是由于焊接工艺操作不当,焊接规范所规定的输入热为48千焦/厘米,而实际上其平均值为50千焦/厘米,在脆性断裂附近的焊接输入热为80千焦/厘米,由于热量太大,以致使焊缝和热影响区的韧性显著降低,并且产生较大的焊接残余应力;另一个原因是在焊缝区由于氢的聚集而引起氢裂纹。
1968年日本千叶炼油厂一个大型球形容器水压试验时,当压力达到18.2公斤/平方厘米时,该容器下底部发生脆裂。
该容器是用60高强度钢制造的,底部钢板厚度为27毫米,裂纹全长为10米左右,破坏是沿焊接接头熔合线区发生的。
在破断面上可找到近50个脆裂起源点。
经检查表明:在装配过程中,将顶极板的月牙板和底极板的月牙板互相装错,顶极板的月牙板比底极板约小20毫米。
造成了焊接困难。
最后用嵌进金属进行焊接,造成较大焊接错边和角变形,这是引起脆性断裂的主要原因。
(二)船舶脆性断裂在焊接结构断裂中,船舶的脆性断裂事故颇受人们注意。
在第二次世界大战期间,美国的焊接“自由轮”在使用过程中发生大量的破坏事故,其中238艘向完全报废、19艘船沉没。
船舶损坏有完全断裂或部分断裂两种情况,据统计有24艘船舶脆断成两半的情况。
等人对船舶的脆性断裂事故作了详细调查,并获得了大量数据。
认为造成最主要的原因是钢的缺口敏感性。
更值得注意的是:大部分船舶脆断是在气温较低的情况下发生的。
当时美国船舶技术标准中没有列出对船舶钢板的缺口敏感性和低温韧性的性能要求。
第二次世界大战后船舶脆断最典型的例子是:1956年英国最大油轮“世界协和”号,在爱尔兰海的一次大风暴中轮船破裂成两段,当时海上温度为10.5℃。
后经调查表明:裂纹发生在船腹中部,裂纹由船底开始沿船的两侧向上扩展,并穿过甲板。
裂纹是不连续的,而是由若干单独的裂纹所组成。
总结船舶脆性断裂原因大致可归纳为:①钢板低温脆性所引起;②脆性断裂是由应力集中处开始;③钢板具有较大的缺口敏感性.(三)桥梁脆性断裂在1935年前后,比利时在运河上建造了大约50座焊接桥梁,这些桥梁在以后几年内不断发生脆性断裂事故.1938年3月比利时运河上桥全长74.5米的焊接结构,在气温-20℃时发生脆性断裂,整个桥梁断成三段坠入河中.1940年又有两座桥梁在-14℃温度下发生局部断裂,其中一座桥梁在下弦曾发现长达150毫米裂纹,裂纹是由焊接接头处开始的;另一座桥梁在桥架下弦曾发现六条大裂纹.据统计,在1947-1950年期间比利时还有十四座桥梁发生脆断事故,其中六次是在低温下发生的.1938年在德国柏林附近,一座公路桥梁在气温-10℃发生局部脆性断裂,曾发现长达三米的裂纹,断裂是由过渡到下盖板的焊接处开始的,经查明在焊接处存在较大的残余应力.1951年加拿大魁北克河上桥,在气温-35℃时桥西侧一段长为45.8米的大梁发生脆性断裂,并坠入河中.引起脆断的裂纹是由对接焊上翼缘板过渡到腹板的凹角处开始的,并向腹板中心扩展.后经调查证实,该洗染脆断主要原因之一是钢材质量差,断裂的翼缘板是用沸腾钢,钢板内存在碳和硫的偏析以及大量的夹杂物,钢材冲击韧性很低.另外一个重要原因是在翼缘板与腹板过渡部分存在较大的应力集中.1962年澳大利亚墨西尔本附近的金斯桥四根梁毁坏,经查明四根梁均为脆性断裂,断裂是由翼缘盖板末端与主翼缘相连的角焊缝处开始的,引起的原因不明. (四)汽轮机和发电机转子脆断国外汽轮机和发电机转子脆性断裂事故已发生多次.汽轮发电机组在1948-1958年期间共发生13起脆断事故,其中五次是由超速试验或调鼓掌器失灵造成的.因之,对转子脆断问题研究及其防止已引起人们的重视.美国有一台汽轮机转子断裂是从固定汽轮机叶片的槽内两个销子孔处开始的,然后延伸到主轴.断裂通过了叶轮和主轴的截面,而使整个转子损坏.该转子是用110.25钢制成的,其工作温度为512℃,旋转速度为1800转/分.造成转子断裂原因:在靠近第二级叶轮处有很高的残余应力,钢的高温持久塑性很低,高温蠕变断裂试验表明:缺口的持久强度已远低于光滑持久强度,该钢材已显示出较大的持久缺口敏感性,而呈现出高温蠕变脆性.因之,其脆断是由销子孔应力集中处产生.1954年美国电站一台14.7万千瓦汽轮发电机组设备的发电机转子,在平衡运转情况下发生突然断裂.该转子材料为钢.转子脆断后断口表面有一个圆形斑点, 脆性断裂是以此为核心开始的,此圆形斑点若沿轴纵向剖面可观察到小的裂纹.文献认为:此圆形斑点可能是由于氢溶解所形成的裂纹.观察其断口表面表明:断裂起源于钻孔底部拐角应力集中处.经分析表明:在靠近拐角处有一个合金元素偏析区域,在此区域钢的韧性降低,以致产生脆断.美国电站一台16.5万千瓦汽轮机低压主轴,在超速脱扣试验时发生脆断.该主轴材料是采用低合金耐热钢.经分析表明:钢中存在白点是造成该主轴发生脆断的主要原因,由此以白点为起点引进疲劳裂纹,然后发生脆性断裂.电站转子断裂起源于非金属夹杂物,断裂是从2×5英寸处集中有硅酸盐夹杂物地方开始的,就是图中白圈范围产生裂纹,当转子旋转时裂纹继续扩展,直到最后断裂.现将上面所叙述的等四个电站汽轮机和发电机转子材质情况和断裂经过列于表1-2.这些转子脆断原因如下:①所用材料具有高的脆性转变温度();②主轴开孔处应力集中大于断裂应力;③转子钢材中存在白点/大块非金属夹杂物等缺陷.1969年9月美国”A”核电站一台汽轮机低压转子在室温超速试验时发生脆断.材料是0.330.5钢,σ76公斤/平方毫米,于1958-1959年制行过程中应力腐蚀引起的.对断裂园子材料韧性测定结果列于表1-3,由表可知比较高,而材料的断裂韧性和却贝冲击韧性值均较低,钢材呈现了脆性倾向.经金相观察表明:原始奥氏体晶界较为明显,微裂纹沿晶界发生.这些试验结果表明:主轴脆性断裂的原因是键槽底部应力集中、应力腐蚀引起裂纹、钢材有高的以及材料韧性已相当低,再加上超速试验时应力增大等。