振动时效机理
- 格式:doc
- 大小:108.50 KB
- 文档页数:5
时效工艺简介一、序时效加工是机械制造业的基础工艺,最早投入实际运用的是自然时效,而后是热时效,振动时效工艺是在六十年代出现的新时效工艺技术,通过近三十年的探索和开发不断完善。
我国七十年代开始生产振动时效设备,一九八六年振动时效工艺方法通过鉴定,一九九一年发布JB-5925、JB/T5926行业标准,从九十年代初期开始生产自动化设备—TZ21系列智能型振动时效装臵,一九九七年“RSR 系列全自动振动消除应力专家系统”投放市场,逐步开发、完善了振动时效设备的产品系列,使我国的振动时效设备生产技术和振动时效工艺技术跨入世界先进行列。
二、热时效和自然时效工艺简介热时效(TSR)工艺是目前广泛采用的传统机械加工方法,其原理是用炉窑将金属结构件加热到一定温度,保温后控制降温,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。
TSR工艺广泛应用于几乎所有机械产品生产厂,在中国有几万家企业每年有数十万吨的机械金属结构件采用TSR,其所消耗的重油、电、煤气和原煤折合标准煤为140-240kg/吨左右,由此可见TSR工艺耗能已不容忽视,其对环境造成的污染之大也是有目共瞩的。
TSR工艺的基本工装低温时效炉目前造价约为人民币4000元/立方米左右,年维护费用为人民币300-400元/立方米,加上运输、其它辅助工作(如去除氧化皮等),每吨金属结构件的处理费用将高达人民币400-600元。
自然时效(NSR)是将工件长时间露天放臵(一般长达六个月至一年左右),利用环境温度的季节性变化和时间效应使残余应力释放,由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。
三、振动时效振动时效(VSR)工艺是一种可完全取代TSR和NSR的工艺,其原理是用振动消除残余应力,可达到TSR工艺的同样效果,并在许多性能指标上超过TSR。
VSR工艺耗能少(是TSR的2%左右)、设备投资少和效率高,其在节能、减少环境污染和提高产品性能方面有卓越的表现,使得这一高新技术在各行各业中有广泛的应用前景。
振动时效技术在建材机械领域的应用【摘要】振动时效工艺是当前科学发展的过程中,利用先进的科学技术结合当前建材机械进行综合性的技术加工过程,是工程材料中最常用的一种,更是消除材料内部参与营内的主要方法法和措施。
其在工作的过程中是通过振动力来对工件内部残余进行清除的过程,是取代传统的自然时效和热时效的一种新技术,被广泛的应用在各种铸件、锻件和技术焊接的过程中。
其在使用的过程中能够有效的保证工作的精确度和精准性,为各个行业奠定基础和提高其经济效益和前提保证。
【关键字】振动时效建材机械焊接振动时效,是上个世纪80年代由美国引入我国的加工技术和施工措施,主要是通过专业的振动时效设备,对机械加工进行共振施工的一项措施和基础,并通过这种共振方式将一定的振动能量传递到工件的所有部位,在当前施工的过程中,采用振动技术对工件内部进行加工,通过其内部的变化来对其进行围观的塑造和外形的改变,避免其在施工的过程中出现各种问题及其缺陷。
从而保证工件在施工的过程中其各个尺寸和质量的精确化、稳定化,保证其施工的效果,控制器施工措施与施工技巧是主要的手段与方法。
l 振动时效的机理振动时效是通过振动的形式给各个机械在施工的过程中施加一个动力,对金属进行各种加工的过程中使得其能够通过这种动力和机械本身的质量叠加之后达到高水准的控制过程。
金属工件经过各种加工后,工件内部应力重新分布,打破了在使用的过程中各种力度的不平问题,成为施工过程中的宏观控制和局部控制弹性、塑性变形的过程。
由于其在工作的过程中打破物体内部的应力平衡,形成暂稳态不平衡应力系统,因此会随着时间、温度、外力等条件变化逐步出现各种变形,使其在发展过程中达到平衡状态,防止各个零件和工件开裂的状态,稳定其尺寸与精确度成为加工的主要目标和目的。
目前各国采用的振动时效工艺,大多数是共振时效。
这种工艺已经逐步的被生产加工企业应用,成为当前各种金属加工中的主要手段,也是其在使用过程中的前提与基础,其在使用的过程中,结合当前先进的技术和控制手法进行相应的措施理解,通过振动设备的控制部分,根据工件的大小和形状调节激振力,根据工件需要的类型来调整其频率的大小,使频率与感应器中的相互一致,在这种状态下持续振动一段时间,即可达到消除应力、稳定尺寸精度的目的,从而增加施工过程中的质量控制手段和控制方法。
高频振动时效的机理与实验研究蒋刚;何闻;郑建毅【期刊名称】《浙江大学学报(工学版)》【年(卷),期】2009(043)007【摘要】针对目前振动时效的研究仅局限于低频激振的现状,研究了高频激振条件下材料内部残余应力的变化规律.采用微观动力学理论,将构件内部材料颗粒间的关系视为多自由度有阻尼振动系统,分析了构件在发生高频共振时残余应力消除的过程;通过低阶模态振型和高阶模态振型的对比分析,研究了高频振动时效在应力均化方面的作用.通过实验验证高频振动时效的可行性,并对比了不同频率激振条件下残余应力的消除和均化结果.结果表明,高频振动时效在消除残余应力及振后构件整体应力均化方面具有较好的效果.【总页数】4页(P1269-1272)【作者】蒋刚;何闻;郑建毅【作者单位】浙江大学,流体传动及控制国家重点实验室,浙江省先进制造技术重点研究实验室,现代制造工程研究所,浙江,杭州310027;浙江大学,流体传动及控制国家重点实验室,浙江省先进制造技术重点研究实验室,现代制造工程研究所,浙江,杭州310027;浙江大学,流体传动及控制国家重点实验室,浙江省先进制造技术重点研究实验室,现代制造工程研究所,浙江,杭州310027【正文语种】中文【中图分类】TG156.92【相关文献】1.高频振动贯入过程中灌注桩护壁套管土塞效应机理 [J], 肖勇杰;吕艳平;陈福全2.机制砂在高频振动下风力除粉的机理及试验研究 [J], 王金锋3.基于多元函数逼近的高频振动时效工艺参数研究 [J], 顾邦平;王萍;胡雄;王微;徐冠华;杨振生;赖金涛4.受电弓碳滑板异常磨损与高频振动机理分析 [J], 黄超;王安斌;何宇;高锋5.超声振动时效的机理及实验研究 [J], 王壬炎;王时英因版权原因,仅展示原文概要,查看原文内容请购买。
振动时效工艺技术振动时效工艺技术是一种利用振动来改善材料特性的处理方法。
通过调控材料在特定振动条件下的时效过程,可以使材料的力学性能得到提高,提高材料的耐疲劳性和抗变形能力。
振动时效工艺技术主要适用于金属材料,特别是结构件、工具件和零部件等重要材料。
该工艺技术的操作相对简单,但是要保证振动的频率、振幅和时间等参数符合要求,且需要仔细监控振动时效的过程。
振动时效工艺技术的工艺过程一般包括以下几个步骤:1. 材料准备:将待处理的金属材料切割成适当的形状和尺寸,清洗干净并进行表面处理。
2. 振动设备准备:选择适当的振动设备,根据材料的形状和尺寸调整好设备的参数,如振动频率和振幅等。
3. 振动时效:将材料放置在振动台上,调整好振动设备的参数,确保振动频率和振幅符合要求。
然后,将振动设备打开,开始振动时效的过程。
振动时效的时间一般根据材料的特性和工艺要求而定,可以根据实际需要进行调整。
4. 振动结束:待振动时效的时间到达后,将振动设备关闭,取出经过振动时效处理的材料。
振动时效工艺技术的主要优点有以下几个方面:1. 提高材料的力学性能:振动时效可以使材料的晶粒尺寸变细,提高材料的强度和硬度,从而提高材料的力学性能。
2. 提高材料的耐疲劳性:振动时效可以增强材料的断裂韧性和抗疲劳性,延缓材料的疲劳断裂,提高材料的使用寿命。
3. 提高材料的抗变形能力:振动时效可以减少材料的应力集中和变形,从而提高材料的抗变形能力和耐冷间隙冲击性能。
4. 工艺简单高效:振动时效是一种非常简单和高效的处理方法,仅需较短的时间,即可达到良好的处理效果。
振动时效工艺技术在汽车、航空航天、机械制造等领域有着广泛的应用。
通过采用该工艺技术,可以提高产品的质量和性能,降低材料的成本和能耗,提高材料的使用寿命和经济效益。
因此,振动时效工艺技术具有重要的科学意义和实际应用价值。
振动时效处理工作原理常规振动时效设备构成主机:控制电机、识别、处理、显示、打印参数激振器及测速装置:激振器强迫工件振动,测速装置将电机转速反馈回主机,作为受强迫振动的工件的振动频率加速传感器:把加速度信号反馈到主机卡具:把激振器固定在工件上胶垫:隔振、降噪振动时效原理◆振动时效技术又称“振动消除应力法”,国外简称“VSR”技术。
它的实施过程是通过振动时效装置的控制系统控制激振器的转数和偏心作用在工件上产生离心力,使工件发生共振(谐振),让工件需时效部位产生一定幅度、一定周期的交变运动,并吸收能量,经过一定时间的振动引起工件微小塑性变形及晶粒内部位错逐渐滑移,并重新缠绕钉扎使得残余应力被消除和均化,防止工件变形和开裂,从而达到提高工件尺寸精度稳定性,增强工件的抗变形能力和提高疲劳寿命。
◆从宏观角度分析振动时效使零件产生塑性变形,降低和均化残余应力并提高材料的抗变形能力,无疑是导致零件尺寸精度稳定的基本原因。
从分析残余应力松驰和零件变形中可知,残余应力的存在及其不稳定性造成了应力松驰和再分布,使零件发生永久塑性变形。
故通常采用热时效方法以消除和降低残余应力,特别是危险的降值应力,振动时效同样可以降低残余应力,零件在振动处理后残余应力通常可降低30—80%,同时也使峰值应力降低使应力分布均匀化。
◆从微观方面分析振动时效可视为一种以循环载荷的形式施加于零件上的一种附加动应力,众所周知工程上采用的材料都不是理想的弹性体,其内部存在着不同类型的微观缺陷,铸铁中更是存在着大量形状各异的切割金属基体的石墨。
故而无论是钢、铸铁或其他金属,其中的微观缺陷附近都存在着不同程度的应力集中,当受到振动时,施加于零件上的交变应力与零件中的残余应力叠加。
当应力叠加的结果到一定的数值时,在应力集中最严重的部位就会超过材料的屈服极限而发生塑性变形。
这种塑性变形降低了该处残余应力降值,并强化了金属基体,而后振动又在一些应力集中较严重的部位上产生同样作用,直至振动附加应力与残余应力叠加的代数和不能引起任何部位的塑性变形为止,此时振动便不再产生消除和均化残余应力及强化金属的作用。
振动时效机理是对构件施加一交变应力,如果交变应力幅与构件上某些点所存在的残余应力之和达到材料的屈服极限时,这些点将产生塑性变形。
如果这种循环应力使某些点产生晶格滑移,尽管宏观上没有达到材料的屈服极限,也同样会产生微观的塑性变形,况且这些塑性变形往往是首先发生在残余应力最大的点上,因此,使这些点受约束的变形得以释放从而降低了残余应力。
振动时效机理的微观解释,简单地说.它是以激振的形式将机械能加到含有残余应力的构件内,在金属内部的晶格和晶格边界应力处受到阻尼,阻尼引起的内摩擦在高残余应力点产生,达到了更高的局部能量级,引起位错蠕变、转变和较少的原子扩散,使金属的结构状态由不稳定转变到稳定,以此来降低微观残余应力
振动消除残余应力是在交变应力达到一定周次后实现的,这就是包辛格效应的结果。
一. 等幅荷载反复作用下金属材料的应力与应变
图21是将试件在材料试验机上进行拉伸,当荷栽为变幅递升多次反复时的应力-应变曲线示意图。
从图中曲线可见,材料的屈服极限在逐渐提高,残余变形再逐渐增大,最后导致破坏。
而图22是等幅(σ0>σ0)重复荷栽作用下的拉伸曲线示意图。
σ0为重复荷载的幅值,σ0>σ0从图中可见,每次拉伸都使屈服点比前一次有所提高,滞后曲线面积减少,残余变形减少。
经过若干次之后,残余应变为0,说明不在出现新的塑性变形,材料处于安定状态。
这正是振动时效力学机理的静态模拟。
二,振动处理过程中材料的应力和应变
振动处理是对构件施加一交变应力,而残余应力相当于平均应力而改变了总应力水平。
但在交变应力作用下,残余应力是一个不稳定的力学量,在振动处理过程中逐渐下降,使总应力水平降低。
从图23中可以看到在振动处理过程中残余应力的变化情况,当材料受到等幅交变作用(ωc-ωB)时,如果材料已经屈服,则残余应力下降。
设处理前的残余应力为σA,回线ACB是第一次交变循
环时的应力和应变曲线。
当总应力超过A点后,材料进入塑性直到C点。
而C B 又平行于弹性线,CB末端却又偏离弹性线。
这些现象都是由包辛格效应所致。
经过一定次数的循环后应力和应变均处于稳定的回线上。
如图中曲线所示,残余应力由σA下降到σE而不再变化。
图23和图21从原理上来说是相同的,都说明要使构件中的残余应力下降,必须使作用应力与残余应力叠加后大于材料的屈服极限,即:
σ动+σ残>σs
如果残余应力下降后,作用应力与残余应力之和小于屈服极限时,则构件保持稳定的应力状态。
因此振动处理到一定周次后,如果不提高作用应力的量值,则继续处理将不再起作用。
">三. 残余应力与作用应力关系的实验研究:
实验1:对薄板试件(SAE1070, 7.6X1.9X0.13cm)进行喷丸处理后,施加交变弯曲应力,使残余应力发生变化。
其结果如表24所示。
残余应力是用X 射线法测定的。
试样2是喷丸处理的,试样3-6是喷丸后又施加了交变应力。
经高应力交变处理时,残余应力有明显的下降。
作用应力低则残余应力变化小甚至不变化。
图25是根据这些结果表示的交变应力作用下残余平均应力的变化规律。
从图中可见,当处于弹性极限直线所包围的内部状态时(例如试件3),即使有应力交变作用,平均应力也不变化。
而试样4-6在交变应力作用下,平均应力都将向弹性极限直线移动,这些都是在压应力状态下应力的变化情况。
即使在拉应力状态下,也仍然是如此,如图中B点,在交变拉应力作用下向C点移动;在A点时,平均应力就不发生变化。
这些都和图23所反映的规律是一样的,即作用应力和残余应力之和必须大于材料的屈服极限时,平均应力才能下降。
表24 用振动消除薄板试样的残余应力
为尽量明确作用应力与残余应力的关系,实验2:如图26用板梁的振动处理结果来说明,用一普通钢制成的长1200cm,宽120cm,厚16cm的板梁,在其上表面堆焊出两条焊道,测其残余应力为150Mpa左右。
将板梁一端固定成悬臂状,并在另一端激振,由应变片1测其动应力为80Mpa。
表26 板梁残余应力值
经30分钟的振动处理后,再次测图中梁上三点的残余应力,其变化见表26。
不难看出同上面一样的结果:动应力越大消除应力的效果越好,而消除应力
的最必要的条件就是:作用应力与残余应力之和必须大于材料的屈服极
限.即:
σ动+σ残>σs
振动时效不仅大量消除和均化成型内应力,而且还可以有效的提高构件的松弛刚度和抗动载荷变形能力。
参考文献:哈尔滨瑞锋振动时效技术有限公司
振动消除应力设备通常有电磁式、液压式和机械式3种。
当今国外流行的振动消除应力设备有美国的LJ-100R型振动装置、法国的P2V型振动装置。
国内使用的主要是HRFvsr-2000型、zJK-0z型设备及Q9160-1型设备。