沸石分子筛

  • 格式:doc
  • 大小:37.50 KB
  • 文档页数:5

下载文档原格式

  / 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沸石分子筛定义

沸石分子筛是结晶铝硅酸金属盐的水合物,Mx/m[(AlO2)x·(SiO2)y]·zH2O。M代表阳离子,m表示其价态数,z表示水合数,x和y是整数。沸石分子筛活化后,水分子被除去,余下的原子形成笼形结构,孔径为3~10Å。分子筛晶体中有许多一定大小的空穴,空穴之间有许多同直径的孔(也称“窗口”)相连。由于分子筛能将比其孔径小的分子吸附到空穴内部,而把比孔径大的分子排斥在其空穴外,起到筛分分子的作用,故得名分子筛。

沸石分子筛结构

(1)四个方面、三种层次:

分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。相邻的四面体由氧桥连结成环。环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。环是分子筛的通道孔口,对通过分子起着筛分作用。氧环通过氧桥相互联结,形成具有三维空间的多面体。各种各样的多面体是分子筛结构的第三个层次。多面体有中空的笼,笼是分子筛结构的重要特征。笼分为α笼,八面沸石笼,β笼和γ笼等。

(2)分子筛的笼:

α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。笼的平均孔径为1.14nm,空腔体积为

760[Å]3。α笼的最大窗孔为八元环,孔径0.41nm。

八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为850[Å]3。最大孔窗为十二元环,孔径0.74nm。八面沸石笼也称超笼。

β笼:主要用于构成A型、X-型和Y型分子筛的骨架结构,是最重要的一种孔穴,它的形状宛如有关削顶的正八面体,空腔体积为160[Å]3,窗口孔径为约0.66nm,只允许NH3、H2O等尺寸较小的分子进入。此外还有六方柱笼和γ笼,这两种笼体积较小,一般分子进不到笼里去。

不同结构的笼再通过氧桥互相联结形成各种不同结构的分子筛,主要有A-型、X型和Y型。

沸石分子筛的性质

沸石分子筛与一般常用的固体吸附剂如硅胶、活性炭、活性氧化铝等相比,在吸附性能方面有二个显著的特点,一个是选择性吸附,另一个是高效率吸附。下面分别讨论。

1、吸附性质

沸石分子筛根据分子大小不同进行选择吸附,由于分子筛具有空旷的骨架结构,在结构中存在着很多排列得非常整齐而有规则的孔穴,而且孔的直径也很均匀,其大小和一般分子有相近的数量级。它们只能使直径比孔小的分子进入,直径比孔大的分子则排斥在外,因此,沸石分子筛在吸附时具有筛分分子的作用,或者说对分子的形状大小具有选择作用。利用这一性质,分子筛在吸附时可按形状不同,把物质分离开来。例如正构烷烃分子的临界截面直径是4.9埃,而其他烃类的临界截面直径均大于5埃,用孔径为5埃的5A分子筛为吸附剂时,则只有正构烷烃能进入笼子中而被吸附,其他烃类则都被排斥在外,这样就可把正构烷烃和其他烃类分离开来,这种过程工业上叫分子筛脱蜡。在催化领域里,也可利用分子筛的筛分性能进行所谓的择形催化。水是极性很强的物质,很容易被沸石所吸附,因此常把沸石作为干燥剂使用,而且和其他干燥剂相比,有其突出的优点。对硅胶和氧化铝等一般吸附剂讲,在水蒸气的分压或浓度很低时,或者吸附温度较高、气流速度较大时,它们的吸水率就很差。可是沸石分子筛,即便在低分压、低浓度、高温和高速等条件下,仍具有很好的吸水效率。

2、离子交换性能

沸石分子筛中存在着大量的阳离子,对合成沸石讲,都是钠离子。这些钠离子能和其他阳离子进行可逆交换,交换后,可使晶体内部的静电场发生变化,从而改变其吸附性能,其改变程度随阳离子性质以及交换度的不同而不同。这样,就可利用不同的阳离子进行不同程度的交换来调节分子筛的吸附性能,并进一步调节它的催化性能,因此离子交换是沸石分子筛的一个极其重要的性质。

沸石分子筛之所以能得到极其的广泛的应用,和它具有离子交换性能是分不开的。上面所讲的阳离子的性质包括阳离子电荷的多少,电子构型以及和阳离子半径有关的各种特性。不同的阳离子,这些性质是不相同的,它们能引起沸石对吸附质分子的吸附速度、吸附选择性以及吸附容量的变化。除这些性质以外,有时还必须考虑阳离子的数目、大小和位置等几个因素对沸石性能的影响。对孔径比较小的沸石,这种影响更为明显。例如NaA分子筛其孔径为4埃,故又叫4A 分子筛,当NaA分子筛中三分之一的钠离子被钙离子所交换时,由于一个钙离子取代了二个钠离子,阳离子数目减少,腾出位置,分子筛的孔径就扩大为5埃,故CaA又叫5A分子筛;若~25%的钠离子被钾离子所交换时,由于钾离子比钠离子大,故分子筛的孔径明显减小,变为3埃,故KA又叫3A分子筛。孔径改变必然引起筛分性能的变化。又如,NaX一般称为13X,如果其中的钠离子被钙离子所交换,则其有效孔径为10埃左右,即得到10X型分子筛。离子交换对沸石的热稳定性也有影响,NaY用稀土金属离子交换后,热和水热稳定性都明显增加,表现在晶体结构破坏的温度大大提高。如SiO2/Al2O3为4.8的NaY,当Na的交换度达到~80%时,晶体结构开始破坏的温度从原来的700℃上升为

840℃。但有些阳离子如Ba2+、Cu2+、Ni2+、Fe3+等却能使沸石的稳定性下降,特别是硅铝比较低的沸石下降更为明显。例如,硅铝比为2的NaA沸石,用Ba2+交换后,结构开始破坏的温度从原来的600℃下降到90℃。分子筛的离子交换一般在金属盐的水溶液中进行。所用的金属盐有氯化物、硝酸盐、硫酸盐等。交换时,溶液中的金属阳离子进入沸石中,而沸石中的阳离子则被交换下来进入溶液中。在一定条件下,离子交换式可以达到平衡的。

3、催化性能

沸石分子筛具有独特的规整晶体结构,其中每一类都具有一定尺寸、形状的孔道结构,并具有较大比表面积。大部分沸石分子筛表面具有较强的酸中心,同时晶孔内有强大的库仑场起极化作用。这些特性使它成为性能优异的催化剂。多相催化反应是在同体催化剂上进行的,催化活性与催化剂的晶孔大小有关。沸石分子筛作为催化剂或催化剂载体时,催化反应的进行受到沸石分子筛晶孔大小的控制。晶孔和孔道的大小和形状都可以对催化反应起着选择性作用。在一般反应条件下沸石分子筛对反应方向起主导作用,呈现了择形催化性能,这一性能使沸石分子筛作为催化新材料具有强大生命力。

常见的沸石分子筛材料

A型分子筛

类似于NaCl的立方晶系结构。若将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来就得到A-型分子筛的晶体结构。8个β笼联结后形成一个方钠石结构,如用γ笼做桥联结,就得到A-型分子筛结构。中心有一个大的α的笼。α笼之间通道有一个八元环窗口,其直径为4Å,故称4A分子筛。若4A分子筛上70%的钠离子为Ca2+交换,八元环可增至5Å,对应的沸石称5A分子筛。反之,若70%的Na+为K+交换,八元环孔径缩小到3Å,对应的沸石称3A分子筛。 X-型和Y-型分子筛类似金刚石的密堆六方晶系结构。若以β笼为结构单元,取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,即用4个六方柱笼将5个β笼联结一起,其中一个β笼居中心,其余4个β笼位于正四面体顶点,就形成了八面体沸石型的晶体结构。用这种结构继续连结下去,就得到X-型和Y型分子筛结构。在这种结构中,由β笼和六方柱笼形成的大笼为八面沸石笼,它们相通的窗孔为十二元环,其平均有效孔径为0.74nm,这就是X-型和Y-型分子筛的孔径。这两种型号彼此间的差异主要是Si/Al比不同,X-型为1~1.5;Y型为1.5~3.0。

丝光沸石型分子筛

这种沸石的结构,没有笼而是层状结构。结构中含有大量的五元环,且成对地联系在一起,每对五元环通过氧桥再与另一对联结。联结处形成四元环。这种